Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_curve_subdivide.cc « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ae282017e0cdf212ef568fe934d7e717eaf01223 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include "BLI_task.hh"
#include "BLI_timeit.hh"

#include "BKE_attribute_math.hh"
#include "BKE_spline.hh"

#include "UI_interface.h"
#include "UI_resources.h"

#include "node_geometry_util.hh"

namespace blender::nodes::node_geo_curve_subdivide_cc {

static void node_declare(NodeDeclarationBuilder &b)
{
  b.add_input<decl::Geometry>(N_("Curve")).supported_type(GEO_COMPONENT_TYPE_CURVE);
  b.add_input<decl::Int>(N_("Cuts")).default_value(1).min(0).max(1000).supports_field();
  b.add_output<decl::Geometry>(N_("Curve"));
}

static Array<int> get_subdivided_offsets(const Spline &spline,
                                         const VArray<int> &cuts,
                                         const int spline_offset)
{
  Array<int> offsets(spline.segments_size() + 1);
  int offset = 0;
  for (const int i : IndexRange(spline.segments_size())) {
    offsets[i] = offset;
    offset = offset + std::max(cuts[spline_offset + i], 0) + 1;
  }
  offsets.last() = offset;
  return offsets;
}

template<typename T>
static void subdivide_attribute(Span<T> src,
                                const Span<int> offsets,
                                const bool is_cyclic,
                                MutableSpan<T> dst)
{
  const int src_size = src.size();
  threading::parallel_for(IndexRange(src_size - 1), 1024, [&](IndexRange range) {
    for (const int i : range) {
      const int cuts = offsets[i + 1] - offsets[i];
      dst[offsets[i]] = src[i];
      const float factor_delta = cuts == 0 ? 1.0f : 1.0f / cuts;
      for (const int cut : IndexRange(cuts)) {
        const float factor = cut * factor_delta;
        dst[offsets[i] + cut] = attribute_math::mix2(factor, src[i], src[i + 1]);
      }
    }
  });

  if (is_cyclic) {
    const int i = src_size - 1;
    const int cuts = offsets[i + 1] - offsets[i];
    dst[offsets[i]] = src.last();
    const float factor_delta = cuts == 0 ? 1.0f : 1.0f / cuts;
    for (const int cut : IndexRange(cuts)) {
      const float factor = cut * factor_delta;
      dst[offsets[i] + cut] = attribute_math::mix2(factor, src.last(), src.first());
    }
  }
  else {
    dst.last() = src.last();
  }
}

/**
 * In order to generate a Bezier spline with the same shape as the input spline, apply the
 * De Casteljau algorithm iteratively for the provided number of cuts, constantly updating the
 * previous result point's right handle and the left handle at the end of the segment.
 *
 * \note Non-vector segments in the result spline are given free handles. This could possibly be
 * improved with another pass that sets handles to aligned where possible, but currently that does
 * not provide much benefit for the increased complexity.
 */
static void subdivide_bezier_segment(const BezierSpline &src,
                                     const int index,
                                     const int offset,
                                     const int result_size,
                                     Span<float3> src_positions,
                                     Span<float3> src_handles_left,
                                     Span<float3> src_handles_right,
                                     MutableSpan<float3> dst_positions,
                                     MutableSpan<float3> dst_handles_left,
                                     MutableSpan<float3> dst_handles_right,
                                     MutableSpan<BezierSpline::HandleType> dst_type_left,
                                     MutableSpan<BezierSpline::HandleType> dst_type_right)
{
  const bool is_last_cyclic_segment = index == (src.size() - 1);
  const int next_index = is_last_cyclic_segment ? 0 : index + 1;

  /* The first point in the segment is always copied. */
  dst_positions[offset] = src_positions[index];

  if (src.segment_is_vector(index)) {
    if (is_last_cyclic_segment) {
      dst_type_left.first() = BezierSpline::HandleType::Vector;
    }
    dst_type_left.slice(offset + 1, result_size).fill(BezierSpline::HandleType::Vector);
    dst_type_right.slice(offset, result_size).fill(BezierSpline::HandleType::Vector);

    const float factor_delta = 1.0f / result_size;
    for (const int cut : IndexRange(result_size)) {
      const float factor = cut * factor_delta;
      dst_positions[offset + cut] = attribute_math::mix2(
          factor, src_positions[index], src_positions[next_index]);
    }
  }
  else {
    if (is_last_cyclic_segment) {
      dst_type_left.first() = BezierSpline::HandleType::Free;
    }
    dst_type_left.slice(offset + 1, result_size).fill(BezierSpline::HandleType::Free);
    dst_type_right.slice(offset, result_size).fill(BezierSpline::HandleType::Free);

    const int i_segment_last = is_last_cyclic_segment ? 0 : offset + result_size;

    /* Create a Bezier segment to update iteratively for every subdivision
     * and references to the meaningful values for ease of use. */
    BezierSpline temp;
    temp.resize(2);
    float3 &segment_start = temp.positions().first();
    float3 &segment_end = temp.positions().last();
    float3 &handle_prev = temp.handle_positions_right().first();
    float3 &handle_next = temp.handle_positions_left().last();
    segment_start = src_positions[index];
    segment_end = src_positions[next_index];
    handle_prev = src_handles_right[index];
    handle_next = src_handles_left[next_index];

    for (const int cut : IndexRange(result_size - 1)) {
      const float parameter = 1.0f / (result_size - cut);
      const BezierSpline::InsertResult insert = temp.calculate_segment_insertion(0, 1, parameter);

      /* Copy relevant temporary data to the result. */
      dst_handles_right[offset + cut] = insert.handle_prev;
      dst_handles_left[offset + cut + 1] = insert.left_handle;
      dst_positions[offset + cut + 1] = insert.position;

      /* Update the segment to prepare it for the next subdivision. */
      segment_start = insert.position;
      handle_prev = insert.right_handle;
      handle_next = insert.handle_next;
    }

    /* Copy the handles for the last segment from the temporary spline. */
    dst_handles_right[offset + result_size - 1] = handle_prev;
    dst_handles_left[i_segment_last] = handle_next;
  }
}

static void subdivide_bezier_spline(const BezierSpline &src,
                                    const Span<int> offsets,
                                    BezierSpline &dst)
{
  Span<float3> src_positions = src.positions();
  Span<float3> src_handles_left = src.handle_positions_left();
  Span<float3> src_handles_right = src.handle_positions_right();
  MutableSpan<float3> dst_positions = dst.positions();
  MutableSpan<float3> dst_handles_left = dst.handle_positions_left();
  MutableSpan<float3> dst_handles_right = dst.handle_positions_right();
  MutableSpan<BezierSpline::HandleType> dst_type_left = dst.handle_types_left();
  MutableSpan<BezierSpline::HandleType> dst_type_right = dst.handle_types_right();

  threading::parallel_for(IndexRange(src.size() - 1), 512, [&](IndexRange range) {
    for (const int i : range) {
      subdivide_bezier_segment(src,
                               i,
                               offsets[i],
                               offsets[i + 1] - offsets[i],
                               src_positions,
                               src_handles_left,
                               src_handles_right,
                               dst_positions,
                               dst_handles_left,
                               dst_handles_right,
                               dst_type_left,
                               dst_type_right);
    }
  });

  if (src.is_cyclic()) {
    const int i_last = src.size() - 1;
    subdivide_bezier_segment(src,
                             i_last,
                             offsets[i_last],
                             offsets.last() - offsets[i_last],
                             src_positions,
                             src_handles_left,
                             src_handles_right,
                             dst_positions,
                             dst_handles_left,
                             dst_handles_right,
                             dst_type_left,
                             dst_type_right);
  }
  else {
    dst_positions.last() = src_positions.last();
  }
}

static void subdivide_builtin_attributes(const Spline &src_spline,
                                         const Span<int> offsets,
                                         Spline &dst_spline)
{
  const bool is_cyclic = src_spline.is_cyclic();
  subdivide_attribute<float>(src_spline.radii(), offsets, is_cyclic, dst_spline.radii());
  subdivide_attribute<float>(src_spline.tilts(), offsets, is_cyclic, dst_spline.tilts());
  switch (src_spline.type()) {
    case Spline::Type::Poly: {
      const PolySpline &src = static_cast<const PolySpline &>(src_spline);
      PolySpline &dst = static_cast<PolySpline &>(dst_spline);
      subdivide_attribute<float3>(src.positions(), offsets, is_cyclic, dst.positions());
      break;
    }
    case Spline::Type::Bezier: {
      const BezierSpline &src = static_cast<const BezierSpline &>(src_spline);
      BezierSpline &dst = static_cast<BezierSpline &>(dst_spline);
      subdivide_bezier_spline(src, offsets, dst);
      dst.mark_cache_invalid();
      break;
    }
    case Spline::Type::NURBS: {
      const NURBSpline &src = static_cast<const NURBSpline &>(src_spline);
      NURBSpline &dst = static_cast<NURBSpline &>(dst_spline);
      subdivide_attribute<float3>(src.positions(), offsets, is_cyclic, dst.positions());
      subdivide_attribute<float>(src.weights(), offsets, is_cyclic, dst.weights());
      break;
    }
  }
}

static void subdivide_dynamic_attributes(const Spline &src_spline,
                                         const Span<int> offsets,
                                         Spline &dst_spline)
{
  const bool is_cyclic = src_spline.is_cyclic();
  src_spline.attributes.foreach_attribute(
      [&](const bke::AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) {
        std::optional<GSpan> src = src_spline.attributes.get_for_read(attribute_id);
        BLI_assert(src);

        if (!dst_spline.attributes.create(attribute_id, meta_data.data_type)) {
          /* Since the source spline of the same type had the attribute, adding it should work. */
          BLI_assert_unreachable();
        }

        std::optional<GMutableSpan> dst = dst_spline.attributes.get_for_write(attribute_id);
        BLI_assert(dst);

        attribute_math::convert_to_static_type(dst->type(), [&](auto dummy) {
          using T = decltype(dummy);
          subdivide_attribute<T>(src->typed<T>(), offsets, is_cyclic, dst->typed<T>());
        });
        return true;
      },
      ATTR_DOMAIN_POINT);
}

static SplinePtr subdivide_spline(const Spline &spline,
                                  const VArray<int> &cuts,
                                  const int spline_offset)
{
  if (spline.size() <= 1) {
    return spline.copy();
  }

  /* Since we expect to access each value many times, it should be worth it to make sure count
   * of cuts is a real span (especially considering the note below). Using the offset at each
   * point facilitates subdividing in parallel later. */
  Array<int> offsets = get_subdivided_offsets(spline, cuts, spline_offset);
  const int result_size = offsets.last() + int(!spline.is_cyclic());
  SplinePtr new_spline = spline.copy_only_settings();
  new_spline->resize(result_size);
  subdivide_builtin_attributes(spline, offsets, *new_spline);
  subdivide_dynamic_attributes(spline, offsets, *new_spline);
  return new_spline;
}

/**
 * \note Passing the virtual array for the entire spline is possibly quite inefficient here when
 * the attribute was on the point domain and stored separately for each spline already, and it
 * prevents some other optimizations like skipping splines with a single attribute value of < 1.
 * However, it allows the node to access builtin attribute easily, so it the makes most sense this
 * way until the attribute API is refactored.
 */
static std::unique_ptr<CurveEval> subdivide_curve(const CurveEval &input_curve,
                                                  const VArray<int> &cuts)
{
  const Array<int> control_point_offsets = input_curve.control_point_offsets();
  const Span<SplinePtr> input_splines = input_curve.splines();

  std::unique_ptr<CurveEval> output_curve = std::make_unique<CurveEval>();
  output_curve->resize(input_splines.size());
  output_curve->attributes = input_curve.attributes;
  MutableSpan<SplinePtr> output_splines = output_curve->splines();

  threading::parallel_for(input_splines.index_range(), 128, [&](IndexRange range) {
    for (const int i : range) {
      output_splines[i] = subdivide_spline(*input_splines[i], cuts, control_point_offsets[i]);
    }
  });

  return output_curve;
}

static void node_geo_exec(GeoNodeExecParams params)
{
  GeometrySet geometry_set = params.extract_input<GeometrySet>("Curve");
  Field<int> cuts_field = params.extract_input<Field<int>>("Cuts");

  geometry_set.modify_geometry_sets([&](GeometrySet &geometry_set) {
    if (!geometry_set.has_curve()) {
      return;
    }

    const CurveComponent &component = *geometry_set.get_component_for_read<CurveComponent>();
    GeometryComponentFieldContext field_context{component, ATTR_DOMAIN_POINT};
    const int domain_size = component.attribute_domain_size(ATTR_DOMAIN_POINT);

    fn::FieldEvaluator evaluator{field_context, domain_size};
    evaluator.add(cuts_field);
    evaluator.evaluate();
    const VArray<int> &cuts = evaluator.get_evaluated<int>(0);

    if (cuts.is_single() && cuts.get_internal_single() < 1) {
      return;
    }

    std::unique_ptr<CurveEval> output_curve = subdivide_curve(*component.get_for_read(), cuts);
    geometry_set.replace_curve(output_curve.release());
  });
  params.set_output("Curve", geometry_set);
}

}  // namespace blender::nodes::node_geo_curve_subdivide_cc

void register_node_type_geo_curve_subdivide()
{
  namespace file_ns = blender::nodes::node_geo_curve_subdivide_cc;

  static bNodeType ntype;

  geo_node_type_base(&ntype, GEO_NODE_SUBDIVIDE_CURVE, "Subdivide Curve", NODE_CLASS_GEOMETRY);
  ntype.declare = file_ns::node_declare;
  ntype.geometry_node_execute = file_ns::node_geo_exec;
  nodeRegisterType(&ntype);
}