Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_curve_parameter.cc « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 90853387ec75c0fa5260b310a192d0c46c005b0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include "BLI_task.hh"

#include "BKE_spline.hh"

#include "node_geometry_util.hh"

namespace blender::nodes {

static void geo_node_curve_parameter_declare(NodeDeclarationBuilder &b)
{
  b.add_output<decl::Float>("Factor").field_source();
}

/**
 * A basic interpolation from the point domain to the spline domain would be useless, since the
 * average parameter for each spline would just be 0.5, or close to it. Instead, the parameter for
 * each spline is the portion of the total length at the start of the spline.
 */
static Array<float> curve_parameter_spline_domain(const CurveEval &curve, const IndexMask mask)
{
  Span<SplinePtr> splines = curve.splines();
  float length = 0.0f;
  Array<float> parameters(splines.size());
  for (const int i : splines.index_range()) {
    parameters[i] = length;
    length += splines[i]->length();
  }
  const float total_length_inverse = length == 0.0f ? 0.0f : 1.0f / length;
  mask.foreach_index([&](const int64_t i) { parameters[i] *= total_length_inverse; });

  return parameters;
}

/**
 * The parameter at each control point is the factor at the corresponding evaluated point.
 */
static void calculate_bezier_parameters(const BezierSpline &spline, MutableSpan<float> parameters)
{
  Span<int> offsets = spline.control_point_offsets();
  Span<float> lengths = spline.evaluated_lengths();
  const float total_length = spline.length();
  const float total_length_inverse = total_length == 0.0f ? 0.0f : 1.0f / total_length;

  for (const int i : IndexRange(1, spline.size() - 1)) {
    parameters[i] = lengths[offsets[i] - 1] * total_length_inverse;
  }
}

/**
 * The parameter for poly splines is simply the evaluated lengths divided by the total length.
 */
static void calculate_poly_parameters(const PolySpline &spline, MutableSpan<float> parameters)
{
  Span<float> lengths = spline.evaluated_lengths();
  const float total_length = spline.length();
  const float total_length_inverse = total_length == 0.0f ? 0.0f : 1.0f / total_length;

  for (const int i : IndexRange(1, spline.size() - 1)) {
    parameters[i] = lengths[i - 1] * total_length_inverse;
  }
}

/**
 * Since NURBS control points do not necessarily coincide with the evaluated curve's path, and
 * each control point doesn't correspond well to a specific evaluated point, the parameter at
 * each point is not well defined. So instead, treat the control points as if they were a poly
 * spline.
 */
static void calculate_nurbs_parameters(const NURBSpline &spline, MutableSpan<float> parameters)
{
  Span<float3> positions = spline.positions();
  Array<float> control_point_lengths(spline.size());

  float length = 0.0f;
  for (const int i : IndexRange(positions.size() - 1)) {
    parameters[i] = length;
    length += float3::distance(positions[i], positions[i + 1]);
  }

  const float total_length_inverse = length == 0.0f ? 0.0f : 1.0f / length;
  for (float &parameter : parameters) {
    parameter *= total_length_inverse;
  }
}

static Array<float> curve_parameter_point_domain(const CurveEval &curve)
{
  Span<SplinePtr> splines = curve.splines();
  Array<int> offsets = curve.control_point_offsets();
  const int total_size = offsets.last();
  Array<float> parameters(total_size);

  threading::parallel_for(splines.index_range(), 128, [&](IndexRange range) {
    for (const int i : range) {
      const Spline &spline = *splines[i];
      MutableSpan spline_factors{parameters.as_mutable_span().slice(offsets[i], spline.size())};
      spline_factors.first() = 0.0f;
      switch (splines[i]->type()) {
        case Spline::Type::Bezier: {
          calculate_bezier_parameters(static_cast<const BezierSpline &>(spline), spline_factors);
          break;
        }
        case Spline::Type::Poly: {
          calculate_poly_parameters(static_cast<const PolySpline &>(spline), spline_factors);
          break;
        }
        case Spline::Type::NURBS: {
          calculate_nurbs_parameters(static_cast<const NURBSpline &>(spline), spline_factors);
          break;
        }
      }
    }
  });
  return parameters;
}

static const GVArray *construct_curve_parameter_gvarray(const CurveEval &curve,
                                                        const IndexMask mask,
                                                        const AttributeDomain domain,
                                                        ResourceScope &scope)
{
  if (domain == ATTR_DOMAIN_POINT) {
    Array<float> parameters = curve_parameter_point_domain(curve);
    return &scope.construct<fn::GVArray_For_ArrayContainer<Array<float>>>(std::move(parameters));
  }

  if (domain == ATTR_DOMAIN_CURVE) {
    Array<float> parameters = curve_parameter_spline_domain(curve, mask);
    return &scope.construct<fn::GVArray_For_ArrayContainer<Array<float>>>(std::move(parameters));
  }

  return nullptr;
}

class CurveParameterFieldInput final : public fn::FieldInput {
 public:
  CurveParameterFieldInput() : fn::FieldInput(CPPType::get<float>(), "Curve Parameter")
  {
  }

  const GVArray *get_varray_for_context(const fn::FieldContext &context,
                                        IndexMask mask,
                                        ResourceScope &scope) const final
  {
    if (const GeometryComponentFieldContext *geometry_context =
            dynamic_cast<const GeometryComponentFieldContext *>(&context)) {

      const GeometryComponent &component = geometry_context->geometry_component();
      const AttributeDomain domain = geometry_context->domain();

      if (component.type() == GEO_COMPONENT_TYPE_CURVE) {
        const CurveComponent &curve_component = static_cast<const CurveComponent &>(component);
        const CurveEval *curve = curve_component.get_for_read();
        if (curve) {
          return construct_curve_parameter_gvarray(*curve, mask, domain, scope);
        }
      }
    }
    return nullptr;
  }

  uint64_t hash() const override
  {
    /* Some random constant hash. */
    return 29837456298;
  }

  bool is_equal_to(const fn::FieldNode &other) const override
  {
    return dynamic_cast<const CurveParameterFieldInput *>(&other) != nullptr;
  }
};

static void geo_node_curve_parameter_exec(GeoNodeExecParams params)
{
  Field<float> parameter_field{std::make_shared<CurveParameterFieldInput>()};
  params.set_output("Factor", std::move(parameter_field));
}

}  // namespace blender::nodes

void register_node_type_geo_curve_parameter()
{
  static bNodeType ntype;

  geo_node_type_base(&ntype, GEO_NODE_CURVE_PARAMETER, "Curve Parameter", NODE_CLASS_INPUT, 0);
  ntype.geometry_node_execute = blender::nodes::geo_node_curve_parameter_exec;
  ntype.declare = blender::nodes::geo_node_curve_parameter_declare;
  nodeRegisterType(&ntype);
}