Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_curve_fillet.cc « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 81421609dfd88783365bf09b11eac46c210d2b86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include "BLI_task.hh"

#include "UI_interface.h"
#include "UI_resources.h"

#include "DNA_node_types.h"

#include "node_geometry_util.hh"

#include "BKE_spline.hh"

namespace blender::nodes::node_geo_curve_fillet_cc {

NODE_STORAGE_FUNCS(NodeGeometryCurveFillet)

static void node_declare(NodeDeclarationBuilder &b)
{
  b.add_input<decl::Geometry>(N_("Curve")).supported_type(GEO_COMPONENT_TYPE_CURVE);
  b.add_input<decl::Int>(N_("Count"))
      .default_value(1)
      .min(1)
      .max(1000)
      .supports_field()
      .make_available([](bNode &node) { node_storage(node).mode = GEO_NODE_CURVE_FILLET_POLY; });
  b.add_input<decl::Float>(N_("Radius"))
      .min(0.0f)
      .max(FLT_MAX)
      .subtype(PropertySubType::PROP_DISTANCE)
      .default_value(0.25f)
      .supports_field();
  b.add_input<decl::Bool>(N_("Limit Radius"))
      .description(
          N_("Limit the maximum value of the radius in order to avoid overlapping fillets"));
  b.add_output<decl::Geometry>(N_("Curve"));
}

static void node_layout(uiLayout *layout, bContext *UNUSED(C), PointerRNA *ptr)
{
  uiItemR(layout, ptr, "mode", UI_ITEM_R_EXPAND, nullptr, ICON_NONE);
}

static void node_init(bNodeTree *UNUSED(tree), bNode *node)
{
  NodeGeometryCurveFillet *data = MEM_cnew<NodeGeometryCurveFillet>(__func__);

  data->mode = GEO_NODE_CURVE_FILLET_BEZIER;
  node->storage = data;
}

struct FilletParam {
  GeometryNodeCurveFilletMode mode;

  /* Number of points to be added. */
  VArray<int> counts;

  /* Radii for fillet arc at all vertices. */
  VArray<float> radii;

  /* Whether or not fillets are allowed to overlap. */
  bool limit_radius;
};

/* A data structure used to store fillet data about all vertices to be filleted. */
struct FilletData {
  Span<float3> positions;
  Array<float3> directions, axes;
  Array<float> radii, angles;
  Array<int> counts;
};

static void node_update(bNodeTree *ntree, bNode *node)
{
  const NodeGeometryCurveFillet &storage = node_storage(*node);
  const GeometryNodeCurveFilletMode mode = (GeometryNodeCurveFilletMode)storage.mode;

  bNodeSocket *poly_socket = ((bNodeSocket *)node->inputs.first)->next;

  nodeSetSocketAvailability(ntree, poly_socket, mode == GEO_NODE_CURVE_FILLET_POLY);
}

/* Function to get the center of a fillet. */
static float3 get_center(const float3 vec_pos2prev,
                         const float3 pos,
                         const float3 axis,
                         const float angle)
{
  float3 vec_pos2center;
  rotate_normalized_v3_v3v3fl(vec_pos2center, vec_pos2prev, axis, M_PI_2 - angle / 2.0f);
  vec_pos2center *= 1.0f / sinf(angle / 2.0f);

  return vec_pos2center + pos;
}

/* Function to get the center of the fillet using fillet data */
static float3 get_center(const float3 vec_pos2prev, const FilletData &fd, const int index)
{
  const float angle = fd.angles[index];
  const float3 axis = fd.axes[index];
  const float3 pos = fd.positions[index];

  return get_center(vec_pos2prev, pos, axis, angle);
}

/* Calculate the direction vectors from each vertex to their previous vertex. */
static Array<float3> calculate_directions(const Span<float3> positions)
{
  const int size = positions.size();
  Array<float3> directions(size);

  for (const int i : IndexRange(size - 1)) {
    directions[i] = math::normalize(positions[i + 1] - positions[i]);
  }
  directions[size - 1] = math::normalize(positions[0] - positions[size - 1]);

  return directions;
}

/* Calculate the axes around which the fillet is built. */
static Array<float3> calculate_axes(const Span<float3> directions)
{
  const int size = directions.size();
  Array<float3> axes(size);

  axes[0] = math::normalize(math::cross(-directions[size - 1], directions[0]));
  for (const int i : IndexRange(1, size - 1)) {
    axes[i] = math::normalize(math::cross(-directions[i - 1], directions[i]));
  }

  return axes;
}

/* Calculate the angle of the arc formed by the fillet. */
static Array<float> calculate_angles(const Span<float3> directions)
{
  const int size = directions.size();
  Array<float> angles(size);

  angles[0] = M_PI - angle_v3v3(-directions[size - 1], directions[0]);
  for (const int i : IndexRange(1, size - 1)) {
    angles[i] = M_PI - angle_v3v3(-directions[i - 1], directions[i]);
  }

  return angles;
}

/* Calculate the segment count in each filleted arc. */
static Array<int> calculate_counts(const FilletParam &fillet_param,
                                   const int size,
                                   const int spline_offset,
                                   const bool cyclic)
{
  Array<int> counts(size, 1);
  if (fillet_param.mode == GEO_NODE_CURVE_FILLET_POLY) {
    for (const int i : IndexRange(size)) {
      counts[i] = fillet_param.counts[spline_offset + i];
    }
  }
  if (!cyclic) {
    counts[0] = counts[size - 1] = 0;
  }

  return counts;
}

/* Calculate the radii for the vertices to be filleted. */
static Array<float> calculate_radii(const FilletParam &fillet_param,
                                    const int size,
                                    const int spline_offset)
{
  Array<float> radii(size, 0.0f);
  if (fillet_param.limit_radius) {
    for (const int i : IndexRange(size)) {
      radii[i] = std::max(fillet_param.radii[spline_offset + i], 0.0f);
    }
  }
  else {
    for (const int i : IndexRange(size)) {
      radii[i] = fillet_param.radii[spline_offset + i];
    }
  }

  return radii;
}

/* Calculate the number of vertices added per vertex on the source spline. */
static int calculate_point_counts(MutableSpan<int> point_counts,
                                  const Span<float> radii,
                                  const Span<int> counts)
{
  int added_count = 0;
  for (const int i : IndexRange(point_counts.size())) {
    /* Calculate number of points to be added for the vertex. */
    if (radii[i] != 0.0f) {
      added_count += counts[i];
      point_counts[i] = counts[i] + 1;
    }
  }

  return added_count;
}

static FilletData calculate_fillet_data(const Spline &spline,
                                        const FilletParam &fillet_param,
                                        int &added_count,
                                        MutableSpan<int> point_counts,
                                        const int spline_offset)
{
  const int size = spline.size();

  FilletData fd;
  fd.directions = calculate_directions(spline.positions());
  fd.positions = spline.positions();
  fd.axes = calculate_axes(fd.directions);
  fd.angles = calculate_angles(fd.directions);
  fd.counts = calculate_counts(fillet_param, size, spline_offset, spline.is_cyclic());
  fd.radii = calculate_radii(fillet_param, size, spline_offset);

  added_count = calculate_point_counts(point_counts, fd.radii, fd.counts);

  return fd;
}

/* Limit the radius based on angle and radii to prevent overlapping. */
static void limit_radii(FilletData &fd, const bool cyclic)
{
  MutableSpan<float> radii(fd.radii);
  Span<float> angles(fd.angles);
  Span<float3> positions(fd.positions);

  const int size = radii.size();
  const int fillet_count = cyclic ? size : size - 2;
  const int start = cyclic ? 0 : 1;
  Array<float> max_radii(size, FLT_MAX);

  if (cyclic) {
    /* Calculate lengths between adjacent control points. */
    const float len_prev = math::distance(positions[0], positions[size - 1]);
    const float len_next = math::distance(positions[0], positions[1]);

    /* Calculate tangent lengths of fillets in control points. */
    const float tan_len = radii[0] * tan(angles[0] / 2.0f);
    const float tan_len_prev = radii[size - 1] * tan(angles[size - 1] / 2.0f);
    const float tan_len_next = radii[1] * tan(angles[1] / 2.0f);

    float factor_prev = 1.0f, factor_next = 1.0f;
    if (tan_len + tan_len_prev > len_prev) {
      factor_prev = len_prev / (tan_len + tan_len_prev);
    }
    if (tan_len + tan_len_next > len_next) {
      factor_next = len_next / (tan_len + tan_len_next);
    }

    /* Scale max radii by calculated factors. */
    max_radii[0] = radii[0] * std::min(factor_next, factor_prev);
    max_radii[1] = radii[1] * factor_next;
    max_radii[size - 1] = radii[size - 1] * factor_prev;
  }

  /* Initialize max_radii to largest possible radii. */
  float prev_dist = math::distance(positions[1], positions[0]);
  for (const int i : IndexRange(1, size - 2)) {
    const float temp_dist = math::distance(positions[i], positions[i + 1]);
    max_radii[i] = std::min(prev_dist, temp_dist) / tan(angles[i] / 2.0f);
    prev_dist = temp_dist;
  }

  /* Max radii calculations for each index. */
  for (const int i : IndexRange(start, fillet_count - 1)) {
    const float len_next = math::distance(positions[i], positions[i + 1]);
    const float tan_len = radii[i] * tan(angles[i] / 2.0f);
    const float tan_len_next = radii[i + 1] * tan(angles[i + 1] / 2.0f);

    /* Scale down radii if too large for segment. */
    float factor = 1.0f;
    if (tan_len + tan_len_next > len_next) {
      factor = len_next / (tan_len + tan_len_next);
    }
    max_radii[i] = std::min(max_radii[i], radii[i] * factor);
    max_radii[i + 1] = std::min(max_radii[i + 1], radii[i + 1] * factor);
  }

  /* Assign the max_radii to the fillet data's radii. */
  for (const int i : IndexRange(size)) {
    radii[i] = max_radii[i];
  }
}

/*
 * Create a mapping from each vertex in the destination spline to that of the source spline.
 * Used for copying the data from the source spline.
 */
static Array<int> create_dst_to_src_map(const Span<int> point_counts, const int total_points)
{
  Array<int> map(total_points);
  MutableSpan<int> map_span{map};
  int index = 0;

  for (const int i : point_counts.index_range()) {
    map_span.slice(index, point_counts[i]).fill(i);
    index += point_counts[i];
  }

  BLI_assert(index == total_points);

  return map;
}

template<typename T>
static void copy_attribute_by_mapping(const Span<T> src,
                                      MutableSpan<T> dst,
                                      const Span<int> mapping)
{
  for (const int i : dst.index_range()) {
    dst[i] = src[mapping[i]];
  }
}

/* Copy radii and tilts from source spline to destination. Positions are handled later in update
 * positions methods. */
static void copy_common_attributes_by_mapping(const Spline &src,
                                              Spline &dst,
                                              const Span<int> mapping)
{
  copy_attribute_by_mapping(src.radii(), dst.radii(), mapping);
  copy_attribute_by_mapping(src.tilts(), dst.tilts(), mapping);

  src.attributes.foreach_attribute(
      [&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) {
        std::optional<GSpan> src_attribute = src.attributes.get_for_read(attribute_id);
        if (dst.attributes.create(attribute_id, meta_data.data_type)) {
          std::optional<GMutableSpan> dst_attribute = dst.attributes.get_for_write(attribute_id);
          if (dst_attribute) {
            attribute_math::convert_to_static_type(dst_attribute->type(), [&](auto dummy) {
              using T = decltype(dummy);
              copy_attribute_by_mapping(
                  src_attribute->typed<T>(), dst_attribute->typed<T>(), mapping);
            });
            return true;
          }
        }
        BLI_assert_unreachable();
        return false;
      },
      ATTR_DOMAIN_POINT);
}

/* Update the vertex positions and handle positions of a Bezier spline based on fillet data. */
static void update_bezier_positions(const FilletData &fd,
                                    BezierSpline &dst_spline,
                                    const BezierSpline &src_spline,
                                    const Span<int> point_counts)
{
  Span<float> radii(fd.radii);
  Span<float> angles(fd.angles);
  Span<float3> axes(fd.axes);
  Span<float3> positions(fd.positions);
  Span<float3> directions(fd.directions);

  const int size = radii.size();

  int i_dst = 0;
  for (const int i_src : IndexRange(size)) {
    const int count = point_counts[i_src];

    /* Skip if the point count for the vertex is 1. */
    if (count == 1) {
      dst_spline.positions()[i_dst] = src_spline.positions()[i_src];
      dst_spline.handle_types_left()[i_dst] = src_spline.handle_types_left()[i_src];
      dst_spline.handle_types_right()[i_dst] = src_spline.handle_types_right()[i_src];
      dst_spline.handle_positions_left()[i_dst] = src_spline.handle_positions_left()[i_src];
      dst_spline.handle_positions_right()[i_dst] = src_spline.handle_positions_right()[i_src];
      i_dst++;
      continue;
    }

    /* Calculate the angle to be formed between any 2 adjacent vertices within the fillet. */
    const float segment_angle = angles[i_src] / (count - 1);
    /* Calculate the handle length for each added vertex. Equation: L = 4R/3 * tan(A/4) */
    const float handle_length = 4.0f * radii[i_src] / 3.0f * tan(segment_angle / 4.0f);
    /* Calculate the distance by which each vertex should be displaced from their initial position.
     */
    const float displacement = radii[i_src] * tan(angles[i_src] / 2.0f);

    /* Position the end points of the arc and their handles. */
    const int end_i = i_dst + count - 1;
    const float3 prev_dir = i_src == 0 ? -directions[size - 1] : -directions[i_src - 1];
    const float3 next_dir = directions[i_src];
    dst_spline.positions()[i_dst] = positions[i_src] + displacement * prev_dir;
    dst_spline.positions()[end_i] = positions[i_src] + displacement * next_dir;
    dst_spline.handle_positions_right()[i_dst] = dst_spline.positions()[i_dst] -
                                                 handle_length * prev_dir;
    dst_spline.handle_positions_left()[end_i] = dst_spline.positions()[end_i] -
                                                handle_length * next_dir;
    dst_spline.handle_types_right()[i_dst] = dst_spline.handle_types_left()[end_i] =
        BezierSpline::HandleType::Align;
    dst_spline.handle_types_left()[i_dst] = dst_spline.handle_types_right()[end_i] =
        BezierSpline::HandleType::Vector;
    dst_spline.mark_cache_invalid();

    /* Calculate the center of the radius to be formed. */
    const float3 center = get_center(dst_spline.positions()[i_dst] - positions[i_src], fd, i_src);
    /* Calculate the vector of the radius formed by the first vertex. */
    float3 radius_vec = dst_spline.positions()[i_dst] - center;
    float radius;
    radius_vec = math::normalize_and_get_length(radius_vec, radius);

    dst_spline.handle_types_right().slice(1, count - 2).fill(BezierSpline::HandleType::Align);
    dst_spline.handle_types_left().slice(1, count - 2).fill(BezierSpline::HandleType::Align);

    /* For each of the vertices in between the end points. */
    for (const int j : IndexRange(1, count - 2)) {
      int index = i_dst + j;
      /* Rotate the radius by the segment angle and determine its tangent (used for getting handle
       * directions). */
      float3 new_radius_vec, tangent_vec;
      rotate_normalized_v3_v3v3fl(new_radius_vec, radius_vec, -axes[i_src], segment_angle);
      rotate_normalized_v3_v3v3fl(tangent_vec, new_radius_vec, axes[i_src], M_PI_2);
      radius_vec = new_radius_vec;
      tangent_vec *= handle_length;

      /* Adjust the positions of the respective vertex and its handles. */
      dst_spline.positions()[index] = center + new_radius_vec * radius;
      dst_spline.handle_positions_left()[index] = dst_spline.positions()[index] + tangent_vec;
      dst_spline.handle_positions_right()[index] = dst_spline.positions()[index] - tangent_vec;
    }

    i_dst += count;
  }
}

/* Update the vertex positions of a Poly spline based on fillet data. */
static void update_poly_positions(const FilletData &fd,
                                  Spline &dst_spline,
                                  const Spline &src_spline,
                                  const Span<int> point_counts)
{
  Span<float> radii(fd.radii);
  Span<float> angles(fd.angles);
  Span<float3> axes(fd.axes);
  Span<float3> positions(fd.positions);
  Span<float3> directions(fd.directions);

  const int size = radii.size();

  int i_dst = 0;
  for (const int i_src : IndexRange(size)) {
    const int count = point_counts[i_src];

    /* Skip if the point count for the vertex is 1. */
    if (count == 1) {
      dst_spline.positions()[i_dst] = src_spline.positions()[i_src];
      i_dst++;
      continue;
    }

    const float segment_angle = angles[i_src] / (count - 1);
    const float displacement = radii[i_src] * tan(angles[i_src] / 2.0f);

    /* Position the end points of the arc. */
    const int end_i = i_dst + count - 1;
    const float3 prev_dir = i_src == 0 ? -directions[size - 1] : -directions[i_src - 1];
    const float3 next_dir = directions[i_src];
    dst_spline.positions()[i_dst] = positions[i_src] + displacement * prev_dir;
    dst_spline.positions()[end_i] = positions[i_src] + displacement * next_dir;

    /* Calculate the center of the radius to be formed. */
    const float3 center = get_center(dst_spline.positions()[i_dst] - positions[i_src], fd, i_src);
    /* Calculate the vector of the radius formed by the first vertex. */
    float3 radius_vec = dst_spline.positions()[i_dst] - center;

    for (const int j : IndexRange(1, count - 2)) {
      /* Rotate the radius by the segment angle */
      float3 new_radius_vec;
      rotate_normalized_v3_v3v3fl(new_radius_vec, radius_vec, -axes[i_src], segment_angle);
      radius_vec = new_radius_vec;

      dst_spline.positions()[i_dst + j] = center + new_radius_vec;
    }

    i_dst += count;
  }
}

static SplinePtr fillet_spline(const Spline &spline,
                               const FilletParam &fillet_param,
                               const int spline_offset)
{
  const int size = spline.size();
  const bool cyclic = spline.is_cyclic();

  if (size < 3) {
    return spline.copy();
  }

  /* Initialize the point_counts with 1s (at least one vertex on dst for each vertex on src). */
  Array<int> point_counts(size, 1);

  int added_count = 0;
  /* Update point_counts array and added_count. */
  FilletData fd = calculate_fillet_data(
      spline, fillet_param, added_count, point_counts, spline_offset);
  if (fillet_param.limit_radius) {
    limit_radii(fd, cyclic);
  }

  const int total_points = added_count + size;
  const Array<int> dst_to_src = create_dst_to_src_map(point_counts, total_points);
  SplinePtr dst_spline_ptr = spline.copy_only_settings();
  (*dst_spline_ptr).resize(total_points);
  copy_common_attributes_by_mapping(spline, *dst_spline_ptr, dst_to_src);

  switch (spline.type()) {
    case Spline::Type::Bezier: {
      const BezierSpline &src_spline = static_cast<const BezierSpline &>(spline);
      BezierSpline &dst_spline = static_cast<BezierSpline &>(*dst_spline_ptr);
      if (fillet_param.mode == GEO_NODE_CURVE_FILLET_POLY) {
        dst_spline.handle_types_left().fill(BezierSpline::HandleType::Vector);
        dst_spline.handle_types_right().fill(BezierSpline::HandleType::Vector);
        update_poly_positions(fd, dst_spline, src_spline, point_counts);
      }
      else {
        update_bezier_positions(fd, dst_spline, src_spline, point_counts);
      }
      break;
    }
    case Spline::Type::Poly: {
      update_poly_positions(fd, *dst_spline_ptr, spline, point_counts);
      break;
    }
    case Spline::Type::NURBS: {
      const NURBSpline &src_spline = static_cast<const NURBSpline &>(spline);
      NURBSpline &dst_spline = static_cast<NURBSpline &>(*dst_spline_ptr);
      copy_attribute_by_mapping(src_spline.weights(), dst_spline.weights(), dst_to_src);
      update_poly_positions(fd, dst_spline, src_spline, point_counts);
      break;
    }
  }

  return dst_spline_ptr;
}

static std::unique_ptr<CurveEval> fillet_curve(const CurveEval &input_curve,
                                               const FilletParam &fillet_param)
{
  Span<SplinePtr> input_splines = input_curve.splines();

  std::unique_ptr<CurveEval> output_curve = std::make_unique<CurveEval>();
  const int num_splines = input_splines.size();
  output_curve->resize(num_splines);
  MutableSpan<SplinePtr> output_splines = output_curve->splines();
  Array<int> spline_offsets = input_curve.control_point_offsets();

  threading::parallel_for(input_splines.index_range(), 128, [&](IndexRange range) {
    for (const int i : range) {
      output_splines[i] = fillet_spline(*input_splines[i], fillet_param, spline_offsets[i]);
    }
  });
  output_curve->attributes = input_curve.attributes;

  return output_curve;
}

static void calculate_curve_fillet(GeometrySet &geometry_set,
                                   const GeometryNodeCurveFilletMode mode,
                                   const Field<float> &radius_field,
                                   const std::optional<Field<int>> &count_field,
                                   const bool limit_radius)
{
  if (!geometry_set.has_curve()) {
    return;
  }

  FilletParam fillet_param;
  fillet_param.mode = mode;

  CurveComponent &component = geometry_set.get_component_for_write<CurveComponent>();
  GeometryComponentFieldContext field_context{component, ATTR_DOMAIN_POINT};
  const int domain_size = component.attribute_domain_size(ATTR_DOMAIN_POINT);
  fn::FieldEvaluator field_evaluator{field_context, domain_size};

  field_evaluator.add(radius_field);

  if (mode == GEO_NODE_CURVE_FILLET_POLY) {
    field_evaluator.add(*count_field);
  }

  field_evaluator.evaluate();

  fillet_param.radii = field_evaluator.get_evaluated<float>(0);
  if (fillet_param.radii.is_single() && fillet_param.radii.get_internal_single() < 0.0f) {
    return;
  }

  if (mode == GEO_NODE_CURVE_FILLET_POLY) {
    fillet_param.counts = field_evaluator.get_evaluated<int>(1);
  }

  fillet_param.limit_radius = limit_radius;

  const CurveEval &input_curve = *geometry_set.get_curve_for_read();
  std::unique_ptr<CurveEval> output_curve = fillet_curve(input_curve, fillet_param);

  geometry_set.replace_curve(output_curve.release());
}

static void node_geo_exec(GeoNodeExecParams params)
{
  GeometrySet geometry_set = params.extract_input<GeometrySet>("Curve");

  const NodeGeometryCurveFillet &storage = node_storage(params.node());
  const GeometryNodeCurveFilletMode mode = (GeometryNodeCurveFilletMode)storage.mode;

  Field<float> radius_field = params.extract_input<Field<float>>("Radius");
  const bool limit_radius = params.extract_input<bool>("Limit Radius");

  std::optional<Field<int>> count_field;
  if (mode == GEO_NODE_CURVE_FILLET_POLY) {
    count_field.emplace(params.extract_input<Field<int>>("Count"));
  }

  geometry_set.modify_geometry_sets([&](GeometrySet &geometry_set) {
    calculate_curve_fillet(geometry_set, mode, radius_field, count_field, limit_radius);
  });

  params.set_output("Curve", std::move(geometry_set));
}

}  // namespace blender::nodes::node_geo_curve_fillet_cc

void register_node_type_geo_curve_fillet()
{
  namespace file_ns = blender::nodes::node_geo_curve_fillet_cc;

  static bNodeType ntype;

  geo_node_type_base(&ntype, GEO_NODE_FILLET_CURVE, "Fillet Curve", NODE_CLASS_GEOMETRY);
  ntype.draw_buttons = file_ns::node_layout;
  node_type_storage(
      &ntype, "NodeGeometryCurveFillet", node_free_standard_storage, node_copy_standard_storage);
  ntype.declare = file_ns::node_declare;
  node_type_init(&ntype, file_ns::node_init);
  node_type_update(&ntype, file_ns::node_update);
  ntype.geometry_node_execute = file_ns::node_geo_exec;
  nodeRegisterType(&ntype);
}