Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_point_distribute.cc « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 1370f45877d6305d24a5b083bc0c00617c59a77b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include "BLI_float3.hh"
#include "BLI_hash.h"
#include "BLI_kdtree.h"
#include "BLI_math_vector.h"
#include "BLI_rand.hh"
#include "BLI_span.hh"
#include "BLI_timeit.hh"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_pointcloud_types.h"

#include "BKE_bvhutils.h"
#include "BKE_deform.h"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_pointcloud.h"

#include "node_geometry_util.hh"

static bNodeSocketTemplate geo_node_point_distribute_in[] = {
    {SOCK_GEOMETRY, N_("Geometry")},
    {SOCK_FLOAT, N_("Distance Min"), 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 100000.0f, PROP_NONE},
    {SOCK_FLOAT, N_("Density Max"), 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 100000.0f, PROP_NONE},
    {SOCK_STRING, N_("Density Attribute")},
    {SOCK_INT, N_("Seed"), 0, 0, 0, 0, -10000, 10000},
    {-1, ""},
};

static bNodeSocketTemplate geo_node_point_distribute_out[] = {
    {SOCK_GEOMETRY, N_("Geometry")},
    {-1, ""},
};

static void node_point_distribute_update(bNodeTree *UNUSED(ntree), bNode *node)
{
  bNodeSocket *sock_min_dist = (bNodeSocket *)BLI_findlink(&node->inputs, 1);

  nodeSetSocketAvailability(sock_min_dist, ELEM(node->custom1, GEO_NODE_POINT_DISTRIBUTE_POISSON));
}

namespace blender::nodes {

/**
 * Use an arbitrary choice of axes for a usable rotation attribute directly out of this node.
 */
static float3 normal_to_euler_rotation(const float3 normal)
{
  float quat[4];
  vec_to_quat(quat, normal, OB_NEGZ, OB_POSY);
  float3 rotation;
  quat_to_eul(rotation, quat);
  return rotation;
}

static Span<MLoopTri> get_mesh_looptris(const Mesh &mesh)
{
  /* This only updates a cache and can be considered to be logically const. */
  const MLoopTri *looptris = BKE_mesh_runtime_looptri_ensure(const_cast<Mesh *>(&mesh));
  const int looptris_len = BKE_mesh_runtime_looptri_len(&mesh);
  return {looptris, looptris_len};
}

static void sample_mesh_surface(const Mesh &mesh,
                                const float base_density,
                                const FloatReadAttribute *density_factors,
                                const int seed,
                                Vector<float3> &r_positions,
                                Vector<float3> &r_bary_coords,
                                Vector<int> &r_looptri_indices)
{
  Span<MLoopTri> looptris = get_mesh_looptris(mesh);

  for (const int looptri_index : looptris.index_range()) {
    const MLoopTri &looptri = looptris[looptri_index];
    const int v0_index = mesh.mloop[looptri.tri[0]].v;
    const int v1_index = mesh.mloop[looptri.tri[1]].v;
    const int v2_index = mesh.mloop[looptri.tri[2]].v;
    const float3 v0_pos = mesh.mvert[v0_index].co;
    const float3 v1_pos = mesh.mvert[v1_index].co;
    const float3 v2_pos = mesh.mvert[v2_index].co;

    float looptri_density_factor = 1.0f;
    if (density_factors != nullptr) {
      const float v0_density_factor = std::max(0.0f, (*density_factors)[v0_index]);
      const float v1_density_factor = std::max(0.0f, (*density_factors)[v1_index]);
      const float v2_density_factor = std::max(0.0f, (*density_factors)[v2_index]);
      looptri_density_factor = (v0_density_factor + v1_density_factor + v2_density_factor) / 3.0f;
    }
    const float area = area_tri_v3(v0_pos, v1_pos, v2_pos);

    const int looptri_seed = BLI_hash_int(looptri_index + seed);
    RandomNumberGenerator looptri_rng(looptri_seed);

    const float points_amount_fl = area * base_density * looptri_density_factor;
    const float add_point_probability = fractf(points_amount_fl);
    const bool add_point = add_point_probability > looptri_rng.get_float();
    const int point_amount = (int)points_amount_fl + (int)add_point;

    for (int i = 0; i < point_amount; i++) {
      const float3 bary_coord = looptri_rng.get_barycentric_coordinates();
      float3 point_pos;
      interp_v3_v3v3v3(point_pos, v0_pos, v1_pos, v2_pos, bary_coord);
      r_positions.append(point_pos);
      r_bary_coords.append(bary_coord);
      r_looptri_indices.append(looptri_index);
    }
  }
}

BLI_NOINLINE static KDTree_3d *build_kdtree(Span<float3> positions)
{
  KDTree_3d *kdtree = BLI_kdtree_3d_new(positions.size());
  for (const int i : positions.index_range()) {
    BLI_kdtree_3d_insert(kdtree, i, positions[i]);
  }
  BLI_kdtree_3d_balance(kdtree);
  return kdtree;
}

BLI_NOINLINE static void update_elimination_mask_for_close_points(
    Span<float3> positions, const float minimum_distance, MutableSpan<bool> elimination_mask)
{
  if (minimum_distance <= 0.0f) {
    return;
  }

  KDTree_3d *kdtree = build_kdtree(positions);

  for (const int i : positions.index_range()) {
    if (elimination_mask[i]) {
      continue;
    }

    struct CallbackData {
      int index;
      MutableSpan<bool> elimination_mask;
    } callback_data = {i, elimination_mask};

    BLI_kdtree_3d_range_search_cb(
        kdtree,
        positions[i],
        minimum_distance,
        [](void *user_data, int index, const float *UNUSED(co), float UNUSED(dist_sq)) {
          CallbackData &callback_data = *static_cast<CallbackData *>(user_data);
          if (index != callback_data.index) {
            callback_data.elimination_mask[index] = true;
          }
          return true;
        },
        &callback_data);
  }
  BLI_kdtree_3d_free(kdtree);
}

BLI_NOINLINE static void update_elimination_mask_based_on_density_factors(
    const Mesh &mesh,
    const FloatReadAttribute &density_factors,
    Span<float3> bary_coords,
    Span<int> looptri_indices,
    MutableSpan<bool> elimination_mask)
{
  Span<MLoopTri> looptris = get_mesh_looptris(mesh);
  for (const int i : bary_coords.index_range()) {
    if (elimination_mask[i]) {
      continue;
    }

    const MLoopTri &looptri = looptris[looptri_indices[i]];
    const float3 bary_coord = bary_coords[i];

    const int v0_index = mesh.mloop[looptri.tri[0]].v;
    const int v1_index = mesh.mloop[looptri.tri[1]].v;
    const int v2_index = mesh.mloop[looptri.tri[2]].v;

    const float v0_density_factor = std::max(0.0f, density_factors[v0_index]);
    const float v1_density_factor = std::max(0.0f, density_factors[v1_index]);
    const float v2_density_factor = std::max(0.0f, density_factors[v2_index]);

    const float probablity = v0_density_factor * bary_coord.x + v1_density_factor * bary_coord.y +
                             v2_density_factor * bary_coord.z;

    const float hash = BLI_hash_int_01(bary_coord.hash());
    if (hash > probablity) {
      elimination_mask[i] = true;
    }
  }
}

BLI_NOINLINE static void eliminate_points_based_on_mask(Span<bool> elimination_mask,
                                                        Vector<float3> &positions,
                                                        Vector<float3> &bary_coords,
                                                        Vector<int> &looptri_indices)
{
  for (int i = positions.size() - 1; i >= 0; i--) {
    if (elimination_mask[i]) {
      positions.remove_and_reorder(i);
      bary_coords.remove_and_reorder(i);
      looptri_indices.remove_and_reorder(i);
    }
  }
}

BLI_NOINLINE static void compute_remaining_point_data(const Mesh &mesh,
                                                      Span<float3> bary_coords,
                                                      Span<int> looptri_indices,
                                                      MutableSpan<float3> r_normals,
                                                      MutableSpan<int> r_ids,
                                                      MutableSpan<float3> r_rotations)
{
  Span<MLoopTri> looptris = get_mesh_looptris(mesh);
  for (const int i : bary_coords.index_range()) {
    const int looptri_index = looptri_indices[i];
    const MLoopTri &looptri = looptris[looptri_index];
    const float3 &bary_coord = bary_coords[i];

    const int v0_index = mesh.mloop[looptri.tri[0]].v;
    const int v1_index = mesh.mloop[looptri.tri[1]].v;
    const int v2_index = mesh.mloop[looptri.tri[2]].v;
    const float3 v0_pos = mesh.mvert[v0_index].co;
    const float3 v1_pos = mesh.mvert[v1_index].co;
    const float3 v2_pos = mesh.mvert[v2_index].co;

    r_ids[i] = (int)(bary_coord.hash()) + looptri_index;
    normal_tri_v3(r_normals[i], v0_pos, v1_pos, v2_pos);
    r_rotations[i] = normal_to_euler_rotation(r_normals[i]);
  }
}

static void sample_mesh_surface_with_minimum_distance(const Mesh &mesh,
                                                      const float max_density,
                                                      const float minimum_distance,
                                                      const FloatReadAttribute &density_factors,
                                                      const int seed,
                                                      Vector<float3> &r_positions,
                                                      Vector<float3> &r_bary_coords,
                                                      Vector<int> &r_looptri_indices)
{
  sample_mesh_surface(
      mesh, max_density, nullptr, seed, r_positions, r_bary_coords, r_looptri_indices);
  Array<bool> elimination_mask(r_positions.size(), false);
  update_elimination_mask_for_close_points(r_positions, minimum_distance, elimination_mask);
  update_elimination_mask_based_on_density_factors(
      mesh, density_factors, r_bary_coords, r_looptri_indices, elimination_mask);
  eliminate_points_based_on_mask(elimination_mask, r_positions, r_bary_coords, r_looptri_indices);
}

static void geo_node_point_distribute_exec(GeoNodeExecParams params)
{
  GeometrySet geometry_set = params.extract_input<GeometrySet>("Geometry");
  GeometrySet geometry_set_out;

  GeometryNodePointDistributeMethod distribute_method =
      static_cast<GeometryNodePointDistributeMethod>(params.node().custom1);

  if (!geometry_set.has_mesh()) {
    params.set_output("Geometry", std::move(geometry_set_out));
    return;
  }

  const float density = params.extract_input<float>("Density Max");
  const std::string density_attribute = params.extract_input<std::string>("Density Attribute");

  if (density <= 0.0f) {
    params.set_output("Geometry", std::move(geometry_set_out));
    return;
  }

  const MeshComponent &mesh_component = *geometry_set.get_component_for_read<MeshComponent>();
  const Mesh *mesh_in = mesh_component.get_for_read();

  if (mesh_in == nullptr || mesh_in->mpoly == nullptr) {
    params.set_output("Geometry", std::move(geometry_set_out));
    return;
  }

  const FloatReadAttribute density_factors = mesh_component.attribute_get_for_read<float>(
      density_attribute, ATTR_DOMAIN_POINT, 1.0f);
  const int seed = params.get_input<int>("Seed");

  Vector<float3> positions;
  Vector<float3> bary_coords;
  Vector<int> looptri_indices;
  switch (distribute_method) {
    case GEO_NODE_POINT_DISTRIBUTE_RANDOM:
      sample_mesh_surface(
          *mesh_in, density, &density_factors, seed, positions, bary_coords, looptri_indices);
      break;
    case GEO_NODE_POINT_DISTRIBUTE_POISSON:
      const float minimum_distance = params.extract_input<float>("Distance Min");
      sample_mesh_surface_with_minimum_distance(*mesh_in,
                                                density,
                                                minimum_distance,
                                                density_factors,
                                                seed,
                                                positions,
                                                bary_coords,
                                                looptri_indices);
      break;
  }
  const int tot_points = positions.size();
  Array<float3> normals(tot_points);
  Array<int> stable_ids(tot_points);
  Array<float3> rotations(tot_points);
  compute_remaining_point_data(
      *mesh_in, bary_coords, looptri_indices, normals, stable_ids, rotations);

  PointCloud *pointcloud = BKE_pointcloud_new_nomain(tot_points);
  memcpy(pointcloud->co, positions.data(), sizeof(float3) * tot_points);
  for (const int i : positions.index_range()) {
    *(float3 *)(pointcloud->co + i) = positions[i];
    pointcloud->radius[i] = 0.05f;
  }

  PointCloudComponent &point_component =
      geometry_set_out.get_component_for_write<PointCloudComponent>();
  point_component.replace(pointcloud);

  {
    Int32WriteAttribute stable_id_attribute = point_component.attribute_try_ensure_for_write(
        "id", ATTR_DOMAIN_POINT, CD_PROP_INT32);
    MutableSpan<int> stable_ids_span = stable_id_attribute.get_span();
    stable_ids_span.copy_from(stable_ids);
    stable_id_attribute.apply_span();
  }

  {
    Float3WriteAttribute normals_attribute = point_component.attribute_try_ensure_for_write(
        "normal", ATTR_DOMAIN_POINT, CD_PROP_FLOAT3);
    MutableSpan<float3> normals_span = normals_attribute.get_span();
    normals_span.copy_from(normals);
    normals_attribute.apply_span();
  }

  {
    Float3WriteAttribute rotations_attribute = point_component.attribute_try_ensure_for_write(
        "rotation", ATTR_DOMAIN_POINT, CD_PROP_FLOAT3);
    MutableSpan<float3> rotations_span = rotations_attribute.get_span();
    rotations_span.copy_from(rotations);
    rotations_attribute.apply_span();
  }

  params.set_output("Geometry", std::move(geometry_set_out));
}
}  // namespace blender::nodes

void register_node_type_geo_point_distribute()
{
  static bNodeType ntype;

  geo_node_type_base(
      &ntype, GEO_NODE_POINT_DISTRIBUTE, "Point Distribute", NODE_CLASS_GEOMETRY, 0);
  node_type_socket_templates(&ntype, geo_node_point_distribute_in, geo_node_point_distribute_out);
  node_type_update(&ntype, node_point_distribute_update);
  ntype.geometry_node_execute = blender::nodes::geo_node_point_distribute_exec;
  nodeRegisterType(&ntype);
}