Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Mathutils.c « api2_2x « python « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 1ddc572bbd10bc14225478b9f8e5373953c7c683 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
/* 
 * $Id$
 *
 * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version. The Blender
 * Foundation also sells licenses for use in proprietary software under
 * the Blender License.  See http://www.blender.org/BL/ for information
 * about this.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA	02111-1307, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * This is a new part of Blender.
 *
 * Contributor(s): Joseph Gilbert
 *
 * ***** END GPL/BL DUAL LICENSE BLOCK *****
 */

#include <BKE_main.h>
#include <BKE_global.h>
#include <BKE_library.h>
#include <BKE_utildefines.h>
#include <BLI_blenlib.h>
#include <BLI_arithb.h>
#include <PIL_time.h>
#include <BLI_rand.h>
#include <math.h>
#include "blendef.h"
#include "mydevice.h"
#include "constant.h"
#include "gen_utils.h"
#include "Mathutils.h"
//-------------------------DOC STRINGS ---------------------------
static char M_Mathutils_doc[] = "The Blender Mathutils module\n\n";
static char M_Mathutils_Vector_doc[] = "() - create a new vector object from a list of floats";
static char M_Mathutils_Matrix_doc[] = "() - create a new matrix object from a list of floats";
static char M_Mathutils_Quaternion_doc[] = "() - create a quaternion from a list or an axis of rotation and an angle";
static char M_Mathutils_Euler_doc[] = "() - create and return a new euler object";
static char M_Mathutils_Rand_doc[] = "() - return a random number";
static char M_Mathutils_CrossVecs_doc[] = "() - returns a vector perpedicular to the 2 vectors crossed";
static char M_Mathutils_CopyVec_doc[] = "() - create a copy of vector";
static char M_Mathutils_DotVecs_doc[] = "() - return the dot product of two vectors";
static char M_Mathutils_AngleBetweenVecs_doc[] = "() - returns the angle between two vectors in degrees";
static char M_Mathutils_MidpointVecs_doc[] = "() - return the vector to the midpoint between two vectors";
static char M_Mathutils_MatMultVec_doc[] = "() - multiplies a matrix by a column vector";
static char M_Mathutils_VecMultMat_doc[] = "() - multiplies a row vector by a matrix";
static char M_Mathutils_ProjectVecs_doc[] =	"() - returns the projection vector from the projection of vecA onto vecB";
static char M_Mathutils_RotationMatrix_doc[] = "() - construct a rotation matrix from an angle and axis of rotation";
static char M_Mathutils_ScaleMatrix_doc[] =	"() - construct a scaling matrix from a scaling factor";
static char M_Mathutils_OrthoProjectionMatrix_doc[] = "() - construct a orthographic projection matrix from a selected plane";
static char M_Mathutils_ShearMatrix_doc[] = "() - construct a shearing matrix from a plane of shear and a shear factor";
static char M_Mathutils_CopyMat_doc[] = "() - create a copy of a matrix";
static char M_Mathutils_TranslationMatrix_doc[] = "() - create a translation matrix from a vector";
static char M_Mathutils_CopyQuat_doc[] = "() - copy quatB to quatA";
static char M_Mathutils_CopyEuler_doc[] = "() - copy eulB to eultA";
static char M_Mathutils_CrossQuats_doc[] = "() - return the mutliplication of two quaternions";
static char M_Mathutils_DotQuats_doc[] = "() - return the dot product of two quaternions";
static char M_Mathutils_Slerp_doc[] = "() - returns the interpolation between two quaternions";
static char M_Mathutils_DifferenceQuats_doc[] = "() - return the angular displacment difference between two quats";
static char M_Mathutils_RotateEuler_doc[] = "() - rotate euler by an axis and angle";
//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef M_Mathutils_methods[] = {
	{"Rand", (PyCFunction) M_Mathutils_Rand, METH_VARARGS, M_Mathutils_Rand_doc},
	{"Vector", (PyCFunction) M_Mathutils_Vector, METH_VARARGS, M_Mathutils_Vector_doc},
	{"CrossVecs", (PyCFunction) M_Mathutils_CrossVecs, METH_VARARGS, M_Mathutils_CrossVecs_doc},
	{"DotVecs", (PyCFunction) M_Mathutils_DotVecs, METH_VARARGS, M_Mathutils_DotVecs_doc},
	{"AngleBetweenVecs", (PyCFunction) M_Mathutils_AngleBetweenVecs, METH_VARARGS, M_Mathutils_AngleBetweenVecs_doc},
	{"MidpointVecs", (PyCFunction) M_Mathutils_MidpointVecs, METH_VARARGS, M_Mathutils_MidpointVecs_doc},
	{"VecMultMat", (PyCFunction) M_Mathutils_VecMultMat, METH_VARARGS, M_Mathutils_VecMultMat_doc},
	{"ProjectVecs", (PyCFunction) M_Mathutils_ProjectVecs, METH_VARARGS, M_Mathutils_ProjectVecs_doc},
	{"CopyVec", (PyCFunction) M_Mathutils_CopyVec, METH_VARARGS, M_Mathutils_CopyVec_doc},
	{"Matrix", (PyCFunction) M_Mathutils_Matrix, METH_VARARGS, M_Mathutils_Matrix_doc},
	{"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
	{"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
	{"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
	{"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_VARARGS, M_Mathutils_TranslationMatrix_doc},
	{"CopyMat", (PyCFunction) M_Mathutils_CopyMat, METH_VARARGS, M_Mathutils_CopyMat_doc},
	{"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix,  METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
	{"MatMultVec", (PyCFunction) M_Mathutils_MatMultVec, METH_VARARGS, M_Mathutils_MatMultVec_doc},
	{"Quaternion", (PyCFunction) M_Mathutils_Quaternion, METH_VARARGS, M_Mathutils_Quaternion_doc},
	{"CopyQuat", (PyCFunction) M_Mathutils_CopyQuat, METH_VARARGS, M_Mathutils_CopyQuat_doc},
	{"CrossQuats", (PyCFunction) M_Mathutils_CrossQuats, METH_VARARGS, M_Mathutils_CrossQuats_doc},
	{"DotQuats", (PyCFunction) M_Mathutils_DotQuats, METH_VARARGS, M_Mathutils_DotQuats_doc},
	{"DifferenceQuats", (PyCFunction) M_Mathutils_DifferenceQuats, METH_VARARGS,M_Mathutils_DifferenceQuats_doc},
	{"Slerp", (PyCFunction) M_Mathutils_Slerp, METH_VARARGS, M_Mathutils_Slerp_doc},
	{"Euler", (PyCFunction) M_Mathutils_Euler, METH_VARARGS, M_Mathutils_Euler_doc},
	{"CopyEuler", (PyCFunction) M_Mathutils_CopyEuler, METH_VARARGS, M_Mathutils_CopyEuler_doc},
	{"RotateEuler", (PyCFunction) M_Mathutils_RotateEuler, METH_VARARGS, M_Mathutils_RotateEuler_doc},
	{NULL, NULL, 0, NULL}
};
//----------------------------MODULE INIT-------------------------
PyObject *Mathutils_Init(void)
{
	PyObject *submodule;

	//seed the generator for the rand function
	BLI_srand((unsigned int) (PIL_check_seconds_timer() *
				      0x7FFFFFFF));

	submodule = Py_InitModule3("Blender.Mathutils",
				    M_Mathutils_methods, M_Mathutils_doc);
	return (submodule);
}
//-----------------------------METHODS----------------------------
//----------------column_vector_multiplication (internal)---------
//COLUMN VECTOR Multiplication (Matrix X Vector)
// [1][2][3]   [a]
// [4][5][6] * [b]
// [7][8][9]   [c]
//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
{
	float vecNew[4], vecCopy[4];
	double dot = 0.0f;
	int x, y, z = 0;

	if(mat->rowSize != vec->size){
		if(mat->rowSize == 4 && vec->size != 3){
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
				"matrix * vector: matrix row size and vector size must be the same\n");
		}else{
			vecCopy[3] = 0.0f;
		}
	}

	for(x = 0; x < vec->size; x++){
		vecCopy[x] = vec->vec[x];
		}

	for(x = 0; x < mat->rowSize; x++) {
		for(y = 0; y < mat->colSize; y++) {
			dot += mat->matrix[x][y] * vecCopy[y];
		}
		vecNew[z++] = dot;
		dot = 0.0f;
	}
	return (PyObject *) newVectorObject(vecNew, vec->size, Py_NEW);
}
//-----------------row_vector_multiplication (internal)-----------
//ROW VECTOR Multiplication - Vector X Matrix
//[x][y][z] *  [1][2][3]
//             [4][5][6]
//             [7][8][9]
//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat)
{
	float vecNew[4], vecCopy[4];
	double dot = 0.0f;
	int x, y, z = 0, size;

	if(mat->colSize != vec->size){
		if(mat->rowSize == 4 && vec->size != 3){
			return EXPP_ReturnPyObjError(PyExc_AttributeError, 
				"vector * matrix: matrix column size and the vector size must be the same\n");
		}else{
			vecCopy[3] = 0.0f;
		}
	}
	size = vec->size;
	for(x = 0; x < vec->size; x++){
		vecCopy[x] = vec->vec[x];
	}

	//muliplication
	for(x = 0; x < mat->colSize; x++) {
		for(y = 0; y < mat->rowSize; y++) {
			dot += mat->matrix[y][x] * vecCopy[y];
		}
		vecNew[z++] = dot;
		dot = 0.0f;
	}
	return (PyObject *) newVectorObject(vecNew, size, Py_NEW);
}
//----------------------------------Mathutils.Rand() --------------------
//returns a random number between a high and low value
PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args)
{
	float high, low, range;
	double rand;
	//initializers
	high = 1.0;
	low = 0.0;

	if(!PyArg_ParseTuple(args, "|ff", &low, &high))
		return (EXPP_ReturnPyObjError(PyExc_TypeError,
			"Mathutils.Rand(): expected nothing or optional (float, float)\n"));

	if((high < low) || (high < 0 && low > 0))
		return (EXPP_ReturnPyObjError(PyExc_ValueError,
			"Mathutils.Rand(): high value should be larger than low value\n"));

	//get the random number 0 - 1
	rand = BLI_drand();

	//set it to range
	range = high - low;
	rand = rand * range;
	rand = rand + low;

	return PyFloat_FromDouble(rand);
}
//----------------------------------VECTOR FUNCTIONS---------------------
//----------------------------------Mathutils.Vector() ------------------
// Supports 2D, 3D, and 4D vector objects both int and float values
// accepted. Mixed float and int values accepted. Ints are parsed to float 
PyObject *M_Mathutils_Vector(PyObject * self, PyObject * args)
{
	PyObject *listObject = NULL;
	int size, i;
	float vec[4];

	size = PySequence_Length(args);
	if (size == 1) {
		listObject = PySequence_GetItem(args, 0);
		if (PySequence_Check(listObject)) {
			size = PySequence_Length(listObject);
		} else { // Single argument was not a sequence
			Py_XDECREF(listObject);
			return EXPP_ReturnPyObjError(PyExc_TypeError, 
				"Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
		}
	} else if (size == 0) {
		//returns a new empty 3d vector
		return (PyObject *) newVectorObject(NULL, 3, Py_NEW); 
	} else {
		listObject = EXPP_incr_ret(args);
	}
	if (size<2 || size>4) { // Invalid vector size
		Py_XDECREF(listObject);
		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
			"Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
	}
	for (i=0; i<size; i++) {
		PyObject *v, *f;

		v=PySequence_GetItem(listObject, i);
		if (v==NULL) { // Failed to read sequence
			Py_XDECREF(listObject);
			return EXPP_ReturnPyObjError(PyExc_RuntimeError, 
				"Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
		}
		f=PyNumber_Float(v);
		if(f==NULL) { // parsed item not a number
			Py_DECREF(v);
			Py_XDECREF(listObject);
			return EXPP_ReturnPyObjError(PyExc_TypeError, 
				"Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
		}
		vec[i]=PyFloat_AS_DOUBLE(f);
		EXPP_decr2(f,v);
	}
	Py_DECREF(listObject);
	return (PyObject *) newVectorObject(vec, size, Py_NEW);
}
//----------------------------------Mathutils.CrossVecs() ---------------
//finds perpendicular vector - only 3D is supported
PyObject *M_Mathutils_CrossVecs(PyObject * self, PyObject * args)
{
	PyObject *vecCross = NULL;
	VectorObject *vec1 = NULL, *vec2 = NULL;

	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
			"Mathutils.CrossVecs(): expects (2) 3D vector objects\n");
	if(vec1->size != 3 || vec2->size != 3)
		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
			"Mathutils.CrossVecs(): expects (2) 3D vector objects\n");

	vecCross = newVectorObject(NULL, 3, Py_NEW);
	Crossf(((VectorObject*)vecCross)->vec, vec1->vec, vec2->vec);
	return vecCross;
}
//----------------------------------Mathutils.DotVec() -------------------
//calculates the dot product of two vectors
PyObject *M_Mathutils_DotVecs(PyObject * self, PyObject * args)
{
	VectorObject *vec1 = NULL, *vec2 = NULL;
	double dot = 0.0f;
	int x;

	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
			"Mathutils.DotVec(): expects (2) vector objects of the same size\n");
	if(vec1->size != vec2->size)
		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
			"Mathutils.DotVec(): expects (2) vector objects of the same size\n");

	for(x = 0; x < vec1->size; x++) {
		dot += vec1->vec[x] * vec2->vec[x];
	}
	return PyFloat_FromDouble(dot);
}
//----------------------------------Mathutils.AngleBetweenVecs() ---------
//calculates the angle between 2 vectors
PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args)
{
	VectorObject *vec1 = NULL, *vec2 = NULL;
	double dot = 0.0f, angleRads;
	double norm_a = 0.0f, norm_b = 0.0f;
	double vec_a[4], vec_b[4];
	int x, size;

	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
			"Mathutils.AngleBetweenVecs(): expects (2) vector objects of the same size\n");
	if(vec1->size != vec2->size)
		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
			"Mathutils.AngleBetweenVecs(): expects (2) vector objects of the same size\n");

	//since size is the same....
	size = vec1->size;

	//copy vector info
	for (x = 0; x < vec1->size; x++){
		vec_a[x] = vec1->vec[x];
		vec_b[x] = vec2->vec[x];
	}

	//normalize vectors
	for(x = 0; x < size; x++) {
		norm_a += vec_a[x] * vec_a[x];
		norm_b += vec_b[x] * vec_b[x];
	}
	norm_a = (double)sqrt(norm_a);
	norm_b = (double)sqrt(norm_b);
	for(x = 0; x < size; x++) {
		vec_a[x] /= norm_a;
		vec_b[x] /= norm_b;
	}
	//dot product
	for(x = 0; x < size; x++) {
		dot += vec_a[x] * vec_b[x];
	}
	//I believe saacos checks to see if the vectors are normalized
	angleRads = (double)acos(dot);

	return PyFloat_FromDouble(angleRads * (180 / Py_PI));
}
//----------------------------------Mathutils.MidpointVecs() -------------
//calculates the midpoint between 2 vectors
PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args)
{
	VectorObject *vec1 = NULL, *vec2 = NULL;
	float vec[4];
	int x;
	
	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
			"Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
	if(vec1->size != vec2->size)
		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
			"Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");

	for(x = 0; x < vec1->size; x++) {
		vec[x] = 0.5f * (vec1->vec[x] + vec2->vec[x]);
	}
	return (PyObject *) newVectorObject(vec, vec1->size, Py_NEW);
}
//----------------------------------Mathutils.ProjectVecs() -------------
//projects vector 1 onto vector 2
PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args)
{
	VectorObject *vec1 = NULL, *vec2 = NULL;
	PyObject *retval;
	float vec[4]; 
	double dot = 0.0f, dot2 = 0.0f;
	int x, size;

	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
			"Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
	if(vec1->size != vec2->size)
		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
			"Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");

	//since they are the same size...
	size = vec1->size;

	//get dot products
	for(x = 0; x < size; x++) {
		dot += vec1->vec[x] * vec2->vec[x];
		dot2 += vec2->vec[x] * vec2->vec[x];
	}
	//projection
	dot /= dot2;
	for(x = 0; x < size; x++) {
		vec[x] = (float)(dot * vec2->vec[x]);
	}
	return (PyObject *) newVectorObject(vec, size, Py_NEW);
}
//----------------------------------MATRIX FUNCTIONS--------------------
//----------------------------------Mathutils.Matrix() -----------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
//create a new matrix type
PyObject *M_Mathutils_Matrix(PyObject * self, PyObject * args)
{
	PyObject *listObject = NULL;
	int argSize, seqSize = 0, i, j;
	float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};

	argSize = PySequence_Length(args);
	if(argSize > 4){	//bad arg nums
		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
			"Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
	} else if (argSize == 0) { //return empty 4D matrix
		return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW);
	}else if (argSize == 1){
		//copy constructor for matrix objects
		PyObject *argObject;
		argObject = PySequence_GetItem(args, 0);
		Py_INCREF(argObject);
		if(MatrixObject_Check(argObject)){
			MatrixObject *mat;
			mat = (MatrixObject*)argObject;
			argSize = mat->rowSize; //rows
			seqSize = mat->colSize; //cols
			for(i = 0; i < (seqSize * argSize); i++){
				matrix[i] = mat->contigPtr[i];
			}
		}
		Py_DECREF(argObject);
	}else{ //2-4 arguments (all seqs? all same size?)
		for(i =0; i < argSize; i++){
			PyObject *argObject;
			argObject = PySequence_GetItem(args, i);
			if (PySequence_Check(argObject)) { //seq?
				if(seqSize){ //0 at first
					if(PySequence_Length(argObject) != seqSize){ //seq size not same
						return EXPP_ReturnPyObjError(PyExc_AttributeError, 
						"Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
					}
				}
				seqSize = PySequence_Length(argObject);
			}else{ //arg not a sequence
				return EXPP_ReturnPyObjError(PyExc_TypeError, 
					"Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
			}
			Py_XDECREF(argObject);
		}
		//all is well... let's continue parsing
		listObject = EXPP_incr_ret(args);
		for (i = 0; i < argSize; i++){
			PyObject *m;

			m = PySequence_GetItem(listObject, i);
			if (m == NULL) { // Failed to read sequence
				Py_XDECREF(listObject);
				return EXPP_ReturnPyObjError(PyExc_RuntimeError, 
					"Mathutils.Matrix(): failed to parse arguments...\n");
			}
			for (j = 0; j < seqSize; j++) {
				PyObject *s, *f;

				s = PySequence_GetItem(m, j);
					if (s == NULL) { // Failed to read sequence
					Py_DECREF(m);
					Py_XDECREF(listObject);
					return EXPP_ReturnPyObjError(PyExc_RuntimeError, 
						"Mathutils.Matrix(): failed to parse arguments...\n");
				}
				f = PyNumber_Float(s);
				if(f == NULL) { // parsed item is not a number
					EXPP_decr2(m,s);
					Py_XDECREF(listObject);
					return EXPP_ReturnPyObjError(PyExc_AttributeError, 
						"Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
				}
				matrix[(seqSize*i)+j]=PyFloat_AS_DOUBLE(f);
				EXPP_decr2(f,s);
			}
			Py_DECREF(m);
		}
		Py_DECREF(listObject);
	}
	return (PyObject *)newMatrixObject(matrix, argSize, seqSize, Py_NEW);
}
//----------------------------------Mathutils.RotationMatrix() ----------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
//creates a rotation matrix
PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
{
	VectorObject *vec = NULL;
	char *axis = NULL;
	int matSize;
	float angle = 0.0f, norm = 0.0f, cosAngle = 0.0f, sinAngle = 0.0f;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};

	if(!PyArg_ParseTuple
	    (args, "fi|sO!", &angle, &matSize, &axis, &vector_Type, &vec)) {
		return EXPP_ReturnPyObjError (PyExc_TypeError, 
			"Mathutils.RotationMatrix(): expected float int and optional string and vector\n");
	}
	if(angle < -360.0f || angle > 360.0f)
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Mathutils.RotationMatrix(): angle size not appropriate\n");
	if(matSize != 2 && matSize != 3 && matSize != 4)
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
	if(matSize == 2 && (axis != NULL || vec != NULL))
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
	if((matSize == 3 || matSize == 4) && axis == NULL)
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
	if(axis) {
		if(((strcmp(axis, "r") == 0) ||
		      (strcmp(axis, "R") == 0)) && vec == NULL)
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
				"Mathutils.RotationMatrix(): please define the arbitrary axis of rotation\n");
	}
	if(vec) {
		if(vec->size != 3)
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
						      "Mathutils.RotationMatrix(): the arbitrary axis must be a 3D vector\n");
	}
	//convert to radians
	angle = angle * (float) (Py_PI / 180);
	if(axis == NULL && matSize == 2) {
		//2D rotation matrix
		mat[0] = (float) cosf (angle);
		mat[1] = (float) sin (angle);
		mat[2] = -((float) sin(angle));
		mat[3] = (float) cos(angle);
	} else if((strcmp(axis, "x") == 0) || (strcmp(axis, "X") == 0)) {
		//rotation around X
		mat[0] = 1.0f;
		mat[4] = (float) cos(angle);
		mat[5] = (float) sin(angle);
		mat[7] = -((float) sin(angle));
		mat[8] = (float) cos(angle);
	} else if((strcmp(axis, "y") == 0) || (strcmp(axis, "Y") == 0)) {
		//rotation around Y
		mat[0] = (float) cos(angle);
		mat[2] = -((float) sin(angle));
		mat[4] = 1.0f;
		mat[6] = (float) sin(angle);
		mat[8] = (float) cos(angle);
	} else if((strcmp(axis, "z") == 0) || (strcmp(axis, "Z") == 0)) {
		//rotation around Z
		mat[0] = (float) cos(angle);
		mat[1] = (float) sin(angle);
		mat[3] = -((float) sin(angle));
		mat[4] = (float) cos(angle);
		mat[8] = 1.0f;
	} else if((strcmp(axis, "r") == 0) || (strcmp(axis, "R") == 0)) {
		//arbitrary rotation
		//normalize arbitrary axis
		norm = (float) sqrt(vec->vec[0] * vec->vec[0] +
				       vec->vec[1] * vec->vec[1] +
				       vec->vec[2] * vec->vec[2]);
		vec->vec[0] /= norm;
		vec->vec[1] /= norm;
		vec->vec[2] /= norm;

		//create matrix
		cosAngle = (float) cos(angle);
		sinAngle = (float) sin(angle);
		mat[0] = ((vec->vec[0] * vec->vec[0]) * (1 - cosAngle)) +
			cosAngle;
		mat[1] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) +
			(vec->vec[2] * sinAngle);
		mat[2] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) -
			(vec->vec[1] * sinAngle);
		mat[3] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) -
			(vec->vec[2] * sinAngle);
		mat[4] = ((vec->vec[1] * vec->vec[1]) * (1 - cosAngle)) +
			cosAngle;
		mat[5] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) +
			(vec->vec[0] * sinAngle);
		mat[6] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) +
			(vec->vec[1] * sinAngle);
		mat[7] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) -
			(vec->vec[0] * sinAngle);
		mat[8] = ((vec->vec[2] * vec->vec[2]) * (1 - cosAngle)) +
			cosAngle;
	} else {
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Mathutils.RotationMatrix(): unrecognizable axis of rotation type - expected x,y,z or r\n");
	}
	if(matSize == 4) {
		//resize matrix
		mat[10] = mat[8];
		mat[9] = mat[7];
		mat[8] = mat[6];
		mat[7] = 0.0f;
		mat[6] = mat[5];
		mat[5] = mat[4];
		mat[4] = mat[3];
		mat[3] = 0.0f;
	}
	//pass to matrix creation
	return newMatrixObject(mat, matSize, matSize, Py_NEW);
}
//----------------------------------Mathutils.TranslationMatrix() -------
//creates a translation matrix
PyObject *M_Mathutils_TranslationMatrix(PyObject * self, PyObject * args)
{
	VectorObject *vec = NULL;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};

	if(!PyArg_ParseTuple(args, "O!", &vector_Type, &vec)) {
		return EXPP_ReturnPyObjError(PyExc_TypeError,
						"Mathutils.TranslationMatrix(): expected vector\n");
	}
	if(vec->size != 3 && vec->size != 4) {
		return EXPP_ReturnPyObjError(PyExc_TypeError,
					      "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
	}
	//create a identity matrix and add translation
	Mat4One((float(*)[4]) mat);
	mat[12] = vec->vec[0];
	mat[13] = vec->vec[1];
	mat[14] = vec->vec[2];

	return newMatrixObject(mat, 4, 4, Py_NEW);
}
//----------------------------------Mathutils.ScaleMatrix() -------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
//creates a scaling matrix
PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
{
	VectorObject *vec = NULL;
	float norm = 0.0f, factor;
	int matSize, x;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};

	if(!PyArg_ParseTuple
	    (args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
		return EXPP_ReturnPyObjError(PyExc_TypeError,
			"Mathutils.ScaleMatrix(): expected float int and optional vector\n");
	}
	if(matSize != 2 && matSize != 3 && matSize != 4)
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
	if(vec) {
		if(vec->size > 2 && matSize == 2)
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
				"Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
	}
	if(vec == NULL) {	//scaling along axis
		if(matSize == 2) {
			mat[0] = factor;
			mat[3] = factor;
		} else {
			mat[0] = factor;
			mat[4] = factor;
			mat[8] = factor;
		}
	} else { //scaling in arbitrary direction
		//normalize arbitrary axis
		for(x = 0; x < vec->size; x++) {
			norm += vec->vec[x] * vec->vec[x];
		}
		norm = (float) sqrt(norm);
		for(x = 0; x < vec->size; x++) {
			vec->vec[x] /= norm;
		}
		if(matSize == 2) {
			mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
			mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
			mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
			mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
		} else {
			mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
			mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
			mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
			mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
			mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
			mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
			mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
			mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
			mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
		}
	}
	if(matSize == 4) {
		//resize matrix
		mat[10] = mat[8];
		mat[9] = mat[7];
		mat[8] = mat[6];
		mat[7] = 0.0f;
		mat[6] = mat[5];
		mat[5] = mat[4];
		mat[4] = mat[3];
		mat[3] = 0.0f;
	}
	//pass to matrix creation
	return newMatrixObject(mat, matSize, matSize, Py_NEW);
}
//----------------------------------Mathutils.OrthoProjectionMatrix() ---
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
//creates an ortho projection matrix
PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
{
	VectorObject *vec = NULL;
	char *plane;
	int matSize, x;
	float norm = 0.0f;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
	
	if(!PyArg_ParseTuple
	    (args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
		return EXPP_ReturnPyObjError(PyExc_TypeError,
			"Mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
	}
	if(matSize != 2 && matSize != 3 && matSize != 4)
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
	if(vec) {
		if(vec->size > 2 && matSize == 2)
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
				"Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
	}
	if(vec == NULL) {	//ortho projection onto cardinal plane
		if(((strcmp(plane, "x") == 0)
		      || (strcmp(plane, "X") == 0)) && matSize == 2) {
			mat[0] = 1.0f;
		} else if(((strcmp(plane, "y") == 0) 
			|| (strcmp(plane, "Y") == 0))
			   && matSize == 2) {
			mat[3] = 1.0f;
		} else if(((strcmp(plane, "xy") == 0)
			     || (strcmp(plane, "XY") == 0))
			   && matSize > 2) {
			mat[0] = 1.0f;
			mat[4] = 1.0f;
		} else if(((strcmp(plane, "xz") == 0)
			     || (strcmp(plane, "XZ") == 0))
			   && matSize > 2) {
			mat[0] = 1.0f;
			mat[8] = 1.0f;
		} else if(((strcmp(plane, "yz") == 0)
			     || (strcmp(plane, "YZ") == 0))
			   && matSize > 2) {
			mat[4] = 1.0f;
			mat[8] = 1.0f;
		} else {
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
				"Mathutils.OrthoProjectionMatrix(): unknown plane - expected: x, y, xy, xz, yz\n");
		}
	} else { //arbitrary plane
		//normalize arbitrary axis
		for(x = 0; x < vec->size; x++) {
			norm += vec->vec[x] * vec->vec[x];
		}
		norm = (float) sqrt(norm);
		for(x = 0; x < vec->size; x++) {
			vec->vec[x] /= norm;
		}
		if(((strcmp(plane, "r") == 0)
		      || (strcmp(plane, "R") == 0)) && matSize == 2) {
			mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
			mat[1] = -(vec->vec[0] * vec->vec[1]);
			mat[2] = -(vec->vec[0] * vec->vec[1]);
			mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
		} else if(((strcmp(plane, "r") == 0)
			     || (strcmp(plane, "R") == 0))
			   && matSize > 2) {
			mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
			mat[1] = -(vec->vec[0] * vec->vec[1]);
			mat[2] = -(vec->vec[0] * vec->vec[2]);
			mat[3] = -(vec->vec[0] * vec->vec[1]);
			mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
			mat[5] = -(vec->vec[1] * vec->vec[2]);
			mat[6] = -(vec->vec[0] * vec->vec[2]);
			mat[7] = -(vec->vec[1] * vec->vec[2]);
			mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
		} else {
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
				"Mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
		}
	}
	if(matSize == 4) {
		//resize matrix
		mat[10] = mat[8];
		mat[9] = mat[7];
		mat[8] = mat[6];
		mat[7] = 0.0f;
		mat[6] = mat[5];
		mat[5] = mat[4];
		mat[4] = mat[3];
		mat[3] = 0.0f;
	}
	//pass to matrix creation
	return newMatrixObject(mat, matSize, matSize, Py_NEW);
}
//----------------------------------Mathutils.ShearMatrix() -------------
//creates a shear matrix
PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
{
	int matSize;
	char *plane;
	float factor;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};

	if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
		return EXPP_ReturnPyObjError(PyExc_TypeError,
			"Mathutils.ShearMatrix(): expected string float and int\n");
	}
	if(matSize != 2 && matSize != 3 && matSize != 4)
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");

	if(((strcmp(plane, "x") == 0) || (strcmp(plane, "X") == 0))
	    && matSize == 2) {
		mat[0] = 1.0f;
		mat[2] = factor;
		mat[3] = 1.0f;
	} else if(((strcmp(plane, "y") == 0)
		     || (strcmp(plane, "Y") == 0)) && matSize == 2) {
		mat[0] = 1.0f;
		mat[1] = factor;
		mat[3] = 1.0f;
	} else if(((strcmp(plane, "xy") == 0)
		     || (strcmp(plane, "XY") == 0)) && matSize > 2) {
		mat[0] = 1.0f;
		mat[4] = 1.0f;
		mat[6] = factor;
		mat[7] = factor;
	} else if(((strcmp(plane, "xz") == 0)
		     || (strcmp(plane, "XZ") == 0)) && matSize > 2) {
		mat[0] = 1.0f;
		mat[3] = factor;
		mat[4] = 1.0f;
		mat[5] = factor;
		mat[8] = 1.0f;
	} else if(((strcmp(plane, "yz") == 0)
		     || (strcmp(plane, "YZ") == 0)) && matSize > 2) {
		mat[0] = 1.0f;
		mat[1] = factor;
		mat[2] = factor;
		mat[4] = 1.0f;
		mat[8] = 1.0f;
	} else {
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
	}
	if(matSize == 4) {
		//resize matrix
		mat[10] = mat[8];
		mat[9] = mat[7];
		mat[8] = mat[6];
		mat[7] = 0.0f;
		mat[6] = mat[5];
		mat[5] = mat[4];
		mat[4] = mat[3];
		mat[3] = 0.0f;
	}
	//pass to matrix creation
	return newMatrixObject(mat, matSize, matSize, Py_NEW);
}
//----------------------------------QUATERNION FUNCTIONS-----------------
//----------------------------------Mathutils.Quaternion() --------------
PyObject *M_Mathutils_Quaternion(PyObject * self, PyObject * args)
{
	PyObject *listObject = NULL, *n, *q, *f;
	int size, i;
	float quat[4];
	double norm = 0.0f, angle = 0.0f;

	size = PySequence_Length(args);
	if (size == 1 || size == 2) { //seq?
		listObject = PySequence_GetItem(args, 0);
		if (PySequence_Check(listObject)) {
			size = PySequence_Length(listObject);
			if ((size == 4 && PySequence_Length(args) !=1) || 
				(size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) { 
				// invalid args/size
				Py_XDECREF(listObject);
				return EXPP_ReturnPyObjError(PyExc_AttributeError, 
					"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
			}
	   		if(size == 3){ //get angle in axis/angle
				n = PyNumber_Float(PySequence_GetItem(args, 1));
				if(n == NULL) { // parsed item not a number or getItem fail
					Py_XDECREF(listObject);
					return EXPP_ReturnPyObjError(PyExc_TypeError, 
						"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
				}
				angle = PyFloat_AS_DOUBLE(n);
				Py_DECREF(n);
			}
		}else{
			listObject = PySequence_GetItem(args, 1);
			if (PySequence_Check(listObject)) {
				size = PySequence_Length(listObject);
				if (size != 3) { 
					// invalid args/size
					Py_XDECREF(listObject);
					return EXPP_ReturnPyObjError(PyExc_AttributeError, 
						"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
				}
				n = PyNumber_Float(PySequence_GetItem(args, 0));
				if(n == NULL) { // parsed item not a number or getItem fail
					Py_XDECREF(listObject);
					return EXPP_ReturnPyObjError(PyExc_TypeError, 
						"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
				}
				angle = PyFloat_AS_DOUBLE(n);
				Py_DECREF(n);
			} else { // argument was not a sequence
				Py_XDECREF(listObject);
				return EXPP_ReturnPyObjError(PyExc_TypeError, 
					"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
			}
		}
	} else if (size == 0) { //returns a new empty quat
		return (PyObject *) newQuaternionObject(NULL, Py_NEW); 
	} else {
		listObject = EXPP_incr_ret(args);
	}

	if (size == 3) { // invalid quat size
		if(PySequence_Length(args) != 2){
			Py_XDECREF(listObject);
			return EXPP_ReturnPyObjError(PyExc_AttributeError, 
				"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
		}
	}else{
		if(size != 4){
			Py_XDECREF(listObject);
			return EXPP_ReturnPyObjError(PyExc_AttributeError, 
				"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
		}
	}
	for (i=0; i<size; i++) { //parse
		q = PySequence_GetItem(listObject, i);
		if (q == NULL) { // Failed to read sequence
			Py_XDECREF(listObject);
			return EXPP_ReturnPyObjError(PyExc_RuntimeError, 
				"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
		}
		f = PyNumber_Float(q);
		if(f == NULL) { // parsed item not a number
			Py_DECREF(q);
			Py_XDECREF(listObject);
			return EXPP_ReturnPyObjError(PyExc_TypeError, 
				"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
		}
		quat[i] = PyFloat_AS_DOUBLE(f);
		EXPP_decr2(f, q);
	}
	if(size == 3){ //calculate the quat based on axis/angle
		norm = sqrt(quat[0] * quat[0] + quat[1] * quat[1] + quat[2] * quat[2]);
		quat[0] /= norm;
		quat[1] /= norm;
		quat[2] /= norm;

		angle = angle * (Py_PI / 180);
		quat[3] =(float) (sin(angle/ 2.0f)) * quat[2];
		quat[2] =(float) (sin(angle/ 2.0f)) * quat[1];
		quat[1] =(float) (sin(angle/ 2.0f)) * quat[0];
		quat[0] =(float) (cos(angle/ 2.0f));
	}
	Py_DECREF(listObject);
	return (PyObject *) newQuaternionObject(quat, Py_NEW);
}
//----------------------------------Mathutils.CrossQuats() ----------------
//quaternion multiplication - associate not commutative
PyObject *M_Mathutils_CrossQuats(PyObject * self, PyObject * args)
{
	QuaternionObject *quatU = NULL, *quatV = NULL;
	float quat[4];

	if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU, 
		&quaternion_Type, &quatV))
		return EXPP_ReturnPyObjError(PyExc_TypeError,"Mathutils.CrossQuats(): expected Quaternion types");
	QuatMul(quat, quatU->quat, quatV->quat);

	return (PyObject*) newQuaternionObject(quat, Py_NEW);
}
//----------------------------------Mathutils.DotQuats() ----------------
//returns the dot product of 2 quaternions
PyObject *M_Mathutils_DotQuats(PyObject * self, PyObject * args)
{
	QuaternionObject *quatU = NULL, *quatV = NULL;
	double dot = 0.0f;
	int x;

	if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU, 
		&quaternion_Type, &quatV))
		return EXPP_ReturnPyObjError(PyExc_TypeError, "Mathutils.DotQuats(): expected Quaternion types");

	for(x = 0; x < 4; x++) {
		dot += quatU->quat[x] * quatV->quat[x];
	}
	return PyFloat_FromDouble(dot);
}
//----------------------------------Mathutils.DifferenceQuats() ---------
//returns the difference between 2 quaternions
PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args)
{
	QuaternionObject *quatU = NULL, *quatV = NULL;
	float quat[4], tempQuat[4];
	double dot = 0.0f;
	int x;

	if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, 
		&quatU, &quaternion_Type, &quatV))
		return EXPP_ReturnPyObjError(PyExc_TypeError, "Mathutils.DifferenceQuats(): expected Quaternion types");

	tempQuat[0] = quatU->quat[0];
	tempQuat[1] = -quatU->quat[1];
	tempQuat[2] = -quatU->quat[2];
	tempQuat[3] = -quatU->quat[3];

	dot = sqrt(tempQuat[0] * tempQuat[0] + tempQuat[1] *  tempQuat[1] +
			       tempQuat[2] * tempQuat[2] + tempQuat[3] * tempQuat[3]);

	for(x = 0; x < 4; x++) {
		tempQuat[x] /= (dot * dot);
	}
	QuatMul(quat, tempQuat, quatV->quat);
	return (PyObject *) newQuaternionObject(quat, Py_NEW);
}
//----------------------------------Mathutils.Slerp() ------------------
//attemps to interpolate 2 quaternions and return the result
PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args)
{
	QuaternionObject *quatU = NULL, *quatV = NULL;
	float quat[4], quat_u[4], quat_v[4], param;
	double x, y, dot, sinT, angle, IsinT, val;
	int flag = 0, z;

	if(!PyArg_ParseTuple(args, "O!O!f", &quaternion_Type, 
		&quatU, &quaternion_Type, &quatV, &param))
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
			"Mathutils.Slerp(): expected Quaternion types and float");

	if(param > 1.0f || param < 0.0f)
		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
					"Mathutils.Slerp(): interpolation factor must be between 0.0 and 1.0");

	//copy quats
	for(z = 0; z < 4; z++){
		quat_u[z] = quatU->quat[z];
		quat_v[z] = quatV->quat[z];
	}

	//dot product
	dot = quat_u[0] * quat_v[0] + quat_u[1] * quat_v[1] +
		quat_u[2] * quat_v[2] + quat_u[3] * quat_v[3];

	//if negative negate a quat (shortest arc)
	if(dot < 0.0f) {
		quat_v[0] = -quat_v[0];
		quat_v[1] = -quat_v[1];
		quat_v[2] = -quat_v[2];
		quat_v[3] = -quat_v[3];
		dot = -dot;
	}
	if(dot > .99999f) { //very close
		x = 1.0f - param;
		y = param;
	} else {
		//calculate sin of angle
		sinT = sqrt(1.0f - (dot * dot));
		//calculate angle
		angle = atan2(sinT, dot);
		//caluculate inverse of sin(theta)
		IsinT = 1.0f / sinT;
		x = sin((1.0f - param) * angle) * IsinT;
		y = sin(param * angle) * IsinT;
	}
	//interpolate
	quat[0] = quat_u[0] * x + quat_v[0] * y;
	quat[1] = quat_u[1] * x + quat_v[1] * y;
	quat[2] = quat_u[2] * x + quat_v[2] * y;
	quat[3] = quat_u[3] * x + quat_v[3] * y;

	return (PyObject *) newQuaternionObject(quat, Py_NEW);
}
//----------------------------------EULER FUNCTIONS----------------------
//----------------------------------Mathutils.Euler() -------------------
//makes a new euler for you to play with
PyObject *M_Mathutils_Euler(PyObject * self, PyObject * args)
{

	PyObject *listObject = NULL;
	int size, i;
	float eul[3];

	size = PySequence_Length(args);
	if (size == 1) {
		listObject = PySequence_GetItem(args, 0);
		if (PySequence_Check(listObject)) {
			size = PySequence_Length(listObject);
		} else { // Single argument was not a sequence
			Py_XDECREF(listObject);
			return EXPP_ReturnPyObjError(PyExc_TypeError, 
				"Mathutils.Euler(): 3d numeric sequence expected\n");
		}
	} else if (size == 0) {
		//returns a new empty 3d euler
		return (PyObject *) newEulerObject(NULL, Py_NEW); 
	} else {
		listObject = EXPP_incr_ret(args);
	}
	if (size != 3) { // Invalid euler size
		Py_XDECREF(listObject);
		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
			"Mathutils.Euler(): 3d numeric sequence expected\n");
	}
	for (i=0; i<size; i++) {
		PyObject *e, *f;

		e = PySequence_GetItem(listObject, i);
		if (e == NULL) { // Failed to read sequence
			Py_XDECREF(listObject);
			return EXPP_ReturnPyObjError(PyExc_RuntimeError, 
				"Mathutils.Euler(): 3d numeric sequence expected\n");
		}
		f = PyNumber_Float(e);
		if(f == NULL) { // parsed item not a number
			Py_DECREF(e);
			Py_XDECREF(listObject);
			return EXPP_ReturnPyObjError(PyExc_TypeError, 
				"Mathutils.Euler(): 3d numeric sequence expected\n");
		}
		eul[i]=PyFloat_AS_DOUBLE(f);
		EXPP_decr2(f,e);
	}
	Py_DECREF(listObject);
	return (PyObject *) newEulerObject(eul, Py_NEW);
}
//#############################DEPRECATED################################
//#######################################################################
//----------------------------------Mathutils.CopyMat() -----------------
//copies a matrix into a new matrix
PyObject *M_Mathutils_CopyMat(PyObject * self, PyObject * args)
{
	PyObject *matrix = NULL;

	printf("Mathutils.CopyMat(): Deprecated :use Mathutils.Matrix() to copy matrices\n");
	printf("Method will be removed in 2 releases\n");
	matrix = M_Mathutils_Matrix(self, args);
	if(matrix == NULL)
		return NULL; //error string already set if we get here
	else
		return matrix;
}
//----------------------------------Mathutils.CopyVec() -----------------
//makes a new vector that is a copy of the input
PyObject *M_Mathutils_CopyVec(PyObject * self, PyObject * args)
{
	PyObject *vec = NULL;

	printf("Mathutils.CopyVec(): Deprecated: use Mathutils.Vector() to copy vectors\n");
	printf("Method will be removed in 2 releases\n");
	vec = M_Mathutils_Vector(self, args);
	if(vec == NULL)
		return NULL; //error string already set if we get here
	else
		return vec;
}
//----------------------------------Mathutils.CopyQuat() --------------
//Copies a quaternion to a new quat
PyObject *M_Mathutils_CopyQuat(PyObject * self, PyObject * args)
{
	PyObject *quat = NULL;

	printf("Mathutils.CopyQuat(): Deprecated:use Mathutils.Quaternion() to copy vectors\n");
	printf("Method will be removed in 2 releases\n");
	quat = M_Mathutils_Quaternion(self, args);
	if(quat == NULL)
		return NULL; //error string already set if we get here
	else
		return quat;
}
//----------------------------------Mathutils.CopyEuler() ---------------
//copies a euler to a new euler
PyObject *M_Mathutils_CopyEuler(PyObject * self, PyObject * args)
{
	PyObject *eul = NULL;

	printf("Mathutils.CopyEuler(): Deprecated:use Mathutils.Euler() to copy vectors\n");
	printf("Method will be removed in 2 releases\n");
	eul = M_Mathutils_Euler(self, args);
	if(eul == NULL)
		return NULL; //error string already set if we get here
	else
		return eul;
}
//----------------------------------Mathutils.RotateEuler() ------------
//rotates a euler a certain amount and returns the result
//should return a unique euler rotation (i.e. no 720 degree pitches :)
PyObject *M_Mathutils_RotateEuler(PyObject * self, PyObject * args)
{
	EulerObject *Eul = NULL;
	float angle;
	char *axis;

	if(!PyArg_ParseTuple(args, "O!fs", &euler_Type, &Eul, &angle, &axis))
		return EXPP_ReturnPyObjError(PyExc_TypeError,
			   "Mathutils.RotateEuler(): expected euler type & float & string");

	printf("Mathutils.RotateEuler(): Deprecated:use Euler.rotate() to rotate a euler\n");
	printf("Method will be removed in 2 releases\n");
	Euler_Rotate(Eul, Py_BuildValue("fs", angle, axis));
	return EXPP_incr_ret(Py_None);
}
//----------------------------------Mathutils.MatMultVec() --------------
//COLUMN VECTOR Multiplication (Matrix X Vector)
PyObject *M_Mathutils_MatMultVec(PyObject * self, PyObject * args)
{
	MatrixObject *mat = NULL;
	VectorObject *vec = NULL;
	PyObject *retObj = NULL;

	//get pyObjects
	if(!PyArg_ParseTuple(args, "O!O!", &matrix_Type, &mat, &vector_Type, &vec))
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
			"Mathutils.MatMultVec(): MatMultVec() expects a matrix and a vector object - in that order\n");

	printf("Mathutils.MatMultVec(): Deprecated: use matrix * vec to perform column vector multiplication\n");
	printf("Method will be removed in 2 releases\n");
	EXPP_incr2((PyObject*)vec, (PyObject*)mat);
	retObj = column_vector_multiplication(mat, vec);
	if(!retObj){
		return NULL;
	}

	EXPP_decr2((PyObject*)vec, (PyObject*)mat);
	return retObj;
}
//----------------------------------Mathutils.VecMultMat() ---------------
//ROW VECTOR Multiplication - Vector X Matrix
PyObject *M_Mathutils_VecMultMat(PyObject * self, PyObject * args)
{
	MatrixObject *mat = NULL;
	VectorObject *vec = NULL;
	PyObject *retObj = NULL;

	//get pyObjects
	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec, &matrix_Type, &mat))
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
			"Mathutils.VecMultMat(): VecMultMat() expects a vector and matrix object - in that order\n");

	printf("Mathutils.VecMultMat(): Deprecated: use vec * matrix to perform row vector multiplication\n");
	printf("Method will be removed in 2 releases\n");
	EXPP_incr2((PyObject*)vec, (PyObject*)mat);
	retObj = row_vector_multiplication(vec, mat);
	if(!retObj){
		return NULL;
	}

	EXPP_decr2((PyObject*)vec, (PyObject*)mat);
	return retObj;
}
//#######################################################################
//#############################DEPRECATED################################