Welcome to mirror list, hosted at ThFree Co, Russian Federation.

hair_volume.c « intern « physics « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b5c418802681d2633ad3eb96ab1a66355a3b03fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) Blender Foundation
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * Contributor(s): Janne Karhu, Lukas Toenne
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/blenkernel/intern/hair_volume.c
 *  \ingroup bph
 */

#include "MEM_guardedalloc.h"

#include "BLI_math.h"
#include "BLI_utildefines.h"

#include "implicit.h"

/* ================ Volumetric Hair Interaction ================
 * adapted from
 * 
 * Volumetric Methods for Simulation and Rendering of Hair
 *     (Petrovic, Henne, Anderson, Pixar Technical Memo #06-08, Pixar Animation Studios)
 * 
 * as well as
 * 
 * "Detail Preserving Continuum Simulation of Straight Hair"
 *     (McAdams, Selle 2009)
 */

/* Note about array indexing:
 * Generally the arrays here are one-dimensional.
 * The relation between 3D indices and the array offset is
 *   offset = x + res_x * y + res_y * z
 */

/* TODO: This is an initial implementation and should be made much better in due time.
 * What should at least be implemented is a grid size parameter and a smoothing kernel
 * for bigger grids.
 */


static float I[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};

static int hair_grid_size(int res)
{
	return res * res * res;
}

BLI_INLINE void hair_grid_get_scale(int res, const float gmin[3], const float gmax[3], float scale[3])
{
	sub_v3_v3v3(scale, gmax, gmin);
	mul_v3_fl(scale, 1.0f / (res-1));
}

typedef struct HairGridVert {
	float velocity[3];
	float density;
	
	float velocity_smooth[3];
} HairGridVert;

typedef struct HairVertexGrid {
	HairGridVert *verts;
	int res;
	float gmin[3], gmax[3];
	float scale[3];
} HairVertexGrid;

typedef struct HairColliderGrid {
	HairGridVert *verts;
	int res;
	float gmin[3], gmax[3];
	float scale[3];
} HairColliderGrid;

#define HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, axis) ( min_ii( max_ii( (int)((vec[axis] - gmin[axis]) / scale[axis]), 0), res-2 ) )

BLI_INLINE int hair_grid_offset(const float vec[3], int res, const float gmin[3], const float scale[3])
{
	int i, j, k;
	i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
	j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
	k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
	return i + (j + k*res)*res;
}

BLI_INLINE int hair_grid_interp_weights(int res, const float gmin[3], const float scale[3], const float vec[3], float uvw[3])
{
	int i, j, k, offset;
	
	i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
	j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
	k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
	offset = i + (j + k*res)*res;
	
	uvw[0] = (vec[0] - gmin[0]) / scale[0] - (float)i;
	uvw[1] = (vec[1] - gmin[1]) / scale[1] - (float)j;
	uvw[2] = (vec[2] - gmin[2]) / scale[2] - (float)k;
	
//	BLI_assert(0.0f <= uvw[0] && uvw[0] <= 1.0001f);
//	BLI_assert(0.0f <= uvw[1] && uvw[1] <= 1.0001f);
//	BLI_assert(0.0f <= uvw[2] && uvw[2] <= 1.0001f);
	
	return offset;
}

BLI_INLINE void hair_grid_interpolate(const HairGridVert *grid, int res, const float gmin[3], const float scale[3], const float vec[3],
                                      float *density, float velocity[3], float density_gradient[3], float velocity_gradient[3][3])
{
	HairGridVert data[8];
	float uvw[3], muvw[3];
	int res2 = res * res;
	int offset;
	
	offset = hair_grid_interp_weights(res, gmin, scale, vec, uvw);
	muvw[0] = 1.0f - uvw[0];
	muvw[1] = 1.0f - uvw[1];
	muvw[2] = 1.0f - uvw[2];
	
	data[0] = grid[offset           ];
	data[1] = grid[offset         +1];
	data[2] = grid[offset     +res  ];
	data[3] = grid[offset     +res+1];
	data[4] = grid[offset+res2      ];
	data[5] = grid[offset+res2    +1];
	data[6] = grid[offset+res2+res  ];
	data[7] = grid[offset+res2+res+1];
	
	if (density) {
		*density = muvw[2]*( muvw[1]*( muvw[0]*data[0].density + uvw[0]*data[1].density )   +
		                      uvw[1]*( muvw[0]*data[2].density + uvw[0]*data[3].density ) ) +
		            uvw[2]*( muvw[1]*( muvw[0]*data[4].density + uvw[0]*data[5].density )   +
		                      uvw[1]*( muvw[0]*data[6].density + uvw[0]*data[7].density ) );
	}
	
	if (velocity) {
		int k;
		for (k = 0; k < 3; ++k) {
			velocity[k] = muvw[2]*( muvw[1]*( muvw[0]*data[0].velocity[k] + uvw[0]*data[1].velocity[k] )   +
			                         uvw[1]*( muvw[0]*data[2].velocity[k] + uvw[0]*data[3].velocity[k] ) ) +
			               uvw[2]*( muvw[1]*( muvw[0]*data[4].velocity[k] + uvw[0]*data[5].velocity[k] )   +
			                         uvw[1]*( muvw[0]*data[6].velocity[k] + uvw[0]*data[7].velocity[k] ) );
		}
	}
	
	if (density_gradient) {
		density_gradient[0] = muvw[1] * muvw[2] * ( data[0].density - data[1].density ) +
		                       uvw[1] * muvw[2] * ( data[2].density - data[3].density ) +
		                      muvw[1] *  uvw[2] * ( data[4].density - data[5].density ) +
		                       uvw[1] *  uvw[2] * ( data[6].density - data[7].density );
		
		density_gradient[1] = muvw[2] * muvw[0] * ( data[0].density - data[2].density ) +
		                       uvw[2] * muvw[0] * ( data[4].density - data[6].density ) +
		                      muvw[2] *  uvw[0] * ( data[1].density - data[3].density ) +
		                       uvw[2] *  uvw[0] * ( data[5].density - data[7].density );
		
		density_gradient[2] = muvw[2] * muvw[0] * ( data[0].density - data[4].density ) +
		                       uvw[2] * muvw[0] * ( data[1].density - data[5].density ) +
		                      muvw[2] *  uvw[0] * ( data[2].density - data[6].density ) +
		                       uvw[2] *  uvw[0] * ( data[3].density - data[7].density );
	}
	
	if (velocity_gradient) {
		/* XXX TODO */
		zero_m3(velocity_gradient);
	}
}

#if 0
static void hair_velocity_collision(const HairGridVert *collgrid, const float gmin[3], const float scale[3], float collfac,
                                    lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
{
	int v;
	/* calculate forces */
	for (v = 0; v < numverts; v++) {
		int offset = hair_grid_offset(lX[v], hair_grid_res, gmin, scale);
		
		if (collgrid[offset].density > 0.0f) {
			lF[v][0] += collfac * (collgrid[offset].velocity[0] - lV[v][0]);
			lF[v][1] += collfac * (collgrid[offset].velocity[1] - lV[v][1]);
			lF[v][2] += collfac * (collgrid[offset].velocity[2] - lV[v][2]);
		}
	}
}
#endif

void BPH_hair_volume_vertex_grid_forces(HairVertexGrid *grid, const float x[3], const float v[3],
                                        float smoothfac, float pressurefac, float minpressure,
                                        float f[3], float dfdx[3][3], float dfdv[3][3])
{
	float gdensity, gvelocity[3], ggrad[3], gvelgrad[3][3], gradlen;
	
	hair_grid_interpolate(grid->verts, grid->res, grid->gmin, grid->scale, x, &gdensity, gvelocity, ggrad, gvelgrad);
	
	zero_v3(f);
	sub_v3_v3(gvelocity, v);
	mul_v3_v3fl(f, gvelocity, smoothfac);
	
	gradlen = normalize_v3(ggrad) - minpressure;
	if (gradlen > 0.0f) {
		mul_v3_fl(ggrad, gradlen);
		madd_v3_v3fl(f, ggrad, pressurefac);
	}
	
	zero_m3(dfdx);
	
	sub_m3_m3m3(dfdv, gvelgrad, I);
	mul_m3_fl(dfdv, smoothfac);
}

void BPH_hair_volume_grid_velocity(HairVertexGrid *grid, const float x[3], const float v[3],
                                   float fluid_factor,
                                   float r_v[3])
{
	float gdensity, gvelocity[3], ggrad[3], gvelgrad[3][3];
	
	hair_grid_interpolate(grid->verts, grid->res, grid->gmin, grid->scale, x, &gdensity, gvelocity, ggrad, gvelgrad);
	
	/* XXX TODO implement FLIP method and use fluid_factor to blend between FLIP and PIC */
	copy_v3_v3(r_v, gvelocity);
}

BLI_INLINE bool hair_grid_point_valid(const float vec[3], float gmin[3], float gmax[3])
{
	return !(vec[0] < gmin[0] || vec[1] < gmin[1] || vec[2] < gmin[2] ||
	         vec[0] > gmax[0] || vec[1] > gmax[1] || vec[2] > gmax[2]);
}

BLI_INLINE float dist_tent_v3f3(const float a[3], float x, float y, float z)
{
	float w = (1.0f - fabsf(a[0] - x)) * (1.0f - fabsf(a[1] - y)) * (1.0f - fabsf(a[2] - z));
	return w;
}

BLI_INLINE float weights_sum(const float weights[8])
{
	float totweight = 0.0f;
	int i;
	for (i = 0; i < 8; ++i)
		totweight += weights[i];
	return totweight;
}

/* returns the grid array offset as well to avoid redundant calculation */
static int hair_grid_weights(int res, const float gmin[3], const float scale[3], const float vec[3], float weights[8])
{
	int i, j, k, offset;
	float uvw[3];
	
	i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
	j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
	k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
	offset = i + (j + k*res)*res;
	
	uvw[0] = (vec[0] - gmin[0]) / scale[0];
	uvw[1] = (vec[1] - gmin[1]) / scale[1];
	uvw[2] = (vec[2] - gmin[2]) / scale[2];
	
	weights[0] = dist_tent_v3f3(uvw, (float)i    , (float)j    , (float)k    );
	weights[1] = dist_tent_v3f3(uvw, (float)(i+1), (float)j    , (float)k    );
	weights[2] = dist_tent_v3f3(uvw, (float)i    , (float)(j+1), (float)k    );
	weights[3] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)k    );
	weights[4] = dist_tent_v3f3(uvw, (float)i    , (float)j    , (float)(k+1));
	weights[5] = dist_tent_v3f3(uvw, (float)(i+1), (float)j    , (float)(k+1));
	weights[6] = dist_tent_v3f3(uvw, (float)i    , (float)(j+1), (float)(k+1));
	weights[7] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)(k+1));
	
//	BLI_assert(fabsf(weights_sum(weights) - 1.0f) < 0.0001f);
	
	return offset;
}

void BPH_hair_volume_add_vertex(HairVertexGrid *grid, const float x[3], const float v[3])
{
	int res = grid->res;
	float weights[8];
	int di, dj, dk;
	int offset;
	
	if (!hair_grid_point_valid(x, grid->gmin, grid->gmax))
		return;
	
	offset = hair_grid_weights(res, grid->gmin, grid->scale, x, weights);
	
	for (di = 0; di < 2; ++di) {
		for (dj = 0; dj < 2; ++dj) {
			for (dk = 0; dk < 2; ++dk) {
				int voffset = offset + di + (dj + dk*res)*res;
				int iw = di + dj*2 + dk*4;
				
				grid->verts[voffset].density += weights[iw];
				madd_v3_v3fl(grid->verts[voffset].velocity, v, weights[iw]);
			}
		}
	}
}

void BPH_hair_volume_normalize_vertex_grid(HairVertexGrid *grid)
{
	int i, size = hair_grid_size(grid->res);
	/* divide velocity with density */
	for (i = 0; i < size; i++) {
		float density = grid->verts[i].density;
		if (density > 0.0f)
			mul_v3_fl(grid->verts[i].velocity, 1.0f/density);
	}
}

#if 0 /* XXX weighting is incorrect, disabled for now */
/* Velocity filter kernel
 * See http://en.wikipedia.org/wiki/Filter_%28large_eddy_simulation%29
 */

BLI_INLINE void hair_volume_filter_box_convolute(HairVertexGrid *grid, float invD, const int kernel_size[3], int i, int j, int k)
{
	int res = grid->res;
	int p, q, r;
	int minp = max_ii(i - kernel_size[0], 0), maxp = min_ii(i + kernel_size[0], res-1);
	int minq = max_ii(j - kernel_size[1], 0), maxq = min_ii(j + kernel_size[1], res-1);
	int minr = max_ii(k - kernel_size[2], 0), maxr = min_ii(k + kernel_size[2], res-1);
	int offset, kernel_offset, kernel_dq, kernel_dr;
	HairGridVert *verts;
	float *vel_smooth;
	
	offset = i + (j + k*res)*res;
	verts = grid->verts;
	vel_smooth = verts[offset].velocity_smooth;
	
	kernel_offset = minp + (minq + minr*res)*res;
	kernel_dq = res;
	kernel_dr = res * res;
	for (r = minr; r <= maxr; ++r) {
		for (q = minq; q <= maxq; ++q) {
			for (p = minp; p <= maxp; ++p) {
				
				madd_v3_v3fl(vel_smooth, verts[kernel_offset].velocity, invD);
				
				kernel_offset += 1;
			}
			kernel_offset += kernel_dq;
		}
		kernel_offset += kernel_dr;
	}
}

void BPH_hair_volume_vertex_grid_filter_box(HairVertexGrid *grid, int kernel_size)
{
	int size = hair_grid_size(grid->res);
	int kernel_sizev[3] = {kernel_size, kernel_size, kernel_size};
	int tot;
	float invD;
	int i, j, k;
	
	if (kernel_size <= 0)
		return;
	
	tot = kernel_size * 2 + 1;
	invD = 1.0f / (float)(tot*tot*tot);
	
	/* clear values for convolution */
	for (i = 0; i < size; ++i) {
		zero_v3(grid->verts[i].velocity_smooth);
	}
	
	for (i = 0; i < grid->res; ++i) {
		for (j = 0; j < grid->res; ++j) {
			for (k = 0; k < grid->res; ++k) {
				hair_volume_filter_box_convolute(grid, invD, kernel_sizev, i, j, k);
			}
		}
	}
	
	/* apply as new velocity */
	for (i = 0; i < size; ++i) {
		copy_v3_v3(grid->verts[i].velocity, grid->verts[i].velocity_smooth);
	}
}
#endif

HairVertexGrid *BPH_hair_volume_create_vertex_grid(int res, const float gmin[3], const float gmax[3])
{
	int size = hair_grid_size(res);
	HairVertexGrid *grid;
	int	            i = 0;
	
	grid = MEM_callocN(sizeof(HairVertexGrid), "hair vertex grid");
	grid->res = res;
	copy_v3_v3(grid->gmin, gmin);
	copy_v3_v3(grid->gmax, gmax);
	hair_grid_get_scale(res, gmin, gmax, grid->scale);
	grid->verts = MEM_mallocN(sizeof(HairGridVert) * size, "hair voxel data");

	/* initialize grid */
	for (i = 0; i < size; ++i) {
		zero_v3(grid->verts[i].velocity);
		grid->verts[i].density = 0.0f;
	}
	
	return grid;
}

void BPH_hair_volume_free_vertex_grid(HairVertexGrid *grid)
{
	if (grid) {
		if (grid->verts)
			MEM_freeN(grid->verts);
		MEM_freeN(grid);
	}
}

void BPH_hair_volume_grid_geometry(HairVertexGrid *grid, float cellsize[3], int res[3], float gmin[3], float gmax[3])
{
	if (cellsize) copy_v3_v3(cellsize, grid->scale);
	if (res) { res[0] = res[1] = res[2] = grid->res; }
	if (gmin) copy_v3_v3(gmin, grid->gmin);
	if (gmax) copy_v3_v3(gmax, grid->gmax);
}

#if 0
static HairGridVert *hair_volume_create_collision_grid(ClothModifierData *clmd, lfVector *lX, unsigned int numverts)
{
	int res = hair_grid_res;
	int size = hair_grid_size(res);
	HairGridVert *collgrid;
	ListBase *colliders;
	ColliderCache *col = NULL;
	float gmin[3], gmax[3], scale[3];
	/* 2.0f is an experimental value that seems to give good results */
	float collfac = 2.0f * clmd->sim_parms->collider_friction;
	unsigned int	v = 0;
	int	            i = 0;

	hair_volume_get_boundbox(lX, numverts, gmin, gmax);
	hair_grid_get_scale(res, gmin, gmax, scale);

	collgrid = MEM_mallocN(sizeof(HairGridVert) * size, "hair collider voxel data");

	/* initialize grid */
	for (i = 0; i < size; ++i) {
		zero_v3(collgrid[i].velocity);
		collgrid[i].density = 0.0f;
	}

	/* gather colliders */
	colliders = get_collider_cache(clmd->scene, NULL, NULL);
	if (colliders && collfac > 0.0f) {
		for (col = colliders->first; col; col = col->next) {
			MVert *loc0 = col->collmd->x;
			MVert *loc1 = col->collmd->xnew;
			float vel[3];
			float weights[8];
			int di, dj, dk;
			
			for (v=0; v < col->collmd->numverts; v++, loc0++, loc1++) {
				int offset;
				
				if (!hair_grid_point_valid(loc1->co, gmin, gmax))
					continue;
				
				offset = hair_grid_weights(res, gmin, scale, lX[v], weights);
				
				sub_v3_v3v3(vel, loc1->co, loc0->co);
				
				for (di = 0; di < 2; ++di) {
					for (dj = 0; dj < 2; ++dj) {
						for (dk = 0; dk < 2; ++dk) {
							int voffset = offset + di + (dj + dk*res)*res;
							int iw = di + dj*2 + dk*4;
							
							collgrid[voffset].density += weights[iw];
							madd_v3_v3fl(collgrid[voffset].velocity, vel, weights[iw]);
						}
					}
				}
			}
		}
	}
	free_collider_cache(&colliders);

	/* divide velocity with density */
	for (i = 0; i < size; i++) {
		float density = collgrid[i].density;
		if (density > 0.0f)
			mul_v3_fl(collgrid[i].velocity, 1.0f/density);
	}
	
	return collgrid;
}
#endif

#if 0
bool implicit_hair_volume_get_texture_data(Object *UNUSED(ob), ClothModifierData *clmd, ListBase *UNUSED(effectors), VoxelData *vd)
{
	lfVector *lX, *lV;
	HairGridVert *hairgrid/*, *collgrid*/;
	int numverts;
	int totres, i;
	int depth;

	if (!clmd->clothObject || !clmd->clothObject->implicit)
		return false;

	lX = clmd->clothObject->implicit->X;
	lV = clmd->clothObject->implicit->V;
	numverts = clmd->clothObject->numverts;

	hairgrid = hair_volume_create_hair_grid(clmd, lX, lV, numverts);
//	collgrid = hair_volume_create_collision_grid(clmd, lX, numverts);

	vd->resol[0] = hair_grid_res;
	vd->resol[1] = hair_grid_res;
	vd->resol[2] = hair_grid_res;
	
	totres = hair_grid_size(hair_grid_res);
	
	if (vd->hair_type == TEX_VD_HAIRVELOCITY) {
		depth = 4;
		vd->data_type = TEX_VD_RGBA_PREMUL;
	}
	else {
		depth = 1;
		vd->data_type = TEX_VD_INTENSITY;
	}
	
	if (totres > 0) {
		vd->dataset = (float *)MEM_mapallocN(sizeof(float) * depth * (totres), "hair volume texture data");
		
		for (i = 0; i < totres; ++i) {
			switch (vd->hair_type) {
				case TEX_VD_HAIRDENSITY:
					vd->dataset[i] = hairgrid[i].density;
					break;
				
				case TEX_VD_HAIRRESTDENSITY:
					vd->dataset[i] = 0.0f; // TODO
					break;
				
				case TEX_VD_HAIRVELOCITY:
					vd->dataset[i + 0*totres] = hairgrid[i].velocity[0];
					vd->dataset[i + 1*totres] = hairgrid[i].velocity[1];
					vd->dataset[i + 2*totres] = hairgrid[i].velocity[2];
					vd->dataset[i + 3*totres] = len_v3(hairgrid[i].velocity);
					break;
				
				case TEX_VD_HAIRENERGY:
					vd->dataset[i] = 0.0f; // TODO
					break;
			}
		}
	}
	else {
		vd->dataset = NULL;
	}
	
	MEM_freeN(hairgrid);
//	MEM_freeN(collgrid);
	
	return true;
}

#endif