Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_mesh_primitive_uv_sphere.cc « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6db4c82d5cf86f784562b5ded357cd3afb3fb945 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include "BLI_task.hh"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"

#include "BKE_material.h"
#include "BKE_mesh.h"

#include "UI_interface.h"
#include "UI_resources.h"

#include "node_geometry_util.hh"

namespace blender::nodes::node_geo_mesh_primitive_uv_sphere_cc {

static void node_declare(NodeDeclarationBuilder &b)
{
  b.add_input<decl::Int>(N_("Segments"))
      .default_value(32)
      .min(3)
      .max(1024)
      .description(N_("Horizontal resolution of the sphere"));
  b.add_input<decl::Int>(N_("Rings"))
      .default_value(16)
      .min(2)
      .max(1024)
      .description(N_("The number of horizontal rings"));
  b.add_input<decl::Float>(N_("Radius"))
      .default_value(1.0f)
      .min(0.0f)
      .subtype(PROP_DISTANCE)
      .description(N_("Distance from the generated points to the origin"));
  b.add_output<decl::Geometry>(N_("Mesh"));
}

static int sphere_vert_total(const int segments, const int rings)
{
  return segments * (rings - 1) + 2;
}

static int sphere_edge_total(const int segments, const int rings)
{
  return segments * (rings * 2 - 1);
}

static int sphere_corner_total(const int segments, const int rings)
{
  const int quad_corners = 4 * segments * (rings - 2);
  const int tri_corners = 3 * segments * 2;
  return quad_corners + tri_corners;
}

static int sphere_face_total(const int segments, const int rings)
{
  const int quads = segments * (rings - 2);
  const int triangles = segments * 2;
  return quads + triangles;
}

/**
 * Also calculate vertex normals here, since the calculation is trivial, and it allows avoiding the
 * calculation later, if it's necessary. The vertex normals are just the normalized positions.
 */
BLI_NOINLINE static void calculate_sphere_vertex_data(MutableSpan<float3> positions,
                                                      MutableSpan<float3> vert_normals,
                                                      const float radius,
                                                      const int segments,
                                                      const int rings)
{
  const float delta_theta = M_PI / rings;
  const float delta_phi = (2.0f * M_PI) / segments;

  Array<float, 64> segment_cosines(segments + 1);
  for (const int segment : IndexRange(1, segments)) {
    const float phi = segment * delta_phi;
    segment_cosines[segment] = std::cos(phi);
  }
  Array<float, 64> segment_sines(segments + 1);
  for (const int segment : IndexRange(1, segments)) {
    const float phi = segment * delta_phi;
    segment_sines[segment] = std::sin(phi);
  }

  positions[0] = float3(0.0f, 0.0f, radius);
  vert_normals.first() = float3(0.0f, 0.0f, 1.0f);

  int vert_index = 1;
  for (const int ring : IndexRange(1, rings - 1)) {
    const float theta = ring * delta_theta;
    const float sin_theta = std::sin(theta);
    const float z = std::cos(theta);
    for (const int segment : IndexRange(1, segments)) {
      const float x = sin_theta * segment_cosines[segment];
      const float y = sin_theta * segment_sines[segment];
      positions[vert_index] = float3(x, y, z) * radius;
      vert_normals[vert_index] = float3(x, y, z);
      vert_index++;
    }
  }

  positions.last() = float3(0.0f, 0.0f, -radius);
  vert_normals.last() = float3(0.0f, 0.0f, -1.0f);
}

BLI_NOINLINE static void calculate_sphere_edge_indices(MutableSpan<MEdge> edges,
                                                       const int segments,
                                                       const int rings)
{
  int edge_index = 0;

  /* Add the edges connecting the top vertex to the first ring. */
  const int first_vert_ring_index_start = 1;
  for (const int segment : IndexRange(segments)) {
    MEdge &edge = edges[edge_index++];
    edge.v1 = 0;
    edge.v2 = first_vert_ring_index_start + segment;
    edge.flag = ME_EDGEDRAW | ME_EDGERENDER;
  }

  int ring_vert_index_start = 1;
  for (const int ring : IndexRange(rings - 1)) {
    const int next_ring_vert_index_start = ring_vert_index_start + segments;

    /* Add the edges running along each ring. */
    for (const int segment : IndexRange(segments)) {
      MEdge &edge = edges[edge_index++];
      edge.v1 = ring_vert_index_start + segment;
      edge.v2 = ring_vert_index_start + ((segment + 1) % segments);
      edge.flag = ME_EDGEDRAW | ME_EDGERENDER;
    }

    /* Add the edges connecting to the next ring. */
    if (ring < rings - 2) {
      for (const int segment : IndexRange(segments)) {
        MEdge &edge = edges[edge_index++];
        edge.v1 = ring_vert_index_start + segment;
        edge.v2 = next_ring_vert_index_start + segment;
        edge.flag = ME_EDGEDRAW | ME_EDGERENDER;
      }
    }
    ring_vert_index_start += segments;
  }

  /* Add the edges connecting the last ring to the bottom vertex. */
  const int last_vert_index = sphere_vert_total(segments, rings) - 1;
  const int last_vert_ring_start = last_vert_index - segments;
  for (const int segment : IndexRange(segments)) {
    MEdge &edge = edges[edge_index++];
    edge.v1 = last_vert_index;
    edge.v2 = last_vert_ring_start + segment;
    edge.flag = ME_EDGEDRAW | ME_EDGERENDER;
  }
}

BLI_NOINLINE static void calculate_sphere_faces(MutableSpan<MPoly> polys, const int segments)
{
  int loop_index = 0;

  /* Add the triangles connected to the top vertex. */
  for (MPoly &poly : polys.take_front(segments)) {
    poly.loopstart = loop_index;
    poly.totloop = 3;
    loop_index += 3;
  }

  /* Add the middle quads. */
  for (MPoly &poly : polys.drop_front(segments).drop_back(segments)) {
    poly.loopstart = loop_index;
    poly.totloop = 4;
    loop_index += 4;
  }

  /* Add the triangles connected to the bottom vertex. */
  for (MPoly &poly : polys.take_back(segments)) {
    poly.loopstart = loop_index;
    poly.totloop = 3;
    loop_index += 3;
  }
}

BLI_NOINLINE static void calculate_sphere_corners(MutableSpan<MLoop> loops,
                                                  const int segments,
                                                  const int rings)
{
  int loop_index = 0;
  auto segment_next_or_first = [&](const int segment) {
    return segment == segments - 1 ? 0 : segment + 1;
  };

  /* Add the triangles connected to the top vertex. */
  const int first_vert_ring_index_start = 1;
  for (const int segment : IndexRange(segments)) {
    const int segment_next = segment_next_or_first(segment);

    MLoop &loop_a = loops[loop_index++];
    loop_a.v = 0;
    loop_a.e = segment;
    MLoop &loop_b = loops[loop_index++];
    loop_b.v = first_vert_ring_index_start + segment;
    loop_b.e = segments + segment;
    MLoop &loop_c = loops[loop_index++];
    loop_c.v = first_vert_ring_index_start + segment_next;
    loop_c.e = segment_next;
  }

  int ring_vert_index_start = 1;
  int ring_edge_index_start = segments;
  for ([[maybe_unused]] const int ring : IndexRange(1, rings - 2)) {
    const int next_ring_vert_index_start = ring_vert_index_start + segments;
    const int next_ring_edge_index_start = ring_edge_index_start + segments * 2;
    const int ring_vertical_edge_index_start = ring_edge_index_start + segments;

    for (const int segment : IndexRange(segments)) {
      const int segment_next = segment_next_or_first(segment);

      MLoop &loop_a = loops[loop_index++];
      loop_a.v = ring_vert_index_start + segment;
      loop_a.e = ring_vertical_edge_index_start + segment;
      MLoop &loop_b = loops[loop_index++];
      loop_b.v = next_ring_vert_index_start + segment;
      loop_b.e = next_ring_edge_index_start + segment;
      MLoop &loop_c = loops[loop_index++];
      loop_c.v = next_ring_vert_index_start + segment_next;
      loop_c.e = ring_vertical_edge_index_start + segment_next;
      MLoop &loop_d = loops[loop_index++];
      loop_d.v = ring_vert_index_start + segment_next;
      loop_d.e = ring_edge_index_start + segment;
    }
    ring_vert_index_start += segments;
    ring_edge_index_start += segments * 2;
  }

  /* Add the triangles connected to the bottom vertex. */
  const int last_edge_ring_start = segments * (rings - 2) * 2 + segments;
  const int bottom_edge_fan_start = last_edge_ring_start + segments;
  const int last_vert_index = sphere_vert_total(segments, rings) - 1;
  const int last_vert_ring_start = last_vert_index - segments;
  for (const int segment : IndexRange(segments)) {
    const int segment_next = segment_next_or_first(segment);

    MLoop &loop_a = loops[loop_index++];
    loop_a.v = last_vert_index;
    loop_a.e = bottom_edge_fan_start + segment_next;
    MLoop &loop_b = loops[loop_index++];
    loop_b.v = last_vert_ring_start + segment_next;
    loop_b.e = last_edge_ring_start + segment;
    MLoop &loop_c = loops[loop_index++];
    loop_c.v = last_vert_ring_start + segment;
    loop_c.e = bottom_edge_fan_start + segment;
  }
}

BLI_NOINLINE static void calculate_sphere_uvs(Mesh *mesh, const float segments, const float rings)
{
  MutableAttributeAccessor attributes = mesh->attributes_for_write();

  SpanAttributeWriter<float2> uv_attribute = attributes.lookup_or_add_for_write_only_span<float2>(
      "uv_map", ATTR_DOMAIN_CORNER);
  MutableSpan<float2> uvs = uv_attribute.span;

  int loop_index = 0;
  const float dy = 1.0f / rings;

  const float segments_inv = 1.0f / segments;

  for (const int i_segment : IndexRange(segments)) {
    const float segment = float(i_segment);
    uvs[loop_index++] = float2((segment + 0.5f) * segments_inv, 0.0f);
    uvs[loop_index++] = float2(segment * segments_inv, dy);
    uvs[loop_index++] = float2((segment + 1.0f) * segments_inv, dy);
  }

  for (const int i_ring : IndexRange(1, rings - 2)) {
    const float ring = float(i_ring);
    for (const int i_segment : IndexRange(segments)) {
      const float segment = float(i_segment);
      uvs[loop_index++] = float2(segment * segments_inv, ring / rings);
      uvs[loop_index++] = float2(segment * segments_inv, (ring + 1.0f) / rings);
      uvs[loop_index++] = float2((segment + 1.0f) * segments_inv, (ring + 1.0f) / rings);
      uvs[loop_index++] = float2((segment + 1.0f) * segments_inv, ring / rings);
    }
  }

  for (const int i_segment : IndexRange(segments)) {
    const float segment = float(i_segment);
    uvs[loop_index++] = float2((segment + 0.5f) * segments_inv, 1.0f);
    uvs[loop_index++] = float2((segment + 1.0f) * segments_inv, 1.0f - dy);
    uvs[loop_index++] = float2(segment * segments_inv, 1.0f - dy);
  }

  uv_attribute.finish();
}

static Mesh *create_uv_sphere_mesh(const float radius, const int segments, const int rings)
{
  Mesh *mesh = BKE_mesh_new_nomain(sphere_vert_total(segments, rings),
                                   sphere_edge_total(segments, rings),
                                   0,
                                   sphere_corner_total(segments, rings),
                                   sphere_face_total(segments, rings));
  BKE_id_material_eval_ensure_default_slot(&mesh->id);
  MutableSpan<float3> positions = mesh->positions_for_write();
  MutableSpan<MEdge> edges = mesh->edges_for_write();
  MutableSpan<MPoly> polys = mesh->polys_for_write();
  MutableSpan<MLoop> loops = mesh->loops_for_write();

  threading::parallel_invoke(
      1024 < segments * rings,
      [&]() {
        MutableSpan vert_normals{
            reinterpret_cast<float3 *>(BKE_mesh_vertex_normals_for_write(mesh)), mesh->totvert};
        calculate_sphere_vertex_data(positions, vert_normals, radius, segments, rings);
        BKE_mesh_vertex_normals_clear_dirty(mesh);
      },
      [&]() { calculate_sphere_edge_indices(edges, segments, rings); },
      [&]() { calculate_sphere_faces(polys, segments); },
      [&]() { calculate_sphere_corners(loops, segments, rings); },
      [&]() { calculate_sphere_uvs(mesh, segments, rings); });

  return mesh;
}

static void node_geo_exec(GeoNodeExecParams params)
{
  const int segments_num = params.extract_input<int>("Segments");
  const int rings_num = params.extract_input<int>("Rings");
  if (segments_num < 3 || rings_num < 2) {
    if (segments_num < 3) {
      params.error_message_add(NodeWarningType::Info, TIP_("Segments must be at least 3"));
    }
    if (rings_num < 3) {
      params.error_message_add(NodeWarningType::Info, TIP_("Rings must be at least 3"));
    }
    params.set_default_remaining_outputs();
    return;
  }

  const float radius = params.extract_input<float>("Radius");

  Mesh *mesh = create_uv_sphere_mesh(radius, segments_num, rings_num);
  params.set_output("Mesh", GeometrySet::create_with_mesh(mesh));
}

}  // namespace blender::nodes::node_geo_mesh_primitive_uv_sphere_cc

void register_node_type_geo_mesh_primitive_uv_sphere()
{
  namespace file_ns = blender::nodes::node_geo_mesh_primitive_uv_sphere_cc;

  static bNodeType ntype;

  geo_node_type_base(&ntype, GEO_NODE_MESH_PRIMITIVE_UV_SPHERE, "UV Sphere", NODE_CLASS_GEOMETRY);
  ntype.declare = file_ns::node_declare;
  ntype.geometry_node_execute = file_ns::node_geo_exec;
  nodeRegisterType(&ntype);
}