Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_curve_spline_parameter.cc « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3edaccba506632c0ed5152da4b478c51df00038d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include "BLI_task.hh"

#include "BKE_spline.hh"

#include "node_geometry_util.hh"

namespace blender::nodes::node_geo_curve_spline_parameter_cc {

static void node_declare(NodeDeclarationBuilder &b)
{
  b.add_output<decl::Float>(N_("Factor"))
      .field_source()
      .description(
          N_("For points, the portion of the spline's total length at the control point. For "
             "Splines, the factor of that spline within the entire curve"));
  b.add_output<decl::Float>(N_("Length"))
      .field_source()
      .description(
          N_("For points, the distance along the control point's spline, For splines, the "
             "distance along the entire curve"));
  b.add_output<decl::Int>(N_("Index"))
      .field_source()
      .description(N_("Each control point's index on its spline"));
}

/**
 * A basic interpolation from the point domain to the spline domain would be useless, since the
 * average parameter for each spline would just be 0.5, or close to it. Instead, the parameter for
 * each spline is the portion of the total length at the start of the spline.
 */
static Array<float> curve_length_spline_domain(const CurveEval &curve,
                                               const IndexMask UNUSED(mask))
{
  Span<SplinePtr> splines = curve.splines();
  float length = 0.0f;
  Array<float> lengths(splines.size());
  for (const int i : splines.index_range()) {
    lengths[i] = length;
    length += splines[i]->length();
  }
  return lengths;
}

/**
 * The parameter at each control point is the factor at the corresponding evaluated point.
 */
static void calculate_bezier_lengths(const BezierSpline &spline, MutableSpan<float> lengths)
{
  Span<int> offsets = spline.control_point_offsets();
  Span<float> lengths_eval = spline.evaluated_lengths();
  for (const int i : IndexRange(1, spline.size() - 1)) {
    lengths[i] = lengths_eval[offsets[i] - 1];
  }
}

/**
 * The parameter for poly splines is simply the evaluated lengths divided by the total length.
 */
static void calculate_poly_length(const PolySpline &spline, MutableSpan<float> lengths)
{
  Span<float> lengths_eval = spline.evaluated_lengths();
  if (spline.is_cyclic()) {
    lengths.drop_front(1).copy_from(lengths_eval.drop_back(1));
  }
  else {
    lengths.drop_front(1).copy_from(lengths_eval);
  }
}

/**
 * Since NURBS control points do not necessarily coincide with the evaluated curve's path, and
 * each control point doesn't correspond well to a specific evaluated point, the parameter at
 * each point is not well defined. So instead, treat the control points as if they were a poly
 * spline.
 */
static void calculate_nurbs_lengths(const NURBSpline &spline, MutableSpan<float> lengths)
{
  Span<float3> positions = spline.positions();
  Array<float> control_point_lengths(spline.size());
  float length = 0.0f;
  for (const int i : IndexRange(positions.size() - 1)) {
    lengths[i] = length;
    length += math::distance(positions[i], positions[i + 1]);
  }
  lengths.last() = length;
}

static Array<float> curve_length_point_domain(const CurveEval &curve)
{
  Span<SplinePtr> splines = curve.splines();
  Array<int> offsets = curve.control_point_offsets();
  const int total_size = offsets.last();
  Array<float> lengths(total_size);

  threading::parallel_for(splines.index_range(), 128, [&](IndexRange range) {
    for (const int i : range) {
      const Spline &spline = *splines[i];
      MutableSpan spline_factors{lengths.as_mutable_span().slice(offsets[i], spline.size())};
      spline_factors.first() = 0.0f;
      switch (splines[i]->type()) {
        case CURVE_TYPE_BEZIER: {
          calculate_bezier_lengths(static_cast<const BezierSpline &>(spline), spline_factors);
          break;
        }
        case CURVE_TYPE_POLY: {
          calculate_poly_length(static_cast<const PolySpline &>(spline), spline_factors);
          break;
        }
        case CURVE_TYPE_NURBS: {
          calculate_nurbs_lengths(static_cast<const NURBSpline &>(spline), spline_factors);
          break;
        }
        case CURVE_TYPE_CATMULL_ROM: {
          BLI_assert_unreachable();
          break;
        }
      }
    }
  });
  return lengths;
}

static VArray<float> construct_curve_parameter_varray(const CurveEval &curve,
                                                      const IndexMask mask,
                                                      const AttributeDomain domain)
{
  if (domain == ATTR_DOMAIN_POINT) {
    Span<SplinePtr> splines = curve.splines();
    Array<float> values = curve_length_point_domain(curve);

    const Array<int> offsets = curve.control_point_offsets();
    for (const int i_spline : curve.splines().index_range()) {
      const Spline &spline = *splines[i_spline];
      const float spline_length = spline.length();
      const float spline_length_inv = spline_length == 0.0f ? 0.0f : 1.0f / spline_length;
      for (const int i : IndexRange(spline.size())) {
        values[offsets[i_spline] + i] *= spline_length_inv;
      }
    }
    return VArray<float>::ForContainer(std::move(values));
  }

  if (domain == ATTR_DOMAIN_CURVE) {
    Array<float> values = curve.accumulated_spline_lengths();
    const float total_length_inv = values.last() == 0.0f ? 0.0f : 1.0f / values.last();
    for (const int i : mask) {
      values[i] *= total_length_inv;
    }
    return VArray<float>::ForContainer(std::move(values));
  }
  return {};
}

static VArray<float> construct_curve_length_varray(const CurveEval &curve,
                                                   const IndexMask mask,
                                                   const AttributeDomain domain)
{
  if (domain == ATTR_DOMAIN_POINT) {
    Array<float> lengths = curve_length_point_domain(curve);
    return VArray<float>::ForContainer(std::move(lengths));
  }

  if (domain == ATTR_DOMAIN_CURVE) {
    if (curve.splines().size() == 1) {
      Array<float> lengths(1, 0.0f);
      return VArray<float>::ForContainer(std::move(lengths));
    }

    Array<float> lengths = curve_length_spline_domain(curve, mask);
    return VArray<float>::ForContainer(std::move(lengths));
  }

  return {};
}

static VArray<int> construct_index_on_spline_varray(const CurveEval &curve,
                                                    const IndexMask UNUSED(mask),
                                                    const AttributeDomain domain)
{
  if (domain == ATTR_DOMAIN_POINT) {
    Array<int> output(curve.total_control_point_size());
    int output_index = 0;
    for (int spline_index : curve.splines().index_range()) {
      for (int point_index : IndexRange(curve.splines()[spline_index]->size())) {
        output[output_index++] = point_index;
      }
    }
    return VArray<int>::ForContainer(std::move(output));
  }
  return {};
}

class CurveParameterFieldInput final : public GeometryFieldInput {
 public:
  CurveParameterFieldInput() : GeometryFieldInput(CPPType::get<float>(), "Curve Parameter node")
  {
    category_ = Category::Generated;
  }

  GVArray get_varray_for_context(const GeometryComponent &component,
                                 const AttributeDomain domain,
                                 IndexMask mask) const final
  {
    if (component.type() == GEO_COMPONENT_TYPE_CURVE) {
      const CurveComponent &curve_component = static_cast<const CurveComponent &>(component);
      if (curve_component.has_curves()) {
        const std::unique_ptr<CurveEval> curve = curves_to_curve_eval(
            *curve_component.get_for_read());
        return construct_curve_parameter_varray(*curve, mask, domain);
      }
    }
    return {};
  }

  uint64_t hash() const override
  {
    /* Some random constant hash. */
    return 29837456298;
  }

  bool is_equal_to(const fn::FieldNode &other) const override
  {
    return dynamic_cast<const CurveParameterFieldInput *>(&other) != nullptr;
  }
};

class CurveLengthFieldInput final : public GeometryFieldInput {
 public:
  CurveLengthFieldInput() : GeometryFieldInput(CPPType::get<float>(), "Curve Length node")
  {
    category_ = Category::Generated;
  }

  GVArray get_varray_for_context(const GeometryComponent &component,
                                 const AttributeDomain domain,
                                 IndexMask mask) const final
  {
    if (component.type() == GEO_COMPONENT_TYPE_CURVE) {
      const CurveComponent &curve_component = static_cast<const CurveComponent &>(component);
      if (curve_component.has_curves()) {
        std::unique_ptr<CurveEval> curve = curves_to_curve_eval(*curve_component.get_for_read());
        return construct_curve_length_varray(*curve, mask, domain);
      }
    }
    return {};
  }

  uint64_t hash() const override
  {
    /* Some random constant hash. */
    return 345634563454;
  }

  bool is_equal_to(const fn::FieldNode &other) const override
  {
    return dynamic_cast<const CurveLengthFieldInput *>(&other) != nullptr;
  }
};

class IndexOnSplineFieldInput final : public GeometryFieldInput {
 public:
  IndexOnSplineFieldInput() : GeometryFieldInput(CPPType::get<int>(), "Spline Index")
  {
    category_ = Category::Generated;
  }

  GVArray get_varray_for_context(const GeometryComponent &component,
                                 const AttributeDomain domain,
                                 IndexMask mask) const final
  {
    if (component.type() == GEO_COMPONENT_TYPE_CURVE) {
      const CurveComponent &curve_component = static_cast<const CurveComponent &>(component);
      if (curve_component.has_curves()) {
        const std::unique_ptr<CurveEval> curve = curves_to_curve_eval(
            *curve_component.get_for_read());
        return construct_index_on_spline_varray(*curve, mask, domain);
      }
    }
    return {};
  }

  uint64_t hash() const override
  {
    /* Some random constant hash. */
    return 4536246522;
  }

  bool is_equal_to(const fn::FieldNode &other) const override
  {
    return dynamic_cast<const IndexOnSplineFieldInput *>(&other) != nullptr;
  }
};

static void node_geo_exec(GeoNodeExecParams params)
{
  Field<float> parameter_field{std::make_shared<CurveParameterFieldInput>()};
  Field<float> length_field{std::make_shared<CurveLengthFieldInput>()};
  Field<int> index_on_spline_field{std::make_shared<IndexOnSplineFieldInput>()};
  params.set_output("Factor", std::move(parameter_field));
  params.set_output("Length", std::move(length_field));
  params.set_output("Index", std::move(index_on_spline_field));
}

}  // namespace blender::nodes::node_geo_curve_spline_parameter_cc

void register_node_type_geo_curve_spline_parameter()
{
  namespace file_ns = blender::nodes::node_geo_curve_spline_parameter_cc;

  static bNodeType ntype;
  geo_node_type_base(
      &ntype, GEO_NODE_CURVE_SPLINE_PARAMETER, "Spline Parameter", NODE_CLASS_INPUT);
  ntype.geometry_node_execute = file_ns::node_geo_exec;
  ntype.declare = file_ns::node_declare;
  nodeRegisterType(&ntype);
}