Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_distribute_points_on_faces.cc « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: aac664bbe13b17f9cfc313078eb725770f9b442d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include "BLI_kdtree.h"
#include "BLI_noise.hh"
#include "BLI_rand.hh"
#include "BLI_task.hh"
#include "BLI_timeit.hh"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_pointcloud_types.h"

#include "BKE_attribute_math.hh"
#include "BKE_bvhutils.h"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_mesh_sample.hh"
#include "BKE_pointcloud.h"

#include "UI_interface.h"
#include "UI_resources.h"

#include "node_geometry_util.hh"

namespace blender::nodes::node_geo_distribute_points_on_faces_cc {

static void node_declare(NodeDeclarationBuilder &b)
{
  auto enable_random = [](bNode &node) {
    node.custom1 = GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_RANDOM;
  };
  auto enable_poisson = [](bNode &node) {
    node.custom1 = GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_POISSON;
  };

  b.add_input<decl::Geometry>(N_("Mesh")).supported_type(GEO_COMPONENT_TYPE_MESH);
  b.add_input<decl::Bool>(N_("Selection")).default_value(true).hide_value().supports_field();
  b.add_input<decl::Float>(N_("Distance Min"))
      .min(0.0f)
      .subtype(PROP_DISTANCE)
      .make_available(enable_poisson);
  b.add_input<decl::Float>(N_("Density Max"))
      .default_value(10.0f)
      .min(0.0f)
      .make_available(enable_poisson);
  b.add_input<decl::Float>(N_("Density"))
      .default_value(10.0f)
      .min(0.0f)
      .supports_field()
      .make_available(enable_random);
  b.add_input<decl::Float>(N_("Density Factor"))
      .default_value(1.0f)
      .min(0.0f)
      .max(1.0f)
      .subtype(PROP_FACTOR)
      .supports_field()
      .make_available(enable_poisson);
  b.add_input<decl::Int>(N_("Seed"));

  b.add_output<decl::Geometry>(N_("Points"));
  b.add_output<decl::Vector>(N_("Normal")).field_source();
  b.add_output<decl::Vector>(N_("Rotation")).subtype(PROP_EULER).field_source();
}

static void node_layout(uiLayout *layout, bContext * /*C*/, PointerRNA *ptr)
{
  uiItemR(layout, ptr, "distribute_method", 0, "", ICON_NONE);
}

static void node_point_distribute_points_on_faces_update(bNodeTree *ntree, bNode *node)
{
  bNodeSocket *sock_distance_min = static_cast<bNodeSocket *>(BLI_findlink(&node->inputs, 2));
  bNodeSocket *sock_density_max = static_cast<bNodeSocket *>(sock_distance_min->next);
  bNodeSocket *sock_density = sock_density_max->next;
  bNodeSocket *sock_density_factor = sock_density->next;
  nodeSetSocketAvailability(ntree,
                            sock_distance_min,
                            node->custom1 == GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_POISSON);
  nodeSetSocketAvailability(
      ntree, sock_density_max, node->custom1 == GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_POISSON);
  nodeSetSocketAvailability(
      ntree, sock_density, node->custom1 == GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_RANDOM);
  nodeSetSocketAvailability(ntree,
                            sock_density_factor,
                            node->custom1 == GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_POISSON);
}

/**
 * Use an arbitrary choice of axes for a usable rotation attribute directly out of this node.
 */
static float3 normal_to_euler_rotation(const float3 normal)
{
  float quat[4];
  vec_to_quat(quat, normal, OB_NEGZ, OB_POSY);
  float3 rotation;
  quat_to_eul(rotation, quat);
  return rotation;
}

static void sample_mesh_surface(const Mesh &mesh,
                                const float base_density,
                                const Span<float> density_factors,
                                const int seed,
                                Vector<float3> &r_positions,
                                Vector<float3> &r_bary_coords,
                                Vector<int> &r_looptri_indices)
{
  const Span<float3> positions = mesh.positions();
  const Span<MLoop> loops = mesh.loops();
  const Span<MLoopTri> looptris = mesh.looptris();

  for (const int looptri_index : looptris.index_range()) {
    const MLoopTri &looptri = looptris[looptri_index];
    const int v0_loop = looptri.tri[0];
    const int v1_loop = looptri.tri[1];
    const int v2_loop = looptri.tri[2];
    const int v0_index = loops[v0_loop].v;
    const int v1_index = loops[v1_loop].v;
    const int v2_index = loops[v2_loop].v;
    const float3 v0_pos = positions[v0_index];
    const float3 v1_pos = positions[v1_index];
    const float3 v2_pos = positions[v2_index];

    float looptri_density_factor = 1.0f;
    if (!density_factors.is_empty()) {
      const float v0_density_factor = std::max(0.0f, density_factors[v0_loop]);
      const float v1_density_factor = std::max(0.0f, density_factors[v1_loop]);
      const float v2_density_factor = std::max(0.0f, density_factors[v2_loop]);
      looptri_density_factor = (v0_density_factor + v1_density_factor + v2_density_factor) / 3.0f;
    }
    const float area = area_tri_v3(v0_pos, v1_pos, v2_pos);

    const int looptri_seed = noise::hash(looptri_index, seed);
    RandomNumberGenerator looptri_rng(looptri_seed);

    const int point_amount = looptri_rng.round_probabilistic(area * base_density *
                                                             looptri_density_factor);

    for (int i = 0; i < point_amount; i++) {
      const float3 bary_coord = looptri_rng.get_barycentric_coordinates();
      float3 point_pos;
      interp_v3_v3v3v3(point_pos, v0_pos, v1_pos, v2_pos, bary_coord);
      r_positions.append(point_pos);
      r_bary_coords.append(bary_coord);
      r_looptri_indices.append(looptri_index);
    }
  }
}

BLI_NOINLINE static KDTree_3d *build_kdtree(Span<float3> positions)
{
  KDTree_3d *kdtree = BLI_kdtree_3d_new(positions.size());

  int i_point = 0;
  for (const float3 position : positions) {
    BLI_kdtree_3d_insert(kdtree, i_point, position);
    i_point++;
  }

  BLI_kdtree_3d_balance(kdtree);
  return kdtree;
}

BLI_NOINLINE static void update_elimination_mask_for_close_points(
    Span<float3> positions, const float minimum_distance, MutableSpan<bool> elimination_mask)
{
  if (minimum_distance <= 0.0f) {
    return;
  }

  KDTree_3d *kdtree = build_kdtree(positions);
  BLI_SCOPED_DEFER([&]() { BLI_kdtree_3d_free(kdtree); });

  for (const int i : positions.index_range()) {
    if (elimination_mask[i]) {
      continue;
    }

    struct CallbackData {
      int index;
      MutableSpan<bool> elimination_mask;
    } callback_data = {i, elimination_mask};

    BLI_kdtree_3d_range_search_cb(
        kdtree,
        positions[i],
        minimum_distance,
        [](void *user_data, int index, const float * /*co*/, float /*dist_sq*/) {
          CallbackData &callback_data = *static_cast<CallbackData *>(user_data);
          if (index != callback_data.index) {
            callback_data.elimination_mask[index] = true;
          }
          return true;
        },
        &callback_data);
  }
}

BLI_NOINLINE static void update_elimination_mask_based_on_density_factors(
    const Mesh &mesh,
    const Span<float> density_factors,
    const Span<float3> bary_coords,
    const Span<int> looptri_indices,
    const MutableSpan<bool> elimination_mask)
{
  const Span<MLoopTri> looptris = mesh.looptris();
  for (const int i : bary_coords.index_range()) {
    if (elimination_mask[i]) {
      continue;
    }

    const MLoopTri &looptri = looptris[looptri_indices[i]];
    const float3 bary_coord = bary_coords[i];

    const int v0_loop = looptri.tri[0];
    const int v1_loop = looptri.tri[1];
    const int v2_loop = looptri.tri[2];

    const float v0_density_factor = std::max(0.0f, density_factors[v0_loop]);
    const float v1_density_factor = std::max(0.0f, density_factors[v1_loop]);
    const float v2_density_factor = std::max(0.0f, density_factors[v2_loop]);

    const float probability = v0_density_factor * bary_coord.x + v1_density_factor * bary_coord.y +
                              v2_density_factor * bary_coord.z;

    const float hash = noise::hash_float_to_float(bary_coord);
    if (hash > probability) {
      elimination_mask[i] = true;
    }
  }
}

BLI_NOINLINE static void eliminate_points_based_on_mask(const Span<bool> elimination_mask,
                                                        Vector<float3> &positions,
                                                        Vector<float3> &bary_coords,
                                                        Vector<int> &looptri_indices)
{
  for (int i = positions.size() - 1; i >= 0; i--) {
    if (elimination_mask[i]) {
      positions.remove_and_reorder(i);
      bary_coords.remove_and_reorder(i);
      looptri_indices.remove_and_reorder(i);
    }
  }
}

BLI_NOINLINE static void interpolate_attribute(const Mesh &mesh,
                                               const Span<float3> bary_coords,
                                               const Span<int> looptri_indices,
                                               const eAttrDomain source_domain,
                                               const GVArray &source_data,
                                               GMutableSpan output_data)
{
  switch (source_domain) {
    case ATTR_DOMAIN_POINT: {
      bke::mesh_surface_sample::sample_point_attribute(mesh,
                                                       looptri_indices,
                                                       bary_coords,
                                                       source_data,
                                                       IndexMask(output_data.size()),
                                                       output_data);
      break;
    }
    case ATTR_DOMAIN_CORNER: {
      bke::mesh_surface_sample::sample_corner_attribute(mesh,
                                                        looptri_indices,
                                                        bary_coords,
                                                        source_data,
                                                        IndexMask(output_data.size()),
                                                        output_data);
      break;
    }
    case ATTR_DOMAIN_FACE: {
      bke::mesh_surface_sample::sample_face_attribute(
          mesh, looptri_indices, source_data, IndexMask(output_data.size()), output_data);
      break;
    }
    default: {
      /* Not supported currently. */
      return;
    }
  }
}

BLI_NOINLINE static void propagate_existing_attributes(
    const Mesh &mesh,
    const Map<AttributeIDRef, AttributeKind> &attributes,
    PointCloud &points,
    const Span<float3> bary_coords,
    const Span<int> looptri_indices)
{
  const AttributeAccessor mesh_attributes = mesh.attributes();
  MutableAttributeAccessor point_attributes = points.attributes_for_write();

  for (Map<AttributeIDRef, AttributeKind>::Item entry : attributes.items()) {
    const AttributeIDRef attribute_id = entry.key;
    const eCustomDataType output_data_type = entry.value.data_type;

    GAttributeReader source_attribute = mesh_attributes.lookup(attribute_id);
    if (!source_attribute) {
      continue;
    }

    /* The output domain is always #ATTR_DOMAIN_POINT, since we are creating a point cloud. */
    GSpanAttributeWriter attribute_out = point_attributes.lookup_or_add_for_write_only_span(
        attribute_id, ATTR_DOMAIN_POINT, output_data_type);
    if (!attribute_out) {
      continue;
    }

    interpolate_attribute(mesh,
                          bary_coords,
                          looptri_indices,
                          source_attribute.domain,
                          source_attribute.varray,
                          attribute_out.span);
    attribute_out.finish();
  }
}

namespace {
struct AttributeOutputs {
  StrongAnonymousAttributeID normal_id;
  StrongAnonymousAttributeID rotation_id;
};
}  // namespace

BLI_NOINLINE static void compute_attribute_outputs(const Mesh &mesh,
                                                   PointCloud &points,
                                                   const Span<float3> bary_coords,
                                                   const Span<int> looptri_indices,
                                                   const AttributeOutputs &attribute_outputs)
{
  MutableAttributeAccessor point_attributes = points.attributes_for_write();

  SpanAttributeWriter<int> ids = point_attributes.lookup_or_add_for_write_only_span<int>(
      "id", ATTR_DOMAIN_POINT);

  SpanAttributeWriter<float3> normals;
  SpanAttributeWriter<float3> rotations;

  if (attribute_outputs.normal_id) {
    normals = point_attributes.lookup_or_add_for_write_only_span<float3>(
        attribute_outputs.normal_id.get(), ATTR_DOMAIN_POINT);
  }
  if (attribute_outputs.rotation_id) {
    rotations = point_attributes.lookup_or_add_for_write_only_span<float3>(
        attribute_outputs.rotation_id.get(), ATTR_DOMAIN_POINT);
  }

  const Span<float3> positions = mesh.positions();
  const Span<MLoop> loops = mesh.loops();
  const Span<MLoopTri> looptris = mesh.looptris();

  for (const int i : bary_coords.index_range()) {
    const int looptri_index = looptri_indices[i];
    const MLoopTri &looptri = looptris[looptri_index];
    const float3 &bary_coord = bary_coords[i];

    const int v0_index = loops[looptri.tri[0]].v;
    const int v1_index = loops[looptri.tri[1]].v;
    const int v2_index = loops[looptri.tri[2]].v;
    const float3 v0_pos = positions[v0_index];
    const float3 v1_pos = positions[v1_index];
    const float3 v2_pos = positions[v2_index];

    ids.span[i] = noise::hash(noise::hash_float(bary_coord), looptri_index);

    float3 normal;
    if (!normals.span.is_empty() || !rotations.span.is_empty()) {
      normal_tri_v3(normal, v0_pos, v1_pos, v2_pos);
    }
    if (!normals.span.is_empty()) {
      normals.span[i] = normal;
    }
    if (!rotations.span.is_empty()) {
      rotations.span[i] = normal_to_euler_rotation(normal);
    }
  }

  ids.finish();
  normals.finish();
  rotations.finish();
}

static Array<float> calc_full_density_factors_with_selection(const Mesh &mesh,
                                                             const Field<float> &density_field,
                                                             const Field<bool> &selection_field)
{
  const eAttrDomain domain = ATTR_DOMAIN_CORNER;
  const int domain_size = mesh.attributes().domain_size(domain);
  Array<float> densities(domain_size, 0.0f);

  bke::MeshFieldContext field_context{mesh, domain};
  fn::FieldEvaluator evaluator{field_context, domain_size};
  evaluator.set_selection(selection_field);
  evaluator.add_with_destination(density_field, densities.as_mutable_span());
  evaluator.evaluate();
  return densities;
}

static void distribute_points_random(const Mesh &mesh,
                                     const Field<float> &density_field,
                                     const Field<bool> &selection_field,
                                     const int seed,
                                     Vector<float3> &positions,
                                     Vector<float3> &bary_coords,
                                     Vector<int> &looptri_indices)
{
  const Array<float> densities = calc_full_density_factors_with_selection(
      mesh, density_field, selection_field);
  sample_mesh_surface(mesh, 1.0f, densities, seed, positions, bary_coords, looptri_indices);
}

static void distribute_points_poisson_disk(const Mesh &mesh,
                                           const float minimum_distance,
                                           const float max_density,
                                           const Field<float> &density_factor_field,
                                           const Field<bool> &selection_field,
                                           const int seed,
                                           Vector<float3> &positions,
                                           Vector<float3> &bary_coords,
                                           Vector<int> &looptri_indices)
{
  sample_mesh_surface(mesh, max_density, {}, seed, positions, bary_coords, looptri_indices);

  Array<bool> elimination_mask(positions.size(), false);
  update_elimination_mask_for_close_points(positions, minimum_distance, elimination_mask);

  const Array<float> density_factors = calc_full_density_factors_with_selection(
      mesh, density_factor_field, selection_field);

  update_elimination_mask_based_on_density_factors(
      mesh, density_factors, bary_coords, looptri_indices, elimination_mask.as_mutable_span());

  eliminate_points_based_on_mask(
      elimination_mask.as_span(), positions, bary_coords, looptri_indices);
}

static void point_distribution_calculate(GeometrySet &geometry_set,
                                         const Field<bool> selection_field,
                                         const GeometryNodeDistributePointsOnFacesMode method,
                                         const int seed,
                                         const AttributeOutputs &attribute_outputs,
                                         const GeoNodeExecParams &params)
{
  if (!geometry_set.has_mesh()) {
    return;
  }

  const Mesh &mesh = *geometry_set.get_mesh_for_read();

  Vector<float3> positions;
  Vector<float3> bary_coords;
  Vector<int> looptri_indices;

  switch (method) {
    case GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_RANDOM: {
      const Field<float> density_field = params.get_input<Field<float>>("Density");
      distribute_points_random(
          mesh, density_field, selection_field, seed, positions, bary_coords, looptri_indices);
      break;
    }
    case GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_POISSON: {
      const float minimum_distance = params.get_input<float>("Distance Min");
      const float density_max = params.get_input<float>("Density Max");
      const Field<float> density_factors_field = params.get_input<Field<float>>("Density Factor");
      distribute_points_poisson_disk(mesh,
                                     minimum_distance,
                                     density_max,
                                     density_factors_field,
                                     selection_field,
                                     seed,
                                     positions,
                                     bary_coords,
                                     looptri_indices);
      break;
    }
  }

  if (positions.is_empty()) {
    return;
  }

  PointCloud *pointcloud = BKE_pointcloud_new_nomain(positions.size());
  bke::MutableAttributeAccessor point_attributes = pointcloud->attributes_for_write();
  bke::SpanAttributeWriter<float3> point_positions =
      point_attributes.lookup_or_add_for_write_only_span<float3>("position", ATTR_DOMAIN_POINT);
  bke::SpanAttributeWriter<float> point_radii =
      point_attributes.lookup_or_add_for_write_only_span<float>("radius", ATTR_DOMAIN_POINT);
  point_positions.span.copy_from(positions);
  point_radii.span.fill(0.05f);
  point_positions.finish();
  point_radii.finish();

  geometry_set.replace_pointcloud(pointcloud);

  Map<AttributeIDRef, AttributeKind> attributes;
  geometry_set.gather_attributes_for_propagation(
      {GEO_COMPONENT_TYPE_MESH}, GEO_COMPONENT_TYPE_POINT_CLOUD, false, attributes);

  /* Position is set separately. */
  attributes.remove("position");

  propagate_existing_attributes(mesh, attributes, *pointcloud, bary_coords, looptri_indices);

  compute_attribute_outputs(mesh, *pointcloud, bary_coords, looptri_indices, attribute_outputs);
}

static void node_geo_exec(GeoNodeExecParams params)
{
  GeometrySet geometry_set = params.extract_input<GeometrySet>("Mesh");

  const GeometryNodeDistributePointsOnFacesMode method = GeometryNodeDistributePointsOnFacesMode(
      params.node().custom1);

  const int seed = params.get_input<int>("Seed") * 5383843;
  const Field<bool> selection_field = params.extract_input<Field<bool>>("Selection");

  AttributeOutputs attribute_outputs;
  if (params.output_is_required("Normal")) {
    attribute_outputs.normal_id = StrongAnonymousAttributeID("Normal");
  }
  if (params.output_is_required("Rotation")) {
    attribute_outputs.rotation_id = StrongAnonymousAttributeID("Rotation");
  }

  lazy_threading::send_hint();

  geometry_set.modify_geometry_sets([&](GeometrySet &geometry_set) {
    point_distribution_calculate(
        geometry_set, selection_field, method, seed, attribute_outputs, params);
    /* Keep instances because the original geometry set may contain instances that are processed as
     * well. */
    geometry_set.keep_only_during_modify({GEO_COMPONENT_TYPE_POINT_CLOUD});
  });

  params.set_output("Points", std::move(geometry_set));

  if (attribute_outputs.normal_id) {
    params.set_output(
        "Normal",
        AnonymousAttributeFieldInput::Create<float3>(std::move(attribute_outputs.normal_id),
                                                     params.attribute_producer_name()));
  }
  if (attribute_outputs.rotation_id) {
    params.set_output(
        "Rotation",
        AnonymousAttributeFieldInput::Create<float3>(std::move(attribute_outputs.rotation_id),
                                                     params.attribute_producer_name()));
  }
}

}  // namespace blender::nodes::node_geo_distribute_points_on_faces_cc

void register_node_type_geo_distribute_points_on_faces()
{
  namespace file_ns = blender::nodes::node_geo_distribute_points_on_faces_cc;

  static bNodeType ntype;

  geo_node_type_base(&ntype,
                     GEO_NODE_DISTRIBUTE_POINTS_ON_FACES,
                     "Distribute Points on Faces",
                     NODE_CLASS_GEOMETRY);
  node_type_update(&ntype, file_ns::node_point_distribute_points_on_faces_update);
  node_type_size(&ntype, 170, 100, 320);
  ntype.declare = file_ns::node_declare;
  ntype.geometry_node_execute = file_ns::node_geo_exec;
  ntype.draw_buttons = file_ns::node_layout;
  nodeRegisterType(&ntype);
}