Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_attribute_vector_math.cc « legacy « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 59903050f882252ea6f80f8d8e448e540f137f0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include "BLI_math_base_safe.h"
#include "BLI_task.hh"

#include "RNA_enum_types.h"

#include "UI_interface.h"
#include "UI_resources.h"

#include "NOD_math_functions.hh"

#include "node_geometry_util.hh"

namespace blender::nodes {

static void geo_node_attribute_vector_math_declare(NodeDeclarationBuilder &b)
{
  b.add_input<decl::Geometry>("Geometry");
  b.add_input<decl::String>("A");
  b.add_input<decl::Vector>("A", "A_001");
  b.add_input<decl::String>("B");
  b.add_input<decl::Vector>("B", "B_001");
  b.add_input<decl::Float>("B", "B_002");
  b.add_input<decl::String>("C");
  b.add_input<decl::Vector>("C", "C_001");
  b.add_input<decl::Float>("C", "C_002");
  b.add_input<decl::String>("Result");
  b.add_output<decl::Geometry>("Geometry");
}

static bool operation_use_input_b(const NodeVectorMathOperation operation)
{
  return !ELEM(operation,
               NODE_VECTOR_MATH_NORMALIZE,
               NODE_VECTOR_MATH_FLOOR,
               NODE_VECTOR_MATH_CEIL,
               NODE_VECTOR_MATH_FRACTION,
               NODE_VECTOR_MATH_ABSOLUTE,
               NODE_VECTOR_MATH_SINE,
               NODE_VECTOR_MATH_COSINE,
               NODE_VECTOR_MATH_TANGENT,
               NODE_VECTOR_MATH_LENGTH);
}

static bool operation_use_input_c(const NodeVectorMathOperation operation)
{
  return ELEM(operation,
              NODE_VECTOR_MATH_WRAP,
              NODE_VECTOR_MATH_REFRACT,
              NODE_VECTOR_MATH_FACEFORWARD,
              NODE_VECTOR_MATH_MULTIPLY_ADD);
}

static void geo_node_attribute_vector_math_layout(uiLayout *layout,
                                                  bContext *UNUSED(C),
                                                  PointerRNA *ptr)
{
  bNode *node = (bNode *)ptr->data;
  const NodeAttributeVectorMath &node_storage = *(NodeAttributeVectorMath *)node->storage;
  const NodeVectorMathOperation operation = (const NodeVectorMathOperation)node_storage.operation;

  uiItemR(layout, ptr, "operation", 0, "", ICON_NONE);

  uiLayoutSetPropSep(layout, true);
  uiLayoutSetPropDecorate(layout, false);
  uiItemR(layout, ptr, "input_type_a", 0, IFACE_("A"), ICON_NONE);
  if (operation_use_input_b(operation)) {
    uiItemR(layout, ptr, "input_type_b", 0, IFACE_("B"), ICON_NONE);
  }
  if (operation_use_input_c(operation)) {
    uiItemR(layout, ptr, "input_type_c", 0, IFACE_("C"), ICON_NONE);
  }
}

static CustomDataType operation_get_read_type_b(const NodeVectorMathOperation operation)
{
  if (operation == NODE_VECTOR_MATH_SCALE) {
    return CD_PROP_FLOAT;
  }
  return CD_PROP_FLOAT3;
}

static CustomDataType operation_get_read_type_c(const NodeVectorMathOperation operation)
{
  if (operation == NODE_VECTOR_MATH_REFRACT) {
    return CD_PROP_FLOAT;
  }
  return CD_PROP_FLOAT3;
}

static void geo_node_attribute_vector_math_init(bNodeTree *UNUSED(tree), bNode *node)
{
  NodeAttributeVectorMath *data = (NodeAttributeVectorMath *)MEM_callocN(
      sizeof(NodeAttributeVectorMath), __func__);

  data->operation = NODE_VECTOR_MATH_ADD;
  data->input_type_a = GEO_NODE_ATTRIBUTE_INPUT_ATTRIBUTE;
  data->input_type_b = GEO_NODE_ATTRIBUTE_INPUT_ATTRIBUTE;
  node->storage = data;
}

static CustomDataType operation_get_result_type(const NodeVectorMathOperation operation)
{
  switch (operation) {
    case NODE_VECTOR_MATH_ADD:
    case NODE_VECTOR_MATH_SUBTRACT:
    case NODE_VECTOR_MATH_MULTIPLY:
    case NODE_VECTOR_MATH_DIVIDE:
    case NODE_VECTOR_MATH_CROSS_PRODUCT:
    case NODE_VECTOR_MATH_PROJECT:
    case NODE_VECTOR_MATH_REFLECT:
    case NODE_VECTOR_MATH_SCALE:
    case NODE_VECTOR_MATH_NORMALIZE:
    case NODE_VECTOR_MATH_SNAP:
    case NODE_VECTOR_MATH_FLOOR:
    case NODE_VECTOR_MATH_CEIL:
    case NODE_VECTOR_MATH_MODULO:
    case NODE_VECTOR_MATH_FRACTION:
    case NODE_VECTOR_MATH_ABSOLUTE:
    case NODE_VECTOR_MATH_MINIMUM:
    case NODE_VECTOR_MATH_MAXIMUM:
    case NODE_VECTOR_MATH_WRAP:
    case NODE_VECTOR_MATH_SINE:
    case NODE_VECTOR_MATH_COSINE:
    case NODE_VECTOR_MATH_TANGENT:
    case NODE_VECTOR_MATH_REFRACT:
    case NODE_VECTOR_MATH_FACEFORWARD:
    case NODE_VECTOR_MATH_MULTIPLY_ADD:
      return CD_PROP_FLOAT3;
    case NODE_VECTOR_MATH_DOT_PRODUCT:
    case NODE_VECTOR_MATH_DISTANCE:
    case NODE_VECTOR_MATH_LENGTH:
      return CD_PROP_FLOAT;
  }

  BLI_assert(false);
  return CD_PROP_FLOAT3;
}

static void geo_node_vector_math_label(bNodeTree *UNUSED(ntree),
                                       bNode *node,
                                       char *label,
                                       int maxlen)
{
  NodeAttributeMath &node_storage = *(NodeAttributeMath *)node->storage;
  const char *name;
  bool enum_label = RNA_enum_name(rna_enum_node_vec_math_items, node_storage.operation, &name);
  if (!enum_label) {
    name = "Unknown";
  }
  BLI_snprintf(label, maxlen, IFACE_("Vector %s"), IFACE_(name));
}

static void geo_node_attribute_vector_math_update(bNodeTree *UNUSED(ntree), bNode *node)
{
  const NodeAttributeVectorMath *node_storage = (NodeAttributeVectorMath *)node->storage;
  const NodeVectorMathOperation operation = (const NodeVectorMathOperation)node_storage->operation;

  update_attribute_input_socket_availabilities(
      *node, "A", (GeometryNodeAttributeInputMode)node_storage->input_type_a);
  update_attribute_input_socket_availabilities(
      *node,
      "B",
      (GeometryNodeAttributeInputMode)node_storage->input_type_b,
      operation_use_input_b(operation));
  update_attribute_input_socket_availabilities(
      *node,
      "C",
      (GeometryNodeAttributeInputMode)node_storage->input_type_c,
      operation_use_input_c(operation));
}

static void do_math_operation_fl3_fl3_to_fl3(const VArray<float3> &input_a,
                                             const VArray<float3> &input_b,
                                             VMutableArray<float3> &result,
                                             const NodeVectorMathOperation operation)
{
  const int size = input_a.size();

  VArray_Span<float3> span_a{input_a};
  VArray_Span<float3> span_b{input_b};
  VMutableArray_Span<float3> span_result{result, false};

  bool success = try_dispatch_float_math_fl3_fl3_to_fl3(
      operation, [&](auto math_function, const FloatMathOperationInfo &UNUSED(info)) {
        threading::parallel_for(IndexRange(size), 512, [&](IndexRange range) {
          for (const int i : range) {
            const float3 a = span_a[i];
            const float3 b = span_b[i];
            const float3 out = math_function(a, b);
            span_result[i] = out;
          }
        });
      });

  span_result.save();

  /* The operation is not supported by this node currently. */
  BLI_assert(success);
  UNUSED_VARS_NDEBUG(success);
}

static void do_math_operation_fl3_fl3_fl3_to_fl3(const VArray<float3> &input_a,
                                                 const VArray<float3> &input_b,
                                                 const VArray<float3> &input_c,
                                                 VMutableArray<float3> &result,
                                                 const NodeVectorMathOperation operation)
{
  const int size = input_a.size();

  VArray_Span<float3> span_a{input_a};
  VArray_Span<float3> span_b{input_b};
  VArray_Span<float3> span_c{input_c};
  VMutableArray_Span<float3> span_result{result};

  bool success = try_dispatch_float_math_fl3_fl3_fl3_to_fl3(
      operation, [&](auto math_function, const FloatMathOperationInfo &UNUSED(info)) {
        threading::parallel_for(IndexRange(size), 512, [&](IndexRange range) {
          for (const int i : range) {
            const float3 a = span_a[i];
            const float3 b = span_b[i];
            const float3 c = span_c[i];
            const float3 out = math_function(a, b, c);
            span_result[i] = out;
          }
        });
      });

  span_result.save();

  /* The operation is not supported by this node currently. */
  BLI_assert(success);
  UNUSED_VARS_NDEBUG(success);
}

static void do_math_operation_fl3_fl3_fl_to_fl3(const VArray<float3> &input_a,
                                                const VArray<float3> &input_b,
                                                const VArray<float> &input_c,
                                                VMutableArray<float3> &result,
                                                const NodeVectorMathOperation operation)
{
  const int size = input_a.size();

  VArray_Span<float3> span_a{input_a};
  VArray_Span<float3> span_b{input_b};
  VArray_Span<float> span_c{input_c};
  VMutableArray_Span<float3> span_result{result, false};

  bool success = try_dispatch_float_math_fl3_fl3_fl_to_fl3(
      operation, [&](auto math_function, const FloatMathOperationInfo &UNUSED(info)) {
        threading::parallel_for(IndexRange(size), 512, [&](IndexRange range) {
          for (const int i : range) {
            const float3 a = span_a[i];
            const float3 b = span_b[i];
            const float c = span_c[i];
            const float3 out = math_function(a, b, c);
            span_result[i] = out;
          }
        });
      });

  span_result.save();

  /* The operation is not supported by this node currently. */
  BLI_assert(success);
  UNUSED_VARS_NDEBUG(success);
}

static void do_math_operation_fl3_fl3_to_fl(const VArray<float3> &input_a,
                                            const VArray<float3> &input_b,
                                            VMutableArray<float> &result,
                                            const NodeVectorMathOperation operation)
{
  const int size = input_a.size();

  VArray_Span<float3> span_a{input_a};
  VArray_Span<float3> span_b{input_b};
  VMutableArray_Span<float> span_result{result, false};

  bool success = try_dispatch_float_math_fl3_fl3_to_fl(
      operation, [&](auto math_function, const FloatMathOperationInfo &UNUSED(info)) {
        threading::parallel_for(IndexRange(size), 512, [&](IndexRange range) {
          for (const int i : range) {
            const float3 a = span_a[i];
            const float3 b = span_b[i];
            const float out = math_function(a, b);
            span_result[i] = out;
          }
        });
      });

  span_result.save();

  /* The operation is not supported by this node currently. */
  BLI_assert(success);
  UNUSED_VARS_NDEBUG(success);
}

static void do_math_operation_fl3_fl_to_fl3(const VArray<float3> &input_a,
                                            const VArray<float> &input_b,
                                            VMutableArray<float3> &result,
                                            const NodeVectorMathOperation operation)
{
  const int size = input_a.size();

  VArray_Span<float3> span_a{input_a};
  VArray_Span<float> span_b{input_b};
  VMutableArray_Span<float3> span_result{result, false};

  bool success = try_dispatch_float_math_fl3_fl_to_fl3(
      operation, [&](auto math_function, const FloatMathOperationInfo &UNUSED(info)) {
        threading::parallel_for(IndexRange(size), 512, [&](IndexRange range) {
          for (const int i : range) {
            const float3 a = span_a[i];
            const float b = span_b[i];
            const float3 out = math_function(a, b);
            span_result[i] = out;
          }
        });
      });

  span_result.save();

  /* The operation is not supported by this node currently. */
  BLI_assert(success);
  UNUSED_VARS_NDEBUG(success);
}

static void do_math_operation_fl3_to_fl3(const VArray<float3> &input_a,
                                         VMutableArray<float3> &result,
                                         const NodeVectorMathOperation operation)
{
  const int size = input_a.size();

  VArray_Span<float3> span_a{input_a};
  VMutableArray_Span<float3> span_result{result, false};

  bool success = try_dispatch_float_math_fl3_to_fl3(
      operation, [&](auto math_function, const FloatMathOperationInfo &UNUSED(info)) {
        threading::parallel_for(IndexRange(size), 512, [&](IndexRange range) {
          for (const int i : range) {
            const float3 in = span_a[i];
            const float3 out = math_function(in);
            span_result[i] = out;
          }
        });
      });

  span_result.save();

  /* The operation is not supported by this node currently. */
  BLI_assert(success);
  UNUSED_VARS_NDEBUG(success);
}

static void do_math_operation_fl3_to_fl(const VArray<float3> &input_a,
                                        VMutableArray<float> &result,
                                        const NodeVectorMathOperation operation)
{
  const int size = input_a.size();

  VArray_Span<float3> span_a{input_a};
  VMutableArray_Span<float> span_result{result, false};

  bool success = try_dispatch_float_math_fl3_to_fl(
      operation, [&](auto math_function, const FloatMathOperationInfo &UNUSED(info)) {
        threading::parallel_for(IndexRange(size), 512, [&](IndexRange range) {
          for (const int i : range) {
            const float3 in = span_a[i];
            const float out = math_function(in);
            span_result[i] = out;
          }
        });
      });

  span_result.save();

  /* The operation is not supported by this node currently. */
  BLI_assert(success);
  UNUSED_VARS_NDEBUG(success);
}

static AttributeDomain get_result_domain(const GeometryComponent &component,
                                         const GeoNodeExecParams &params,
                                         const NodeVectorMathOperation operation,
                                         StringRef result_name)
{
  /* Use the domain of the result attribute if it already exists. */
  std::optional<AttributeMetaData> result_info = component.attribute_get_meta_data(result_name);
  if (result_info) {
    return result_info->domain;
  }

  /* Otherwise use the highest priority domain from existing input attributes, or the default. */
  const AttributeDomain default_domain = ATTR_DOMAIN_POINT;
  if (operation_use_input_b(operation)) {
    if (operation_use_input_c(operation)) {
      return params.get_highest_priority_input_domain({"A", "B", "C"}, component, default_domain);
    }
    return params.get_highest_priority_input_domain({"A", "B"}, component, default_domain);
  }
  return params.get_highest_priority_input_domain({"A"}, component, default_domain);
}

static void attribute_vector_math_calc(GeometryComponent &component,
                                       const GeoNodeExecParams &params)
{
  const bNode &node = params.node();
  const NodeAttributeVectorMath *node_storage = (const NodeAttributeVectorMath *)node.storage;
  const NodeVectorMathOperation operation = (NodeVectorMathOperation)node_storage->operation;
  const std::string result_name = params.get_input<std::string>("Result");

  /* The number and type of the input attribute depend on the operation. */
  const CustomDataType read_type_a = CD_PROP_FLOAT3;
  const bool use_input_b = operation_use_input_b(operation);
  const CustomDataType read_type_b = operation_get_read_type_b(operation);
  const bool use_input_c = operation_use_input_c(operation);
  const CustomDataType read_type_c = operation_get_read_type_c(operation);

  /* The result domain is always point for now. */
  const CustomDataType result_type = operation_get_result_type(operation);
  const AttributeDomain result_domain = get_result_domain(
      component, params, operation, result_name);

  GVArrayPtr attribute_a = params.get_input_attribute(
      "A", component, result_domain, read_type_a, nullptr);
  if (!attribute_a) {
    return;
  }
  GVArrayPtr attribute_b;
  GVArrayPtr attribute_c;
  if (use_input_b) {
    attribute_b = params.get_input_attribute("B", component, result_domain, read_type_b, nullptr);
    if (!attribute_b) {
      return;
    }
  }
  if (use_input_c) {
    attribute_c = params.get_input_attribute("C", component, result_domain, read_type_c, nullptr);
    if (!attribute_c) {
      return;
    }
  }

  /* Get result attribute first, in case it has to overwrite one of the existing attributes. */
  OutputAttribute attribute_result = component.attribute_try_get_for_output_only(
      result_name, result_domain, result_type);
  if (!attribute_result) {
    return;
  }

  switch (operation) {
    case NODE_VECTOR_MATH_ADD:
    case NODE_VECTOR_MATH_SUBTRACT:
    case NODE_VECTOR_MATH_MULTIPLY:
    case NODE_VECTOR_MATH_DIVIDE:
    case NODE_VECTOR_MATH_CROSS_PRODUCT:
    case NODE_VECTOR_MATH_PROJECT:
    case NODE_VECTOR_MATH_REFLECT:
    case NODE_VECTOR_MATH_SNAP:
    case NODE_VECTOR_MATH_MODULO:
    case NODE_VECTOR_MATH_MINIMUM:
    case NODE_VECTOR_MATH_MAXIMUM:
      do_math_operation_fl3_fl3_to_fl3(attribute_a->typed<float3>(),
                                       attribute_b->typed<float3>(),
                                       attribute_result->typed<float3>(),
                                       operation);
      break;
    case NODE_VECTOR_MATH_DOT_PRODUCT:
    case NODE_VECTOR_MATH_DISTANCE:
      do_math_operation_fl3_fl3_to_fl(attribute_a->typed<float3>(),
                                      attribute_b->typed<float3>(),
                                      attribute_result->typed<float>(),
                                      operation);
      break;
    case NODE_VECTOR_MATH_LENGTH:
      do_math_operation_fl3_to_fl(
          attribute_a->typed<float3>(), attribute_result->typed<float>(), operation);
      break;
    case NODE_VECTOR_MATH_SCALE:
      do_math_operation_fl3_fl_to_fl3(attribute_a->typed<float3>(),
                                      attribute_b->typed<float>(),
                                      attribute_result->typed<float3>(),
                                      operation);
      break;
    case NODE_VECTOR_MATH_NORMALIZE:
    case NODE_VECTOR_MATH_FLOOR:
    case NODE_VECTOR_MATH_CEIL:
    case NODE_VECTOR_MATH_FRACTION:
    case NODE_VECTOR_MATH_ABSOLUTE:
    case NODE_VECTOR_MATH_SINE:
    case NODE_VECTOR_MATH_COSINE:
    case NODE_VECTOR_MATH_TANGENT:
      do_math_operation_fl3_to_fl3(
          attribute_a->typed<float3>(), attribute_result->typed<float3>(), operation);
      break;
    case NODE_VECTOR_MATH_WRAP:
    case NODE_VECTOR_MATH_FACEFORWARD:
    case NODE_VECTOR_MATH_MULTIPLY_ADD:
      do_math_operation_fl3_fl3_fl3_to_fl3(attribute_a->typed<float3>(),
                                           attribute_b->typed<float3>(),
                                           attribute_c->typed<float3>(),
                                           attribute_result->typed<float3>(),
                                           operation);
      break;
    case NODE_VECTOR_MATH_REFRACT:
      do_math_operation_fl3_fl3_fl_to_fl3(attribute_a->typed<float3>(),
                                          attribute_b->typed<float3>(),
                                          attribute_c->typed<float>(),
                                          attribute_result->typed<float3>(),
                                          operation);
      break;
  }
  attribute_result.save();
}

static void geo_node_attribute_vector_math_exec(GeoNodeExecParams params)
{
  GeometrySet geometry_set = params.extract_input<GeometrySet>("Geometry");

  geometry_set = geometry_set_realize_instances(geometry_set);

  if (geometry_set.has<MeshComponent>()) {
    attribute_vector_math_calc(geometry_set.get_component_for_write<MeshComponent>(), params);
  }
  if (geometry_set.has<PointCloudComponent>()) {
    attribute_vector_math_calc(geometry_set.get_component_for_write<PointCloudComponent>(),
                               params);
  }
  if (geometry_set.has<CurveComponent>()) {
    attribute_vector_math_calc(geometry_set.get_component_for_write<CurveComponent>(), params);
  }

  params.set_output("Geometry", geometry_set);
}

}  // namespace blender::nodes

void register_node_type_geo_attribute_vector_math()
{
  static bNodeType ntype;

  geo_node_type_base(&ntype,
                     GEO_NODE_LEGACY_ATTRIBUTE_VECTOR_MATH,
                     "Attribute Vector Math",
                     NODE_CLASS_ATTRIBUTE,
                     0);
  ntype.declare = blender::nodes::geo_node_attribute_vector_math_declare;
  ntype.geometry_node_execute = blender::nodes::geo_node_attribute_vector_math_exec;
  ntype.draw_buttons = blender::nodes::geo_node_attribute_vector_math_layout;
  node_type_label(&ntype, blender::nodes::geo_node_vector_math_label);
  node_type_update(&ntype, blender::nodes::geo_node_attribute_vector_math_update);
  node_type_init(&ntype, blender::nodes::geo_node_attribute_vector_math_init);
  node_type_storage(
      &ntype, "NodeAttributeVectorMath", node_free_standard_storage, node_copy_standard_storage);

  nodeRegisterType(&ntype);
}