Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_curve_spline_type.cc « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4e4cabd3c338fb277dd3a6a0062b0b2be2cd7ea1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include "BKE_spline.hh"

#include "BLI_task.hh"

#include "UI_interface.h"
#include "UI_resources.h"

#include "node_geometry_util.hh"

namespace blender::nodes::node_geo_curve_spline_type_cc {

NODE_STORAGE_FUNCS(NodeGeometryCurveSplineType)

static void node_declare(NodeDeclarationBuilder &b)
{
  b.add_input<decl::Geometry>(N_("Curve")).supported_type(GEO_COMPONENT_TYPE_CURVE);
  b.add_input<decl::Bool>(N_("Selection")).default_value(true).hide_value().supports_field();
  b.add_output<decl::Geometry>(N_("Curve"));
}

static void node_layout(uiLayout *layout, bContext *UNUSED(C), PointerRNA *ptr)
{
  uiItemR(layout, ptr, "spline_type", 0, "", ICON_NONE);
}

static void node_init(bNodeTree *UNUSED(tree), bNode *node)
{
  NodeGeometryCurveSplineType *data = MEM_cnew<NodeGeometryCurveSplineType>(__func__);

  data->spline_type = GEO_NODE_SPLINE_TYPE_POLY;
  node->storage = data;
}

template<class T>
static void scale_input_assign(const Span<T> input,
                               const int scale,
                               const int offset,
                               const MutableSpan<T> r_output)
{
  for (const int i : IndexRange(r_output.size())) {
    r_output[i] = input[i * scale + offset];
  }
}

template<class T>
static void scale_output_assign(const Span<T> input,
                                const int scale,
                                const int offset,
                                const MutableSpan<T> &r_output)
{
  for (const int i : IndexRange(input.size())) {
    r_output[i * scale + offset] = input[i];
  }
}

template<class T>
static void nurbs_to_bezier_assign(const Span<T> input,
                                   const MutableSpan<T> r_output,
                                   const NURBSpline::KnotsMode knotsMode)
{
  const int input_size = input.size();
  const int output_size = r_output.size();

  switch (knotsMode) {
    case NURBSpline::KnotsMode::Bezier:
      scale_input_assign<T>(input, 3, 1, r_output);
      break;
    case NURBSpline::KnotsMode::Normal:
      for (const int i : IndexRange(output_size)) {
        r_output[i] = input[(i + 1) % input_size];
      }
      break;
    case NURBSpline::KnotsMode::EndPoint:
      for (const int i : IndexRange(1, output_size - 2)) {
        r_output[i] = input[i + 1];
      }
      r_output.first() = input.first();
      r_output.last() = input.last();
      break;
  }
}

template<typename CopyFn>
static void copy_attributes(const Spline &input_spline, Spline &output_spline, CopyFn copy_fn)
{
  input_spline.attributes.foreach_attribute(
      [&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) {
        std::optional<GSpan> src = input_spline.attributes.get_for_read(attribute_id);
        BLI_assert(src);
        if (!output_spline.attributes.create(attribute_id, meta_data.data_type)) {
          BLI_assert_unreachable();
          return false;
        }
        std::optional<GMutableSpan> dst = output_spline.attributes.get_for_write(attribute_id);
        if (!dst) {
          BLI_assert_unreachable();
          return false;
        }

        copy_fn(*src, *dst);

        return true;
      },
      ATTR_DOMAIN_POINT);
}

static Vector<float3> create_nurbs_to_bezier_handles(const Span<float3> nurbs_positions,
                                                     const NURBSpline::KnotsMode knots_mode)
{
  const int nurbs_positions_size = nurbs_positions.size();
  Vector<float3> handle_positions;
  if (knots_mode == NURBSpline::KnotsMode::Bezier) {
    for (const int i : IndexRange(nurbs_positions_size)) {
      if (i % 3 == 1) {
        continue;
      }
      handle_positions.append(nurbs_positions[i]);
    }
    if (nurbs_positions_size % 3 == 1) {
      handle_positions.pop_last();
    }
    else if (nurbs_positions_size % 3 == 2) {
      const int last_index = nurbs_positions_size - 1;
      handle_positions.append(2 * nurbs_positions[last_index] - nurbs_positions[last_index - 1]);
    }
  }
  else {
    const bool is_periodic = knots_mode == NURBSpline::KnotsMode::Normal;
    if (is_periodic) {
      handle_positions.append(nurbs_positions[1] +
                              ((nurbs_positions[0] - nurbs_positions[1]) / 3));
    }
    else {
      handle_positions.append(2 * nurbs_positions[0] - nurbs_positions[1]);
      handle_positions.append(nurbs_positions[1]);
    }
    const int segments_size = nurbs_positions_size - 1;
    const bool ignore_interior_segment = segments_size == 3 && is_periodic == false;
    if (ignore_interior_segment == false) {
      const float mid_offset = (float)(segments_size - 1) / 2.0f;
      for (const int i : IndexRange(1, segments_size - 2)) {
        const int divisor = is_periodic ?
                                3 :
                                std::min(3, (int)(-std::abs(i - mid_offset) + mid_offset + 1.0f));
        const float3 &p1 = nurbs_positions[i];
        const float3 &p2 = nurbs_positions[i + 1];
        const float3 displacement = (p2 - p1) / divisor;
        const int num_handles_on_segment = divisor < 3 ? 1 : 2;
        for (int j : IndexRange(1, num_handles_on_segment)) {
          handle_positions.append(p1 + (displacement * j));
        }
      }
    }
    const int last_index = nurbs_positions_size - 1;
    if (is_periodic) {
      handle_positions.append(
          nurbs_positions[last_index - 1] +
          ((nurbs_positions[last_index] - nurbs_positions[last_index - 1]) / 3));
    }
    else {
      handle_positions.append(nurbs_positions[last_index - 1]);
      handle_positions.append(2 * nurbs_positions[last_index] - nurbs_positions[last_index - 1]);
    }
  }
  return handle_positions;
}

static Array<float3> create_nurbs_to_bezier_positions(const Span<float3> nurbs_positions,
                                                      const Span<float3> handle_positions,
                                                      const NURBSpline::KnotsMode knots_mode)
{
  if (knots_mode == NURBSpline::KnotsMode::Bezier) {
    /* Every third NURBS position (starting from index 1) should be converted to Bezier position */
    const int scale = 3;
    const int offset = 1;
    Array<float3> bezier_positions((nurbs_positions.size() + offset) / scale);
    scale_input_assign(nurbs_positions, scale, offset, bezier_positions.as_mutable_span());
    return bezier_positions;
  }

  Array<float3> bezier_positions(handle_positions.size() / 2);
  for (const int i : IndexRange(bezier_positions.size())) {
    bezier_positions[i] = math::interpolate(
        handle_positions[i * 2], handle_positions[i * 2 + 1], 0.5f);
  }
  return bezier_positions;
}

static SplinePtr convert_to_poly_spline(const Spline &input)
{
  std::unique_ptr<PolySpline> output = std::make_unique<PolySpline>();
  output->resize(input.positions().size());
  output->positions().copy_from(input.positions());
  output->radii().copy_from(input.radii());
  output->tilts().copy_from(input.tilts());
  Spline::copy_base_settings(input, *output);
  output->attributes = input.attributes;
  return output;
}

static SplinePtr poly_to_nurbs(const Spline &input)
{
  std::unique_ptr<NURBSpline> output = std::make_unique<NURBSpline>();
  output->resize(input.positions().size());
  output->positions().copy_from(input.positions());
  output->radii().copy_from(input.radii());
  output->tilts().copy_from(input.tilts());
  output->weights().fill(1.0f);
  output->set_resolution(12);
  output->set_order(4);
  Spline::copy_base_settings(input, *output);
  output->knots_mode = NURBSpline::KnotsMode::Bezier;
  output->attributes = input.attributes;
  return output;
}

static SplinePtr bezier_to_nurbs(const Spline &input)
{
  const BezierSpline &bezier_spline = static_cast<const BezierSpline &>(input);
  std::unique_ptr<NURBSpline> output = std::make_unique<NURBSpline>();
  output->resize(input.size() * 3);

  scale_output_assign(bezier_spline.handle_positions_left(), 3, 0, output->positions());
  scale_output_assign(input.radii(), 3, 0, output->radii());
  scale_output_assign(input.tilts(), 3, 0, output->tilts());

  scale_output_assign(bezier_spline.positions(), 3, 1, output->positions());
  scale_output_assign(input.radii(), 3, 1, output->radii());
  scale_output_assign(input.tilts(), 3, 1, output->tilts());

  scale_output_assign(bezier_spline.handle_positions_right(), 3, 2, output->positions());
  scale_output_assign(input.radii(), 3, 2, output->radii());
  scale_output_assign(input.tilts(), 3, 2, output->tilts());

  Spline::copy_base_settings(input, *output);
  output->weights().fill(1.0f);
  output->set_resolution(12);
  output->set_order(4);
  output->set_cyclic(input.is_cyclic());
  output->knots_mode = NURBSpline::KnotsMode::Bezier;
  output->attributes.reallocate(output->size());
  copy_attributes(input, *output, [](GSpan src, GMutableSpan dst) {
    attribute_math::convert_to_static_type(src.type(), [&](auto dummy) {
      using T = decltype(dummy);
      scale_output_assign<T>(src.typed<T>(), 3, 0, dst.typed<T>());
      scale_output_assign<T>(src.typed<T>(), 3, 1, dst.typed<T>());
      scale_output_assign<T>(src.typed<T>(), 3, 2, dst.typed<T>());
    });
  });
  return output;
}

static SplinePtr poly_to_bezier(const Spline &input)
{
  std::unique_ptr<BezierSpline> output = std::make_unique<BezierSpline>();
  output->resize(input.size());
  output->positions().copy_from(input.positions());
  output->radii().copy_from(input.radii());
  output->tilts().copy_from(input.tilts());
  output->handle_types_left().fill(BezierSpline::HandleType::Vector);
  output->handle_types_right().fill(BezierSpline::HandleType::Vector);
  output->set_resolution(12);
  Spline::copy_base_settings(input, *output);
  output->attributes = input.attributes;
  return output;
}

static SplinePtr nurbs_to_bezier(const Spline &input)
{
  const NURBSpline &nurbs_spline = static_cast<const NURBSpline &>(input);
  Span<float3> nurbs_positions;
  Vector<float3> nurbs_positions_vector;
  NURBSpline::KnotsMode knots_mode;
  if (nurbs_spline.is_cyclic()) {
    nurbs_positions_vector = nurbs_spline.positions();
    nurbs_positions_vector.append(nurbs_spline.positions()[0]);
    nurbs_positions_vector.append(nurbs_spline.positions()[1]);
    nurbs_positions = nurbs_positions_vector;
    knots_mode = NURBSpline::KnotsMode::Normal;
  }
  else {
    nurbs_positions = nurbs_spline.positions();
    knots_mode = nurbs_spline.knots_mode;
  }
  const Vector<float3> handle_positions = create_nurbs_to_bezier_handles(nurbs_positions,
                                                                         knots_mode);
  BLI_assert(handle_positions.size() % 2 == 0);
  const Array<float3> bezier_positions = create_nurbs_to_bezier_positions(
      nurbs_positions, handle_positions.as_span(), knots_mode);
  BLI_assert(handle_positions.size() == bezier_positions.size() * 2);

  std::unique_ptr<BezierSpline> output = std::make_unique<BezierSpline>();
  output->resize(bezier_positions.size());
  output->positions().copy_from(bezier_positions);
  nurbs_to_bezier_assign(nurbs_spline.radii(), output->radii(), knots_mode);
  nurbs_to_bezier_assign(nurbs_spline.tilts(), output->tilts(), knots_mode);
  scale_input_assign(handle_positions.as_span(), 2, 0, output->handle_positions_left());
  scale_input_assign(handle_positions.as_span(), 2, 1, output->handle_positions_right());
  output->handle_types_left().fill(BezierSpline::HandleType::Align);
  output->handle_types_right().fill(BezierSpline::HandleType::Align);
  output->set_resolution(nurbs_spline.resolution());
  Spline::copy_base_settings(nurbs_spline, *output);
  output->attributes.reallocate(output->size());
  copy_attributes(nurbs_spline, *output, [knots_mode](GSpan src, GMutableSpan dst) {
    attribute_math::convert_to_static_type(src.type(), [&](auto dummy) {
      using T = decltype(dummy);
      nurbs_to_bezier_assign(src.typed<T>(), dst.typed<T>(), knots_mode);
    });
  });
  return output;
}

static SplinePtr convert_to_bezier(const Spline &input, GeoNodeExecParams params)
{
  switch (input.type()) {
    case Spline::Type::Bezier:
      return input.copy();
    case Spline::Type::Poly:
      return poly_to_bezier(input);
    case Spline::Type::NURBS:
      if (input.size() < 4) {
        params.error_message_add(
            NodeWarningType::Info,
            TIP_("NURBS must have minimum of 4 points for Bezier Conversion"));
        return input.copy();
      }
      return nurbs_to_bezier(input);
  }
  BLI_assert_unreachable();
  return {};
}

static SplinePtr convert_to_nurbs(const Spline &input)
{
  switch (input.type()) {
    case Spline::Type::NURBS:
      return input.copy();
    case Spline::Type::Bezier:
      return bezier_to_nurbs(input);
    case Spline::Type::Poly:
      return poly_to_nurbs(input);
  }
  BLI_assert_unreachable();
  return {};
}

static void node_geo_exec(GeoNodeExecParams params)
{
  const NodeGeometryCurveSplineType &storage = node_storage(params.node());
  const GeometryNodeSplineType output_type = (const GeometryNodeSplineType)storage.spline_type;

  GeometrySet geometry_set = params.extract_input<GeometrySet>("Curve");
  Field<bool> selection_field = params.extract_input<Field<bool>>("Selection");

  geometry_set.modify_geometry_sets([&](GeometrySet &geometry_set) {
    if (!geometry_set.has_curve()) {
      return;
    }

    const CurveComponent *curve_component = geometry_set.get_component_for_read<CurveComponent>();
    const CurveEval &curve = *curve_component->get_for_read();
    GeometryComponentFieldContext field_context{*curve_component, ATTR_DOMAIN_CURVE};
    const int domain_size = curve_component->attribute_domain_size(ATTR_DOMAIN_CURVE);

    fn::FieldEvaluator selection_evaluator{field_context, domain_size};
    selection_evaluator.add(selection_field);
    selection_evaluator.evaluate();
    const VArray<bool> &selection = selection_evaluator.get_evaluated<bool>(0);

    std::unique_ptr<CurveEval> new_curve = std::make_unique<CurveEval>();
    new_curve->resize(curve.splines().size());

    threading::parallel_for(curve.splines().index_range(), 512, [&](IndexRange range) {
      for (const int i : range) {
        if (selection[i]) {
          switch (output_type) {
            case GEO_NODE_SPLINE_TYPE_POLY:
              new_curve->splines()[i] = convert_to_poly_spline(*curve.splines()[i]);
              break;
            case GEO_NODE_SPLINE_TYPE_BEZIER:
              new_curve->splines()[i] = convert_to_bezier(*curve.splines()[i], params);
              break;
            case GEO_NODE_SPLINE_TYPE_NURBS:
              new_curve->splines()[i] = convert_to_nurbs(*curve.splines()[i]);
              break;
          }
        }
        else {
          new_curve->splines()[i] = curve.splines()[i]->copy();
        }
      }
    });
    new_curve->attributes = curve.attributes;
    geometry_set.replace_curve(new_curve.release());
  });

  params.set_output("Curve", std::move(geometry_set));
}

}  // namespace blender::nodes::node_geo_curve_spline_type_cc

void register_node_type_geo_curve_spline_type()
{
  namespace file_ns = blender::nodes::node_geo_curve_spline_type_cc;

  static bNodeType ntype;
  geo_node_type_base(&ntype, GEO_NODE_CURVE_SPLINE_TYPE, "Set Spline Type", NODE_CLASS_GEOMETRY);
  ntype.declare = file_ns::node_declare;
  ntype.geometry_node_execute = file_ns::node_geo_exec;
  node_type_init(&ntype, file_ns::node_init);
  node_type_storage(&ntype,
                    "NodeGeometryCurveSplineType",
                    node_free_standard_storage,
                    node_copy_standard_storage);
  ntype.draw_buttons = file_ns::node_layout;

  nodeRegisterType(&ntype);
}