Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_attribute_statistic.cc « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d9513332078858920beefdbe8995f4be268b9182 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <algorithm>
#include <numeric>

#include "UI_interface.h"
#include "UI_resources.h"

#include "BLI_math_base_safe.h"

#include "node_geometry_util.hh"

namespace blender::nodes {

static void geo_node_attribute_statistic_declare(NodeDeclarationBuilder &b)
{
  b.add_input<decl::Geometry>(N_("Geometry"));
  b.add_input<decl::Float>(N_("Attribute")).hide_value().supports_field();
  b.add_input<decl::Vector>(N_("Attribute"), "Attribute_001").hide_value().supports_field();

  b.add_output<decl::Float>(N_("Mean"));
  b.add_output<decl::Float>(N_("Median"));
  b.add_output<decl::Float>(N_("Sum"));
  b.add_output<decl::Float>(N_("Min"));
  b.add_output<decl::Float>(N_("Max"));
  b.add_output<decl::Float>(N_("Range"));
  b.add_output<decl::Float>(N_("Standard Deviation"));
  b.add_output<decl::Float>(N_("Variance"));

  b.add_output<decl::Vector>(N_("Mean"), "Mean_001");
  b.add_output<decl::Vector>(N_("Median"), "Median_001");
  b.add_output<decl::Vector>(N_("Sum"), "Sum_001");
  b.add_output<decl::Vector>(N_("Min"), "Min_001");
  b.add_output<decl::Vector>(N_("Max"), "Max_001");
  b.add_output<decl::Vector>(N_("Range"), "Range_001");
  b.add_output<decl::Vector>(N_("Standard Deviation"), "Standard Deviation_001");
  b.add_output<decl::Vector>(N_("Variance"), "Variance_001");
}

static void geo_node_attribute_statistic_layout(uiLayout *layout,
                                                bContext *UNUSED(C),
                                                PointerRNA *ptr)
{
  uiItemR(layout, ptr, "data_type", 0, "", ICON_NONE);
  uiItemR(layout, ptr, "domain", 0, "", ICON_NONE);
}

static void geo_node_attribute_statistic_init(bNodeTree *UNUSED(tree), bNode *node)
{
  node->custom1 = CD_PROP_FLOAT;
  node->custom2 = ATTR_DOMAIN_POINT;
}

static void geo_node_attribute_statistic_update(bNodeTree *ntree, bNode *node)
{
  bNodeSocket *socket_geo = (bNodeSocket *)node->inputs.first;
  bNodeSocket *socket_float_attr = socket_geo->next;
  bNodeSocket *socket_float3_attr = socket_float_attr->next;

  bNodeSocket *socket_float_mean = (bNodeSocket *)node->outputs.first;
  bNodeSocket *socket_float_median = socket_float_mean->next;
  bNodeSocket *socket_float_sum = socket_float_median->next;
  bNodeSocket *socket_float_min = socket_float_sum->next;
  bNodeSocket *socket_float_max = socket_float_min->next;
  bNodeSocket *socket_float_range = socket_float_max->next;
  bNodeSocket *socket_float_std = socket_float_range->next;
  bNodeSocket *socket_float_variance = socket_float_std->next;

  bNodeSocket *socket_vector_mean = socket_float_variance->next;
  bNodeSocket *socket_vector_median = socket_vector_mean->next;
  bNodeSocket *socket_vector_sum = socket_vector_median->next;
  bNodeSocket *socket_vector_min = socket_vector_sum->next;
  bNodeSocket *socket_vector_max = socket_vector_min->next;
  bNodeSocket *socket_vector_range = socket_vector_max->next;
  bNodeSocket *socket_vector_std = socket_vector_range->next;
  bNodeSocket *socket_vector_variance = socket_vector_std->next;

  const CustomDataType data_type = static_cast<CustomDataType>(node->custom1);

  nodeSetSocketAvailability(ntree, socket_float_attr, data_type == CD_PROP_FLOAT);
  nodeSetSocketAvailability(ntree, socket_float_mean, data_type == CD_PROP_FLOAT);
  nodeSetSocketAvailability(ntree, socket_float_median, data_type == CD_PROP_FLOAT);
  nodeSetSocketAvailability(ntree, socket_float_sum, data_type == CD_PROP_FLOAT);
  nodeSetSocketAvailability(ntree, socket_float_min, data_type == CD_PROP_FLOAT);
  nodeSetSocketAvailability(ntree, socket_float_max, data_type == CD_PROP_FLOAT);
  nodeSetSocketAvailability(ntree, socket_float_range, data_type == CD_PROP_FLOAT);
  nodeSetSocketAvailability(ntree, socket_float_std, data_type == CD_PROP_FLOAT);
  nodeSetSocketAvailability(ntree, socket_float_variance, data_type == CD_PROP_FLOAT);

  nodeSetSocketAvailability(ntree, socket_float3_attr, data_type == CD_PROP_FLOAT3);
  nodeSetSocketAvailability(ntree, socket_vector_mean, data_type == CD_PROP_FLOAT3);
  nodeSetSocketAvailability(ntree, socket_vector_median, data_type == CD_PROP_FLOAT3);
  nodeSetSocketAvailability(ntree, socket_vector_sum, data_type == CD_PROP_FLOAT3);
  nodeSetSocketAvailability(ntree, socket_vector_min, data_type == CD_PROP_FLOAT3);
  nodeSetSocketAvailability(ntree, socket_vector_max, data_type == CD_PROP_FLOAT3);
  nodeSetSocketAvailability(ntree, socket_vector_range, data_type == CD_PROP_FLOAT3);
  nodeSetSocketAvailability(ntree, socket_vector_std, data_type == CD_PROP_FLOAT3);
  nodeSetSocketAvailability(ntree, socket_vector_variance, data_type == CD_PROP_FLOAT3);
}

template<typename T> static T compute_sum(const Span<T> data)
{
  return std::accumulate(data.begin(), data.end(), T());
}

static float compute_variance(const Span<float> data, const float mean)
{
  if (data.size() <= 1) {
    return 0.0f;
  }

  float sum_of_squared_differences = std::accumulate(
      data.begin(), data.end(), 0.0f, [mean](float accumulator, float value) {
        float difference = mean - value;
        return accumulator + difference * difference;
      });

  return sum_of_squared_differences / (data.size() - 1);
}

static float median_of_sorted_span(const Span<float> data)
{
  if (data.is_empty()) {
    return 0.0f;
  }

  const float median = data[data.size() / 2];

  /* For spans of even length, the median is the average of the middle two elements. */
  if (data.size() % 2 == 0) {
    return (median + data[data.size() / 2 - 1]) * 0.5f;
  }
  return median;
}
static void set_empty(CustomDataType data_type, GeoNodeExecParams &params)
{
  if (data_type == CD_PROP_FLOAT) {
    params.set_output("Mean", 0.0f);
    params.set_output("Median", 0.0f);
    params.set_output("Sum", 0.0f);
    params.set_output("Min", 0.0f);
    params.set_output("Max", 0.0f);
    params.set_output("Range", 0.0f);
    params.set_output("Standard Deviation", 0.0f);
    params.set_output("Variance", 0.0f);
  }
  else if (data_type == CD_PROP_FLOAT3) {
    params.set_output("Mean_001", float3{0.0f, 0.0f, 0.0f});
    params.set_output("Median_001", float3{0.0f, 0.0f, 0.0f});
    params.set_output("Sum_001", float3{0.0f, 0.0f, 0.0f});
    params.set_output("Min_001", float3{0.0f, 0.0f, 0.0f});
    params.set_output("Max_001", float3{0.0f, 0.0f, 0.0f});
    params.set_output("Range_001", float3{0.0f, 0.0f, 0.0f});
    params.set_output("Standard Deviation_001", float3{0.0f, 0.0f, 0.0f});
    params.set_output("Variance_001", float3{0.0f, 0.0f, 0.0f});
  }
}

static void geo_node_attribute_statistic_exec(GeoNodeExecParams params)
{
  GeometrySet geometry_set = params.get_input<GeometrySet>("Geometry");

  const bNode &node = params.node();
  const CustomDataType data_type = static_cast<CustomDataType>(node.custom1);
  const AttributeDomain domain = static_cast<AttributeDomain>(node.custom2);

  int64_t total_size = 0;
  Vector<const GeometryComponent *> components = geometry_set.get_components_for_read();

  for (const GeometryComponent *component : components) {
    if (component->attribute_domain_supported(domain)) {
      total_size += component->attribute_domain_size(domain);
    }
  }
  if (total_size == 0) {
    set_empty(data_type, params);
    return;
  }

  switch (data_type) {
    case CD_PROP_FLOAT: {
      const Field<float> input_field = params.get_input<Field<float>>("Attribute");
      Array<float> data = Array<float>(total_size);
      int offset = 0;
      for (const GeometryComponent *component : components) {
        if (component->attribute_domain_supported(domain)) {
          GeometryComponentFieldContext field_context{*component, domain};
          const int domain_size = component->attribute_domain_size(domain);
          fn::FieldEvaluator data_evaluator{field_context, domain_size};
          MutableSpan<float> component_result = data.as_mutable_span().slice(offset, domain_size);
          data_evaluator.add_with_destination(input_field, component_result);
          data_evaluator.evaluate();
          offset += domain_size;
        }
      }

      float mean = 0.0f;
      float median = 0.0f;
      float sum = 0.0f;
      float min = 0.0f;
      float max = 0.0f;
      float range = 0.0f;
      float standard_deviation = 0.0f;
      float variance = 0.0f;
      const bool sort_required = params.output_is_required("Min") ||
                                 params.output_is_required("Max") ||
                                 params.output_is_required("Range") ||
                                 params.output_is_required("Median");
      const bool sum_required = params.output_is_required("Sum") ||
                                params.output_is_required("Mean");
      const bool variance_required = params.output_is_required("Standard Deviation") ||
                                     params.output_is_required("Variance");

      if (total_size != 0) {
        if (sort_required) {
          std::sort(data.begin(), data.end());
          median = median_of_sorted_span(data);

          min = data.first();
          max = data.last();
          range = max - min;
        }
        if (sum_required || variance_required) {
          sum = compute_sum<float>(data);
          mean = sum / total_size;

          if (variance_required) {
            variance = compute_variance(data, mean);
            standard_deviation = std::sqrt(variance);
          }
        }
      }

      if (sum_required) {
        params.set_output("Sum", sum);
        params.set_output("Mean", mean);
      }
      if (sort_required) {
        params.set_output("Min", min);
        params.set_output("Max", max);
        params.set_output("Range", range);
        params.set_output("Median", median);
      }
      if (variance_required) {
        params.set_output("Standard Deviation", standard_deviation);
        params.set_output("Variance", variance);
      }
      break;
    }
    case CD_PROP_FLOAT3: {
      const Field<float3> input_field = params.get_input<Field<float3>>("Attribute_001");

      Array<float3> data = Array<float3>(total_size);
      int offset = 0;
      for (const GeometryComponent *component : components) {
        if (component->attribute_domain_supported(domain)) {
          GeometryComponentFieldContext field_context{*component, domain};
          const int domain_size = component->attribute_domain_size(domain);
          fn::FieldEvaluator data_evaluator{field_context, domain_size};
          MutableSpan<float3> component_result = data.as_mutable_span().slice(offset, domain_size);
          data_evaluator.add_with_destination(input_field, component_result);
          data_evaluator.evaluate();
          offset += domain_size;
        }
      }

      float3 median{0};
      float3 min{0};
      float3 max{0};
      float3 range{0};
      float3 sum{0};
      float3 mean{0};
      float3 variance{0};
      float3 standard_deviation{0};
      const bool sort_required = params.output_is_required("Min_001") ||
                                 params.output_is_required("Max_001") ||
                                 params.output_is_required("Range_001") ||
                                 params.output_is_required("Median_001");
      const bool sum_required = params.output_is_required("Sum_001") ||
                                params.output_is_required("Mean_001");
      const bool variance_required = params.output_is_required("Standard Deviation_001") ||
                                     params.output_is_required("Variance_001");

      Array<float> data_x;
      Array<float> data_y;
      Array<float> data_z;
      if (sort_required || variance_required) {
        data_x.reinitialize(total_size);
        data_y.reinitialize(total_size);
        data_z.reinitialize(total_size);
        for (const int i : data.index_range()) {
          data_x[i] = data[i].x;
          data_y[i] = data[i].y;
          data_z[i] = data[i].z;
        }
      }

      if (total_size != 0) {
        if (sort_required) {
          std::sort(data_x.begin(), data_x.end());
          std::sort(data_y.begin(), data_y.end());
          std::sort(data_z.begin(), data_z.end());

          const float x_median = median_of_sorted_span(data_x);
          const float y_median = median_of_sorted_span(data_y);
          const float z_median = median_of_sorted_span(data_z);
          median = float3(x_median, y_median, z_median);

          min = float3(data_x.first(), data_y.first(), data_z.first());
          max = float3(data_x.last(), data_y.last(), data_z.last());
          range = max - min;
        }
        if (sum_required || variance_required) {
          sum = compute_sum(data.as_span());
          mean = sum / total_size;

          if (variance_required) {
            const float x_variance = compute_variance(data_x, mean.x);
            const float y_variance = compute_variance(data_y, mean.y);
            const float z_variance = compute_variance(data_z, mean.z);
            variance = float3(x_variance, y_variance, z_variance);
            standard_deviation = float3(
                std::sqrt(variance.x), std::sqrt(variance.y), std::sqrt(variance.z));
          }
        }
      }

      if (sum_required) {
        params.set_output("Sum_001", sum);
        params.set_output("Mean_001", mean);
      }
      if (sort_required) {
        params.set_output("Min_001", min);
        params.set_output("Max_001", max);
        params.set_output("Range_001", range);
        params.set_output("Median_001", median);
      }
      if (variance_required) {
        params.set_output("Standard Deviation_001", standard_deviation);
        params.set_output("Variance_001", variance);
      }
      break;
    }
    default:
      break;
  }
}

}  // namespace blender::nodes

void register_node_type_geo_attribute_statistic()
{
  static bNodeType ntype;

  geo_node_type_base(
      &ntype, GEO_NODE_ATTRIBUTE_STATISTIC, "Attribute Statistic", NODE_CLASS_ATTRIBUTE, 0);

  ntype.declare = blender::nodes::geo_node_attribute_statistic_declare;
  node_type_init(&ntype, blender::nodes::geo_node_attribute_statistic_init);
  node_type_update(&ntype, blender::nodes::geo_node_attribute_statistic_update);
  ntype.geometry_node_execute = blender::nodes::geo_node_attribute_statistic_exec;
  ntype.draw_buttons = blender::nodes::geo_node_attribute_statistic_layout;
  nodeRegisterType(&ntype);
}