Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_geo_points_to_volume.cc « nodes « geometry « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b79ca0a61975bf1315af86147ac3caee8b110291 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#ifdef WITH_OPENVDB
#  include <openvdb/openvdb.h>
#  include <openvdb/tools/LevelSetUtil.h>
#  include <openvdb/tools/ParticlesToLevelSet.h>
#endif

#include "node_geometry_util.hh"

#include "BKE_lib_id.h"
#include "BKE_volume.h"

#include "UI_interface.h"
#include "UI_resources.h"

static bNodeSocketTemplate geo_node_points_to_volume_in[] = {
    {SOCK_GEOMETRY, N_("Geometry")},
    {SOCK_FLOAT, N_("Density"), 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, FLT_MAX},
    {SOCK_FLOAT, N_("Voxel Size"), 0.3f, 0.0f, 0.0f, 0.0f, 0.01f, FLT_MAX},
    {SOCK_FLOAT, N_("Voxel Amount"), 64.0f, 0.0f, 0.0f, 0.0f, 0.0f, FLT_MAX},
    {SOCK_STRING, N_("Radius")},
    {SOCK_FLOAT, N_("Radius"), 0.5f, 0.0f, 0.0f, 0.0f, 0.0f, FLT_MAX},
    {-1, ""},
};

static bNodeSocketTemplate geo_node_point_translate_out[] = {
    {SOCK_GEOMETRY, N_("Geometry")},
    {-1, ""},
};

static void geo_node_points_to_volume_layout(uiLayout *layout,
                                             bContext *UNUSED(C),
                                             PointerRNA *ptr)
{
  uiLayoutSetPropSep(layout, true);
  uiLayoutSetPropDecorate(layout, false);
  uiItemR(layout, ptr, "resolution_mode", 0, IFACE_("Resolution"), ICON_NONE);
  uiItemR(layout, ptr, "input_type_radius", 0, IFACE_("Radius"), ICON_NONE);
}

namespace blender::nodes {

#ifdef WITH_OPENVDB
namespace {
/* Implements the interface required by #openvdb::tools::ParticlesToLevelSet. */
struct ParticleList {
  using PosType = openvdb::Vec3R;

  Span<float3> positions;
  Span<float> radii;

  size_t size() const
  {
    return (size_t)positions.size();
  }

  void getPos(size_t n, openvdb::Vec3R &xyz) const
  {
    xyz = &positions[n].x;
  }

  void getPosRad(size_t n, openvdb::Vec3R &xyz, openvdb::Real &radius) const
  {
    xyz = &positions[n].x;
    radius = radii[n];
  }
};
}  // namespace

static openvdb::FloatGrid::Ptr generate_volume_from_points(const Span<float3> positions,
                                                           const Span<float> radii,
                                                           const float density)
{
  /* Create a new grid that will be filled. #ParticlesToLevelSet requires the background value to
   * be positive. It will be set to zero later on. */
  openvdb::FloatGrid::Ptr new_grid = openvdb::FloatGrid::create(1.0f);

  /* Create a narrow-band level set grid based on the positions and radii. */
  openvdb::tools::ParticlesToLevelSet op{*new_grid};
  /* Don't ignore particles based on their radius. */
  op.setRmin(0.0f);
  op.setRmax(FLT_MAX);
  ParticleList particles{positions, radii};
  op.rasterizeSpheres(particles);
  op.finalize();

  /* Convert the level set to a fog volume. This also sets the background value to zero. Inside the
   * fog there will be a density of 1. */
  openvdb::tools::sdfToFogVolume(*new_grid);

  /* Take the desired density into account. */
  openvdb::tools::foreach (new_grid->beginValueOn(),
                           [&](const openvdb::FloatGrid::ValueOnIter &iter) {
                             iter.modifyValue([&](float &value) { value *= density; });
                           });
  return new_grid;
}

static float compute_voxel_size(const GeoNodeExecParams &params,
                                Span<float3> positions,
                                const float radius)
{
  const NodeGeometryPointsToVolume &storage =
      *(const NodeGeometryPointsToVolume *)params.node().storage;

  if (storage.resolution_mode == GEO_NODE_POINTS_TO_VOLUME_RESOLUTION_MODE_SIZE) {
    return params.get_input<float>("Voxel Size");
  }

  if (positions.is_empty()) {
    return 0.0f;
  }

  float3 min, max;
  INIT_MINMAX(min, max);
  minmax_v3v3_v3_array(min, max, (float(*)[3])positions.data(), positions.size());

  const float voxel_amount = params.get_input<float>("Voxel Amount");
  if (voxel_amount <= 1) {
    return 0.0f;
  }

  /* The voxel size adapts to the final size of the volume. */
  const float diagonal = float3::distance(min, max);
  const float extended_diagonal = diagonal + 2.0f * radius;
  const float voxel_size = extended_diagonal / voxel_amount;
  return voxel_size;
}

static void gather_point_data_from_component(const GeoNodeExecParams &params,
                                             const GeometryComponent &component,
                                             Vector<float3> &r_positions,
                                             Vector<float> &r_radii)
{
  Float3ReadAttribute positions = component.attribute_get_for_read<float3>(
      "position", ATTR_DOMAIN_POINT, {0, 0, 0});
  FloatReadAttribute radii = params.get_input_attribute<float>(
      "Radius", component, ATTR_DOMAIN_POINT, 0.0f);

  r_positions.extend(positions.get_span());
  r_radii.extend(radii.get_span());
}

static void convert_to_grid_index_space(const float voxel_size,
                                        MutableSpan<float3> positions,
                                        MutableSpan<float> radii)
{
  const float voxel_size_inv = 1.0f / voxel_size;
  for (const int i : positions.index_range()) {
    positions[i] *= voxel_size_inv;
    /* Better align generated grid with source points. */
    positions[i] -= float3(0.5f);
    radii[i] *= voxel_size_inv;
  }
}

static void initialize_volume_component_from_points(const GeometrySet &geometry_set_in,
                                                    GeometrySet &geometry_set_out,
                                                    const GeoNodeExecParams &params)
{
  Vector<float3> positions;
  Vector<float> radii;

  if (geometry_set_in.has<MeshComponent>()) {
    gather_point_data_from_component(
        params, *geometry_set_in.get_component_for_read<MeshComponent>(), positions, radii);
  }
  if (geometry_set_in.has<PointCloudComponent>()) {
    gather_point_data_from_component(
        params, *geometry_set_in.get_component_for_read<PointCloudComponent>(), positions, radii);
  }

  const float max_radius = *std::max_element(radii.begin(), radii.end());
  const float voxel_size = compute_voxel_size(params, positions, max_radius);
  if (voxel_size == 0.0f || positions.is_empty()) {
    return;
  }

  Volume *volume = (Volume *)BKE_id_new_nomain(ID_VO, nullptr);
  BKE_volume_init_grids(volume);

  VolumeGrid *c_density_grid = BKE_volume_grid_add(volume, "density", VOLUME_GRID_FLOAT);
  openvdb::FloatGrid::Ptr density_grid = openvdb::gridPtrCast<openvdb::FloatGrid>(
      BKE_volume_grid_openvdb_for_write(volume, c_density_grid, false));

  const float density = params.get_input<float>("Density");
  convert_to_grid_index_space(voxel_size, positions, radii);
  openvdb::FloatGrid::Ptr new_grid = generate_volume_from_points(positions, radii, density);
  /* This merge is cheap, because the #density_grid is empty. */
  density_grid->merge(*new_grid);
  density_grid->transform().postScale(voxel_size);

  VolumeComponent &volume_component = geometry_set_out.get_component_for_write<VolumeComponent>();
  volume_component.replace(volume);
}
#endif

static void geo_node_points_to_volume_exec(GeoNodeExecParams params)
{
  GeometrySet geometry_set_in = params.extract_input<GeometrySet>("Geometry");
  GeometrySet geometry_set_out;

  /* TODO: Read-only access to instances should be supported here, for now they are made real. */
  geometry_set_in = geometry_set_realize_instances(geometry_set_in);

#ifdef WITH_OPENVDB
  initialize_volume_component_from_points(geometry_set_in, geometry_set_out, params);
#endif

  params.set_output("Geometry", std::move(geometry_set_out));
}

static void geo_node_points_to_volume_init(bNodeTree *UNUSED(ntree), bNode *node)
{
  NodeGeometryPointsToVolume *data = (NodeGeometryPointsToVolume *)MEM_callocN(
      sizeof(NodeGeometryPointsToVolume), __func__);
  data->resolution_mode = GEO_NODE_POINTS_TO_VOLUME_RESOLUTION_MODE_AMOUNT;
  data->input_type_radius = GEO_NODE_ATTRIBUTE_INPUT_FLOAT;
  node->storage = data;

  bNodeSocket *radius_attribute_socket = nodeFindSocket(node, SOCK_IN, "Radius");
  bNodeSocketValueString *radius_attribute_socket_value =
      (bNodeSocketValueString *)radius_attribute_socket->default_value;
  STRNCPY(radius_attribute_socket_value->value, "radius");
}

static void geo_node_points_to_volume_update(bNodeTree *UNUSED(ntree), bNode *node)
{
  NodeGeometryPointsToVolume *data = (NodeGeometryPointsToVolume *)node->storage;
  bNodeSocket *voxel_size_socket = nodeFindSocket(node, SOCK_IN, "Voxel Size");
  bNodeSocket *voxel_amount_socket = nodeFindSocket(node, SOCK_IN, "Voxel Amount");
  nodeSetSocketAvailability(voxel_amount_socket,
                            data->resolution_mode ==
                                GEO_NODE_POINTS_TO_VOLUME_RESOLUTION_MODE_AMOUNT);
  nodeSetSocketAvailability(
      voxel_size_socket, data->resolution_mode == GEO_NODE_POINTS_TO_VOLUME_RESOLUTION_MODE_SIZE);

  update_attribute_input_socket_availabilities(
      *node, "Radius", (GeometryNodeAttributeInputMode)data->input_type_radius);
}

}  // namespace blender::nodes

void register_node_type_geo_points_to_volume()
{
  static bNodeType ntype;

  geo_node_type_base(
      &ntype, GEO_NODE_POINTS_TO_VOLUME, "Points to Volume", NODE_CLASS_GEOMETRY, 0);
  node_type_socket_templates(&ntype, geo_node_points_to_volume_in, geo_node_point_translate_out);
  node_type_storage(&ntype,
                    "NodeGeometryPointsToVolume",
                    node_free_standard_storage,
                    node_copy_standard_storage);
  node_type_size(&ntype, 170, 120, 700);
  node_type_init(&ntype, blender::nodes::geo_node_points_to_volume_init);
  node_type_update(&ntype, blender::nodes::geo_node_points_to_volume_update);
  ntype.geometry_node_execute = blender::nodes::geo_node_points_to_volume_exec;
  ntype.draw_buttons = geo_node_points_to_volume_layout;
  nodeRegisterType(&ntype);
}