Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_point_distribute.cc « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 50c9246fc9bff78660933a0da964ce32878840e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include "BLI_float3.hh"
#include "BLI_hash.h"
#include "BLI_math_vector.h"
#include "BLI_rand.hh"
#include "BLI_span.hh"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_pointcloud_types.h"

#include "BKE_bvhutils.h"
#include "BKE_deform.h"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_pointcloud.h"

#include "node_geometry_util.hh"

static bNodeSocketTemplate geo_node_point_distribute_in[] = {
    {SOCK_GEOMETRY, N_("Geometry")},
    {SOCK_FLOAT, N_("Distance Min"), 0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 100000.0f, PROP_NONE},
    {SOCK_FLOAT, N_("Density Max"), 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 100000.0f, PROP_NONE},
    {SOCK_STRING, N_("Density Attribute")},
    {SOCK_INT, N_("Seed"), 0, 0, 0, 0, -10000, 10000},
    {-1, ""},
};

static bNodeSocketTemplate geo_node_point_distribute_out[] = {
    {SOCK_GEOMETRY, N_("Geometry")},
    {-1, ""},
};

static void node_point_distribute_update(bNodeTree *UNUSED(ntree), bNode *node)
{
  bNodeSocket *sock_min_dist = (bNodeSocket *)BLI_findlink(&node->inputs, 1);

  nodeSetSocketAvailability(sock_min_dist, ELEM(node->custom1, GEO_NODE_POINT_DISTRIBUTE_POISSON));
}

namespace blender::nodes {

static Vector<float3> random_scatter_points_from_mesh(const Mesh *mesh,
                                                      const float density,
                                                      const FloatReadAttribute &density_factors,
                                                      const int seed)
{
  /* This only updates a cache and can be considered to be logically const. */
  const MLoopTri *looptris = BKE_mesh_runtime_looptri_ensure(const_cast<Mesh *>(mesh));
  const int looptris_len = BKE_mesh_runtime_looptri_len(mesh);

  Vector<float3> points;

  for (const int looptri_index : IndexRange(looptris_len)) {
    const MLoopTri &looptri = looptris[looptri_index];
    const int v0_index = mesh->mloop[looptri.tri[0]].v;
    const int v1_index = mesh->mloop[looptri.tri[1]].v;
    const int v2_index = mesh->mloop[looptri.tri[2]].v;
    const float3 v0_pos = mesh->mvert[v0_index].co;
    const float3 v1_pos = mesh->mvert[v1_index].co;
    const float3 v2_pos = mesh->mvert[v2_index].co;
    const float v0_density_factor = std::max(0.0f, density_factors[v0_index]);
    const float v1_density_factor = std::max(0.0f, density_factors[v1_index]);
    const float v2_density_factor = std::max(0.0f, density_factors[v2_index]);
    const float looptri_density_factor = (v0_density_factor + v1_density_factor +
                                          v2_density_factor) /
                                         3.0f;
    const float area = area_tri_v3(v0_pos, v1_pos, v2_pos);

    const int looptri_seed = BLI_hash_int(looptri_index + seed);
    RandomNumberGenerator looptri_rng(looptri_seed);

    const float points_amount_fl = area * density * looptri_density_factor;
    const float add_point_probability = fractf(points_amount_fl);
    const bool add_point = add_point_probability > looptri_rng.get_float();
    const int point_amount = (int)points_amount_fl + (int)add_point;

    for (int i = 0; i < point_amount; i++) {
      const float3 bary_coords = looptri_rng.get_barycentric_coordinates();
      float3 point_pos;
      interp_v3_v3v3v3(point_pos, v0_pos, v1_pos, v2_pos, bary_coords);
      points.append(point_pos);
    }
  }

  return points;
}

struct RayCastAll_Data {
  void *bvhdata;

  BVHTree_RayCastCallback raycast_callback;

  const Mesh *mesh;
  float base_weight;
  FloatReadAttribute *density_factors;
  Vector<float3> *projected_points;
  float cur_point_weight;
};

static void project_2d_bvh_callback(void *userdata,
                                    int index,
                                    const BVHTreeRay *ray,
                                    BVHTreeRayHit *hit)
{
  struct RayCastAll_Data *data = (RayCastAll_Data *)userdata;
  data->raycast_callback(data->bvhdata, index, ray, hit);
  if (hit->index != -1) {
    /* This only updates a cache and can be considered to be logically const. */
    const MLoopTri *looptris = BKE_mesh_runtime_looptri_ensure(const_cast<Mesh *>(data->mesh));
    const MVert *mvert = data->mesh->mvert;

    const MLoopTri &looptri = looptris[index];
    const FloatReadAttribute &density_factors = data->density_factors[0];

    const int v0_index = data->mesh->mloop[looptri.tri[0]].v;
    const int v1_index = data->mesh->mloop[looptri.tri[1]].v;
    const int v2_index = data->mesh->mloop[looptri.tri[2]].v;

    const float v0_density_factor = std::max(0.0f, density_factors[v0_index]);
    const float v1_density_factor = std::max(0.0f, density_factors[v1_index]);
    const float v2_density_factor = std::max(0.0f, density_factors[v2_index]);

    /* Calculate barycentric weights for hit point. */
    float3 weights;
    interp_weights_tri_v3(
        weights, mvert[v0_index].co, mvert[v1_index].co, mvert[v2_index].co, hit->co);

    float point_weight = weights[0] * v0_density_factor + weights[1] * v1_density_factor +
                         weights[2] * v2_density_factor;

    point_weight *= data->base_weight;

    if (point_weight >= FLT_EPSILON && data->cur_point_weight <= point_weight) {
      data->projected_points->append(hit->co);
    }
  }
}

static Vector<float3> poisson_scatter_points_from_mesh(const Mesh *mesh,
                                                       const float density,
                                                       const float minimum_distance,
                                                       const FloatReadAttribute &density_factors,
                                                       const int seed)
{
  Vector<float3> points;

  if (minimum_distance <= FLT_EPSILON || density <= FLT_EPSILON) {
    return points;
  }

  /* Scatter points randomly on the mesh with higher density (5-7) times higher than desired for
   * good quality possion disk distributions. */
  int quality = 5;
  const int output_points_target = 1000;
  points.resize(output_points_target * quality);

  const float required_area = output_points_target *
                              (2.0f * sqrtf(3.0f) * minimum_distance * minimum_distance);
  const float point_scale_multiplier = sqrtf(required_area);

  {
    const int rnd_seed = BLI_hash_int(seed);
    RandomNumberGenerator point_rng(rnd_seed);

    for (int i = 0; i < points.size(); i++) {
      points[i].x = point_rng.get_float() * point_scale_multiplier;
      points[i].y = point_rng.get_float() * point_scale_multiplier;
      points[i].z = 0.0f;
    }
  }

  /* Eliminate the scattered points until we get a possion distribution. */
  Vector<float3> output_points(output_points_target);

  const float3 bounds_max = float3(point_scale_multiplier, point_scale_multiplier, 0);
  poisson_disk_point_elimination(&points, &output_points, 2.0f * minimum_distance, bounds_max);
  Vector<float3> final_points;
  final_points.reserve(output_points_target);

  /* Check if we have any points we should remove from the final possion distribition. */
  BVHTreeFromMesh treedata;
  BKE_bvhtree_from_mesh_get(&treedata, const_cast<Mesh *>(mesh), BVHTREE_FROM_LOOPTRI, 2);

  float3 bb_min, bb_max;
  BLI_bvhtree_get_bounding_box(treedata.tree, bb_min, bb_max);

  struct RayCastAll_Data data;
  data.bvhdata = &treedata;
  data.raycast_callback = treedata.raycast_callback;
  data.mesh = mesh;
  data.projected_points = &final_points;
  data.density_factors = const_cast<FloatReadAttribute *>(&density_factors);
  data.base_weight = std::min(
      1.0f, density / (output_points.size() / (point_scale_multiplier * point_scale_multiplier)));

  const float max_dist = bb_max[2] - bb_min[2] + 2.0f;
  const float3 dir = float3(0, 0, -1);
  float3 raystart;
  raystart.z = bb_max[2] + 1.0f;

  float tile_start_x_coord = bb_min[0];
  int tile_repeat_x = ceilf((bb_max[0] - bb_min[0]) / point_scale_multiplier);

  float tile_start_y_coord = bb_min[1];
  int tile_repeat_y = ceilf((bb_max[1] - bb_min[1]) / point_scale_multiplier);

  for (int x = 0; x < tile_repeat_x; x++) {
    float tile_curr_x_coord = x * point_scale_multiplier + tile_start_x_coord;
    for (int y = 0; y < tile_repeat_y; y++) {
      float tile_curr_y_coord = y * point_scale_multiplier + tile_start_y_coord;
      for (int idx = 0; idx < output_points.size(); idx++) {
        raystart.x = output_points[idx].x + tile_curr_x_coord;
        raystart.y = output_points[idx].y + tile_curr_y_coord;

        data.cur_point_weight = (float)idx / (float)output_points.size();

        BLI_bvhtree_ray_cast_all(
            treedata.tree, raystart, dir, 0.0f, max_dist, project_2d_bvh_callback, &data);
      }
    }
  }

  return final_points;
}

static void geo_node_point_distribute_exec(GeoNodeExecParams params)
{
  GeometrySet geometry_set = params.extract_input<GeometrySet>("Geometry");
  GeometrySet geometry_set_out;

  GeometryNodePointDistributeMethod distribute_method =
      static_cast<GeometryNodePointDistributeMethod>(params.node().custom1);

  if (!geometry_set.has_mesh()) {
    params.set_output("Geometry", std::move(geometry_set_out));
    return;
  }

  const float density = params.extract_input<float>("Density Max");
  const std::string density_attribute = params.extract_input<std::string>("Density Attribute");

  if (density <= 0.0f) {
    params.set_output("Geometry", std::move(geometry_set_out));
    return;
  }

  const MeshComponent &mesh_component = *geometry_set.get_component_for_read<MeshComponent>();
  const Mesh *mesh_in = mesh_component.get_for_read();

  const FloatReadAttribute density_factors = mesh_component.attribute_get_for_read<float>(
      density_attribute, ATTR_DOMAIN_POINT, 1.0f);
  const int seed = params.get_input<int>("Seed");

  Vector<float3> points;

  switch (distribute_method) {
    case GEO_NODE_POINT_DISTRIBUTE_RANDOM:
      points = random_scatter_points_from_mesh(mesh_in, density, density_factors, seed);
      break;
    case GEO_NODE_POINT_DISTRIBUTE_POISSON:
      const float min_dist = params.extract_input<float>("Distance Min");
      points = poisson_scatter_points_from_mesh(mesh_in, density, min_dist, density_factors, seed);
      break;
  }

  PointCloud *pointcloud = BKE_pointcloud_new_nomain(points.size());
  memcpy(pointcloud->co, points.data(), sizeof(float3) * points.size());
  for (const int i : points.index_range()) {
    *(float3 *)(pointcloud->co + i) = points[i];
    pointcloud->radius[i] = 0.05f;
  }

  geometry_set_out.replace_pointcloud(pointcloud);
  params.set_output("Geometry", std::move(geometry_set_out));
}
}  // namespace blender::nodes

void register_node_type_geo_point_distribute()
{
  static bNodeType ntype;

  geo_node_type_base(
      &ntype, GEO_NODE_POINT_DISTRIBUTE, "Point Distribute", NODE_CLASS_GEOMETRY, 0);
  node_type_socket_templates(&ntype, geo_node_point_distribute_in, geo_node_point_distribute_out);
  node_type_update(&ntype, node_point_distribute_update);
  ntype.geometry_node_execute = blender::nodes::geo_node_point_distribute_exec;
  nodeRegisterType(&ntype);
}