Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_mesh_primitive_grid.cc « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2b7ea3106ea43e464ce39e65bb4cc2cf0aa77264 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include "BLI_task.hh"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"

#include "BKE_material.h"
#include "BKE_mesh.h"

#include "UI_interface.h"
#include "UI_resources.h"

#include "node_geometry_util.hh"

namespace blender::nodes {

static void calculate_uvs(
    Mesh *mesh, Span<float3> positions, Span<MLoop> loops, const float size_x, const float size_y)
{
  MutableAttributeAccessor attributes = mesh->attributes_for_write();

  SpanAttributeWriter<float2> uv_attribute = attributes.lookup_or_add_for_write_only_span<float2>(
      "uv_map", ATTR_DOMAIN_CORNER);

  const float dx = (size_x == 0.0f) ? 0.0f : 1.0f / size_x;
  const float dy = (size_y == 0.0f) ? 0.0f : 1.0f / size_y;
  threading::parallel_for(loops.index_range(), 1024, [&](IndexRange range) {
    for (const int i : range) {
      const float3 &co = positions[loops[i].v];
      uv_attribute.span[i].x = (co.x + size_x * 0.5f) * dx;
      uv_attribute.span[i].y = (co.y + size_y * 0.5f) * dy;
    }
  });

  uv_attribute.finish();
}

Mesh *create_grid_mesh(const int verts_x,
                       const int verts_y,
                       const float size_x,
                       const float size_y)
{
  BLI_assert(verts_x > 0 && verts_y > 0);
  const int edges_x = verts_x - 1;
  const int edges_y = verts_y - 1;
  Mesh *mesh = BKE_mesh_new_nomain(verts_x * verts_y,
                                   edges_x * verts_y + edges_y * verts_x,
                                   0,
                                   edges_x * edges_y * 4,
                                   edges_x * edges_y);
  MutableSpan<float3> positions = mesh->positions_for_write();
  MutableSpan<MEdge> edges = mesh->edges_for_write();
  MutableSpan<MPoly> polys = mesh->polys_for_write();
  MutableSpan<MLoop> loops = mesh->loops_for_write();

  {
    const float dx = edges_x == 0 ? 0.0f : size_x / edges_x;
    const float dy = edges_y == 0 ? 0.0f : size_y / edges_y;
    const float x_shift = edges_x / 2.0f;
    const float y_shift = edges_y / 2.0f;
    threading::parallel_for(IndexRange(verts_x), 512, [&](IndexRange x_range) {
      for (const int x : x_range) {
        const int y_offset = x * verts_y;
        threading::parallel_for(IndexRange(verts_y), 512, [&](IndexRange y_range) {
          for (const int y : y_range) {
            const int vert_index = y_offset + y;
            positions[vert_index].x = (x - x_shift) * dx;
            positions[vert_index].y = (y - y_shift) * dy;
            positions[vert_index].z = 0.0f;
          }
        });
      }
    });
  }

  const int y_edges_start = 0;
  const int x_edges_start = verts_x * edges_y;
  const short edge_flag = (edges_x == 0 || edges_y == 0) ? ME_LOOSEEDGE :
                                                           ME_EDGEDRAW | ME_EDGERENDER;

  /* Build the horizontal edges in the X direction. */
  threading::parallel_for(IndexRange(verts_x), 512, [&](IndexRange x_range) {
    for (const int x : x_range) {
      const int y_vert_offset = x * verts_y;
      const int y_edge_offset = y_edges_start + x * edges_y;
      threading::parallel_for(IndexRange(edges_y), 512, [&](IndexRange y_range) {
        for (const int y : y_range) {
          const int vert_index = y_vert_offset + y;
          MEdge &edge = edges[y_edge_offset + y];
          edge.v1 = vert_index;
          edge.v2 = vert_index + 1;
          edge.flag = edge_flag;
        }
      });
    }
  });

  /* Build the vertical edges in the Y direction. */
  threading::parallel_for(IndexRange(verts_y), 512, [&](IndexRange y_range) {
    for (const int y : y_range) {
      const int x_edge_offset = x_edges_start + y * edges_x;
      threading::parallel_for(IndexRange(edges_x), 512, [&](IndexRange x_range) {
        for (const int x : x_range) {
          const int vert_index = x * verts_y + y;
          MEdge &edge = edges[x_edge_offset + x];
          edge.v1 = vert_index;
          edge.v2 = vert_index + verts_y;
          edge.flag = edge_flag;
        }
      });
    }
  });

  threading::parallel_for(IndexRange(edges_x), 512, [&](IndexRange x_range) {
    for (const int x : x_range) {
      const int y_offset = x * edges_y;
      threading::parallel_for(IndexRange(edges_y), 512, [&](IndexRange y_range) {
        for (const int y : y_range) {
          const int poly_index = y_offset + y;
          const int loop_index = poly_index * 4;
          MPoly &poly = polys[poly_index];
          poly.loopstart = loop_index;
          poly.totloop = 4;
          const int vert_index = x * verts_y + y;

          MLoop &loop_a = loops[loop_index];
          loop_a.v = vert_index;
          loop_a.e = x_edges_start + edges_x * y + x;
          MLoop &loop_b = loops[loop_index + 1];
          loop_b.v = vert_index + verts_y;
          loop_b.e = y_edges_start + edges_y * (x + 1) + y;
          MLoop &loop_c = loops[loop_index + 2];
          loop_c.v = vert_index + verts_y + 1;
          loop_c.e = x_edges_start + edges_x * (y + 1) + x;
          MLoop &loop_d = loops[loop_index + 3];
          loop_d.v = vert_index + 1;
          loop_d.e = y_edges_start + edges_y * x + y;
        }
      });
    }
  });

  if (mesh->totpoly != 0) {
    calculate_uvs(mesh, positions, loops, size_x, size_y);
  }

  return mesh;
}

}  // namespace blender::nodes

namespace blender::nodes::node_geo_mesh_primitive_grid_cc {

static void node_declare(NodeDeclarationBuilder &b)
{
  b.add_input<decl::Float>(N_("Size X"))
      .default_value(1.0f)
      .min(0.0f)
      .subtype(PROP_DISTANCE)
      .description(N_("Side length of the plane in the X direction"));
  b.add_input<decl::Float>(N_("Size Y"))
      .default_value(1.0f)
      .min(0.0f)
      .subtype(PROP_DISTANCE)
      .description(N_("Side length of the plane in the Y direction"));
  b.add_input<decl::Int>(N_("Vertices X"))
      .default_value(3)
      .min(2)
      .max(1000)
      .description(N_("Number of vertices in the X direction"));
  b.add_input<decl::Int>(N_("Vertices Y"))
      .default_value(3)
      .min(2)
      .max(1000)
      .description(N_("Number of vertices in the Y direction"));
  b.add_output<decl::Geometry>(N_("Mesh"));
}

static void node_geo_exec(GeoNodeExecParams params)
{
  const float size_x = params.extract_input<float>("Size X");
  const float size_y = params.extract_input<float>("Size Y");
  const int verts_x = params.extract_input<int>("Vertices X");
  const int verts_y = params.extract_input<int>("Vertices Y");
  if (verts_x < 1 || verts_y < 1) {
    params.set_default_remaining_outputs();
    return;
  }

  Mesh *mesh = create_grid_mesh(verts_x, verts_y, size_x, size_y);
  BKE_id_material_eval_ensure_default_slot(&mesh->id);

  params.set_output("Mesh", GeometrySet::create_with_mesh(mesh));
}

}  // namespace blender::nodes::node_geo_mesh_primitive_grid_cc

void register_node_type_geo_mesh_primitive_grid()
{
  namespace file_ns = blender::nodes::node_geo_mesh_primitive_grid_cc;

  static bNodeType ntype;

  geo_node_type_base(&ntype, GEO_NODE_MESH_PRIMITIVE_GRID, "Grid", NODE_CLASS_GEOMETRY);
  ntype.declare = file_ns::node_declare;
  ntype.geometry_node_execute = file_ns::node_geo_exec;
  nodeRegisterType(&ntype);
}