Welcome to mirror list, hosted at ThFree Co, Russian Federation.

matrix.c « api2_2x « python « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9d141cb82329511afbdf64fd5f1f07e0c0d3681f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
/*
 * $Id$
 *
 * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version. The Blender
 * Foundation also sells licenses for use in proprietary software under
 * the Blender License.  See http://www.blender.org/BL/ for information
 * about this.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * Contributor(s): Michel Selten & Joseph Gilbert
 *
 * ***** END GPL/BL DUAL LICENSE BLOCK *****
 */

#include "Mathutils.h"

#include "BKE_utildefines.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "gen_utils.h"

//-------------------------DOC STRINGS ---------------------------
char Matrix_Zero_doc[] = "() - set all values in the matrix to 0";
char Matrix_Identity_doc[] = "() - set the square matrix to it's identity matrix";
char Matrix_Transpose_doc[] = "() - set the matrix to it's transpose";
char Matrix_Determinant_doc[] = "() - return the determinant of the matrix";
char Matrix_Invert_doc[] =  "() - set the matrix to it's inverse if an inverse is possible";
char Matrix_TranslationPart_doc[] = "() - return a vector encompassing the translation of the matrix";
char Matrix_RotationPart_doc[] = "() - return a vector encompassing the rotation of the matrix";
char Matrix_Resize4x4_doc[] = "() - resize the matrix to a 4x4 square matrix";
char Matrix_toEuler_doc[] = "() - convert matrix to a euler angle rotation";
char Matrix_toQuat_doc[] = "() - convert matrix to a quaternion rotation";
//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef Matrix_methods[] = {
	{"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc},
	{"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc},
	{"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc},
	{"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc},
	{"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc},
	{"translationPart", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc},
	{"rotationPart", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc},
	{"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc},
	{"toEuler", (PyCFunction) Matrix_toEuler, METH_NOARGS, Matrix_toEuler_doc},
	{"toQuat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
	{NULL, NULL, 0, NULL}
};
//-----------------------------METHODS----------------------------
//---------------------------Matrix.toQuat() ---------------------
PyObject *Matrix_toQuat(MatrixObject * self)
{
	float quat[4];

	//must be 3-4 cols, 3-4 rows, square matrix
	if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Matrix.toQuat(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
	} 
	if(self->colSize == 3){
        Mat3ToQuat((float (*)[3])*self->matrix, quat);
	}else{
		Mat4ToQuat((float (*)[4])*self->matrix, quat);
	}
	
	return newQuaternionObject(quat, Py_NEW);
}
//---------------------------Matrix.toEuler() --------------------
PyObject *Matrix_toEuler(MatrixObject * self)
{
	float eul[3];
	int x;

	//must be 3-4 cols, 3-4 rows, square matrix
	if(self->colSize !=3 || self->rowSize != 3) {
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Matrix.toQuat(): inappropriate matrix size - expects 3x3 matrix\n");
	} 
    Mat3ToEul((float (*)[3])*self->matrix, eul);
	//have to convert to degrees
	for(x = 0; x < 3; x++) {
		eul[x] *= (float) (180 / Py_PI);
	}
	return newEulerObject(eul, Py_NEW);
}
//---------------------------Matrix.resize4x4() ------------------
PyObject *Matrix_Resize4x4(MatrixObject * self)
{
	int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows;

	if(self->data.blend_data){
		return EXPP_ReturnPyObjError(PyExc_TypeError,
			"cannot resize wrapped data - only python matrices\n");
	}

	self->data.py_data = PyMem_Realloc(self->data.py_data, (sizeof(float) * 16));
	if(self->data.py_data == NULL) {
		return EXPP_ReturnPyObjError(PyExc_MemoryError,
			"matrix.resize4x4(): problem allocating pointer space\n\n");
	}
	self->contigPtr = self->data.py_data;  //force
	self->matrix = PyMem_Realloc(self->matrix, (sizeof(float) * 4));
	if(self->matrix == NULL) {
		return EXPP_ReturnPyObjError(PyExc_MemoryError,
			"matrix.resize4x4(): problem allocating pointer space\n\n");
	}
	//set row pointers
	for(x = 0; x < 4; x++) {
		self->matrix[x] = self->contigPtr + (x * 4);
	}
	//move data to new spot in array + clean
	for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){
		for(x = 0; x < 4; x++){
			self->contigPtr[(4 * (self->rowSize + (blank_rows - 1))) + x] = 0.0f;
		}
	}
	for(x = 1; x <= self->rowSize; x++){
		first_row_elem = (self->colSize * (self->rowSize - x));
		curr_pos = (first_row_elem + (self->colSize -1));
		new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem);
		for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){
			self->contigPtr[new_pos + blank_columns] = 0.0f;
		}
		for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){
			self->contigPtr[new_pos] = self->contigPtr[curr_pos];
			new_pos--;
		}
	}
	self->rowSize = 4;
	self->colSize = 4;
	return EXPP_incr_ret((PyObject*)self);
}
//---------------------------Matrix.translationPart() ------------
PyObject *Matrix_TranslationPart(MatrixObject * self)
{
	float vec[4];

	if(self->colSize < 3 && self->rowSize < 4){
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Matrix.translationPart: inappropriate matrix size\n");
	}

	vec[0] = self->matrix[3][0];
	vec[1] = self->matrix[3][1];
	vec[2] = self->matrix[3][2];

	return newVectorObject(vec, 3, Py_NEW);
}
//---------------------------Matrix.rotationPart() ---------------
PyObject *Matrix_RotationPart(MatrixObject * self)
{
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};

	if(self->colSize < 3 && self->rowSize < 3){
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Matrix.rotationPart: inappropriate matrix size\n");
	}

	mat[0] = self->matrix[0][0];
	mat[1] = self->matrix[0][1];
	mat[2] = self->matrix[0][2];
	mat[3] = self->matrix[1][0];
	mat[4] = self->matrix[1][1];
	mat[5] = self->matrix[1][2];
	mat[6] = self->matrix[2][0];
	mat[7] = self->matrix[2][1];
	mat[8] = self->matrix[2][2];

	return newMatrixObject(mat, 3, 3, Py_NEW);
}
//---------------------------Matrix.invert() ---------------------
PyObject *Matrix_Invert(MatrixObject * self)
{
	
	int x, y, z = 0;
	float det = 0.0f;
	PyObject *f = NULL;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};

	if(self->rowSize != self->colSize){
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Matrix.invert: only square matrices are supported\n");
	}

	//calculate the determinant
	f = Matrix_Determinant(self);
	det = (float)PyFloat_AS_DOUBLE(f);

	if(det != 0) {
		//calculate the classical adjoint
		if(self->rowSize == 2) {
			mat[0] = self->matrix[1][1];
			mat[1] = -self->matrix[1][0];
			mat[2] = -self->matrix[0][1];
			mat[3] = self->matrix[0][0];
		} else if(self->rowSize == 3) {
			Mat3Adj((float (*)[3]) mat,(float (*)[3]) *self->matrix);
		} else if(self->rowSize == 4) {
			Mat4Adj((float (*)[4]) mat, (float (*)[4]) *self->matrix);
		}
		//divide by determinate
		for(x = 0; x < (self->rowSize * self->colSize); x++) {
			mat[x] /= det;
		}
		//set values
		for(x = 0; x < self->rowSize; x++) {
			for(y = 0; y < self->colSize; y++) {
				self->matrix[x][y] = mat[z];
				z++;
			}
		}
		//transpose
		//Matrix_Transpose(self);
	} else {
		printf("Matrix.invert: matrix does not have an inverse\n");
	}
	return EXPP_incr_ret((PyObject*)self);
}
//---------------------------Matrix.determinant() ----------------
PyObject *Matrix_Determinant(MatrixObject * self)
{
	float det = 0.0f;

	if(self->rowSize != self->colSize){
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Matrix.determinant: only square matrices are supported\n");
	}

	if(self->rowSize == 2) {
		det = Det2x2(self->matrix[0][0], self->matrix[0][1],
					 self->matrix[1][0], self->matrix[1][1]);
	} else if(self->rowSize == 3) {
		det = Det3x3(self->matrix[0][0], self->matrix[0][1],
					 self->matrix[0][2], self->matrix[1][0],
					 self->matrix[1][1], self->matrix[1][2],
					 self->matrix[2][0], self->matrix[2][1],
					 self->matrix[2][2]);
	} else {
		det = Det4x4((float (*)[4]) *self->matrix);
	}

	return PyFloat_FromDouble( (double) det );
}
//---------------------------Matrix.transpose() ------------------
PyObject *Matrix_Transpose(MatrixObject * self)
{
	float t = 0.0f;

	if(self->rowSize != self->colSize){
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Matrix.transpose: only square matrices are supported\n");
	}

	if(self->rowSize == 2) {
		t = self->matrix[1][0];
		self->matrix[1][0] = self->matrix[0][1];
		self->matrix[0][1] = t;
	} else if(self->rowSize == 3) {
		Mat3Transp((float (*)[3])*self->matrix);
	} else {
		Mat4Transp((float (*)[4])*self->matrix);
	}

	return EXPP_incr_ret((PyObject*)self);
}
//---------------------------Matrix.zero() -----------------------
PyObject *Matrix_Zero(MatrixObject * self)
{
	int row, col;

	for(row = 0; row < self->rowSize; row++) {
		for(col = 0; col < self->colSize; col++) {
			self->matrix[row][col] = 0.0f;
		}
	}
	return EXPP_incr_ret((PyObject*)self);
}
//---------------------------Matrix.identity(() ------------------
PyObject *Matrix_Identity(MatrixObject * self)
{
	if(self->rowSize != self->colSize){
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Matrix.identity: only square matrices are supported\n");
	}

	if(self->rowSize == 2) {
		self->matrix[0][0] = 1.0f;
		self->matrix[0][1] = 0.0f;
		self->matrix[1][0] = 0.0f;
		self->matrix[1][1] = 1.0f;
	} else if(self->rowSize == 3) {
		Mat3One((float (*)[3]) *self->matrix);
	} else {
		Mat4One((float (*)[4]) *self->matrix);
	}

	return EXPP_incr_ret((PyObject*)self);
}
//----------------------------dealloc()(internal) ----------------
//free the py_object
static void Matrix_dealloc(MatrixObject * self)
{
	Py_XDECREF(self->coerced_object);
	PyMem_Free(self->matrix);
	//only free py_data
	if(self->data.py_data){
		PyMem_Free(self->data.py_data);
	}
	PyObject_DEL(self);
}
//----------------------------getattr()(internal) ----------------
//object.attribute access (get)
static PyObject *Matrix_getattr(MatrixObject * self, char *name)
{
	if(STREQ(name, "rowSize")) {
		return PyInt_FromLong((long) self->rowSize);
	} else if(STREQ(name, "colSize")) {
		return PyInt_FromLong((long) self->colSize);
	}
	if(STREQ(name, "wrapped")){
		if(self->wrapped == Py_WRAP)
			return EXPP_incr_ret((PyObject *)Py_True);
		else 
			return EXPP_incr_ret((PyObject *)Py_False);
	}
	return Py_FindMethod(Matrix_methods, (PyObject *) self, name);
}
//----------------------------setattr()(internal) ----------------
//object.attribute access (set)
static int Matrix_setattr(MatrixObject * self, char *name, PyObject * v)
{
	/* This is not supported. */
	return (-1);
}
//----------------------------print object (internal)-------------
//print the object to screen
static PyObject *Matrix_repr(MatrixObject * self)
{
	int x, y;
	char buffer[48], str[1024];

	BLI_strncpy(str,"",1024);
	for(x = 0; x < self->rowSize; x++){
		sprintf(buffer, "[");
		strcat(str,buffer);
		for(y = 0; y < (self->colSize - 1); y++) {
			sprintf(buffer, "%.6f, ", self->matrix[x][y]);
			strcat(str,buffer);
		}
		if(x < (self->rowSize-1)){
			sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[x][y], x);
			strcat(str,buffer);
		}else{
			sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[x][y], x);
			strcat(str,buffer);
		}
	}

	return PyString_FromString(str);
}

//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Matrix_len(MatrixObject * self)
{
	return (self->colSize * self->rowSize);
}
//----------------------------object[]---------------------------
//sequence accessor (get)
//the wrapped vector gives direct access to the matrix data
static PyObject *Matrix_item(MatrixObject * self, int i)
{
	if(i < 0 || i >= self->rowSize)
		return EXPP_ReturnPyObjError(PyExc_IndexError,
		"matrix[attribute]: array index out of range\n");

	return newVectorObject(self->matrix[i], self->colSize, Py_WRAP);
}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
{
	int y, x, size = 0;
	float vec[4];
	PyObject *m, *f;

	if(i > self->rowSize || i < 0){
		return EXPP_ReturnIntError(PyExc_TypeError,
			"matrix[attribute] = x: bad row\n");
	}

	if(PySequence_Check(ob)){
		size = PySequence_Length(ob);
		if(size != self->colSize){
			return EXPP_ReturnIntError(PyExc_TypeError,
				"matrix[attribute] = x: bad sequence size\n");
		}
		for (x = 0; x < size; x++) {
			m = PySequence_GetItem(ob, x);
			if (m == NULL) { // Failed to read sequence
				return EXPP_ReturnIntError(PyExc_RuntimeError, 
					"matrix[attribute] = x: unable to read sequence\n");
			}

			f = PyNumber_Float(m);
			if(f == NULL) { // parsed item not a number
				Py_DECREF(m);
				return EXPP_ReturnIntError(PyExc_TypeError, 
					"matrix[attribute] = x: sequence argument not a number\n");
			}

			vec[x] = (float)PyFloat_AS_DOUBLE(f);
			EXPP_decr2(m, f);
		}
		//parsed well - now set in matrix
		for(y = 0; y < size; y++){
			self->matrix[i][y] = vec[y];
		}
		return 0;
	}else{
		return EXPP_ReturnIntError(PyExc_TypeError,
			"matrix[attribute] = x: expects a sequence of column size\n");
	}
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
{

	PyObject *list = NULL;
	int count;

	CLAMP(begin, 0, self->rowSize);
	CLAMP(end, 0, self->rowSize);
	begin = MIN2(begin,end);

	list = PyList_New(end - begin);
	for(count = begin; count < end; count++) {
		PyList_SetItem(list, count - begin,
				newVectorObject(self->matrix[count], self->colSize, Py_WRAP));
	}

	return list;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Matrix_ass_slice(MatrixObject * self, int begin, int end,
			     PyObject * seq)
{
	int i, x, y, size, sub_size = 0;
	float mat[16];
	PyObject *subseq;
	PyObject *m, *f;

	CLAMP(begin, 0, self->rowSize);
	CLAMP(end, 0, self->rowSize);
	begin = MIN2(begin,end);

	if(PySequence_Check(seq)){
		size = PySequence_Length(seq);
		if(size != (end - begin)){
			return EXPP_ReturnIntError(PyExc_TypeError,
				"matrix[begin:end] = []: size mismatch in slice assignment\n");
		}
		//parse sub items
		for (i = 0; i < size; i++) {
			//parse each sub sequence
			subseq = PySequence_GetItem(seq, i);
			if (subseq == NULL) { // Failed to read sequence
				return EXPP_ReturnIntError(PyExc_RuntimeError, 
					"matrix[begin:end] = []: unable to read sequence\n");
			}

			if(PySequence_Check(subseq)){
				//subsequence is also a sequence
				sub_size = PySequence_Length(subseq);
				if(sub_size != self->colSize){
					Py_DECREF(subseq);
					return EXPP_ReturnIntError(PyExc_TypeError,
						"matrix[begin:end] = []: size mismatch in slice assignment\n");
				}
				for (y = 0; y < sub_size; y++) {
					m = PySequence_GetItem(subseq, y);
					if (m == NULL) { // Failed to read sequence
						Py_DECREF(subseq);
						return EXPP_ReturnIntError(PyExc_RuntimeError, 
							"matrix[begin:end] = []: unable to read sequence\n");
					}

					f = PyNumber_Float(m);
					if(f == NULL) { // parsed item not a number
						EXPP_decr2(m, subseq);
						return EXPP_ReturnIntError(PyExc_TypeError, 
							"matrix[begin:end] = []: sequence argument not a number\n");
					}

					mat[(i * self->colSize) + y] = (float)PyFloat_AS_DOUBLE(f);
					EXPP_decr2(f, m);
				}
			}else{
				Py_DECREF(subseq);
				return EXPP_ReturnIntError(PyExc_TypeError,
					"matrix[begin:end] = []: illegal argument type for built-in operation\n");
			}
			Py_DECREF(subseq);
		}
		//parsed well - now set in matrix
		for(x = 0; x < (size * sub_size); x++){
			self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
		}
		return 0;
	}else{
		return EXPP_ReturnIntError(PyExc_TypeError,
			"matrix[begin:end] = []: illegal argument type for built-in operation\n");
	}
}
//------------------------NUMERIC PROTOCOLS----------------------
//------------------------obj + obj------------------------------
static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
{
	int x, y;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
	MatrixObject *mat1 = NULL, *mat2 = NULL;

	mat1 = (MatrixObject*)m1;
	mat2 = (MatrixObject*)m2;

	if(mat1->coerced_object || mat2->coerced_object){
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Matrix addition: arguments not valid for this operation....\n");
	}
	if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Matrix addition: matrices must have the same dimensions for this operation\n");
	}

	for(x = 0; x < mat1->rowSize; x++) {
		for(y = 0; y < mat1->colSize; y++) {
			mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y];
		}
	}

	return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
}
//------------------------obj - obj------------------------------
//subtraction
static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
{
	int x, y;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
	MatrixObject *mat1 = NULL, *mat2 = NULL;

	mat1 = (MatrixObject*)m1;
	mat2 = (MatrixObject*)m2;

	if(mat1->coerced_object || mat2->coerced_object){
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Matrix addition: arguments not valid for this operation....\n");
	}
	if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
			"Matrix addition: matrices must have the same dimensions for this operation\n");
	}

	for(x = 0; x < mat1->rowSize; x++) {
		for(y = 0; y < mat1->colSize; y++) {
			mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y];
		}
	}

	return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
}
//------------------------obj * obj------------------------------
//mulplication
static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
{
	int x, y, z;
	float scalar;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
	double dot = 0.0f;
	MatrixObject *mat1 = NULL, *mat2 = NULL;
	PyObject *f = NULL;
	VectorObject *vec = NULL;
	PointObject *pt = NULL;

	mat1 = (MatrixObject*)m1;
	mat2 = (MatrixObject*)m2;

	if(mat1->coerced_object){
		if (PyFloat_Check(mat1->coerced_object) || 
			PyInt_Check(mat1->coerced_object)){	// FLOAT/INT * MATRIX
			f = PyNumber_Float(mat1->coerced_object);
			if(f == NULL) { // parsed item not a number
				return EXPP_ReturnPyObjError(PyExc_TypeError, 
					"Matrix multiplication: arguments not acceptable for this operation\n");
			}

			scalar = (float)PyFloat_AS_DOUBLE(f);
			for(x = 0; x < mat2->rowSize; x++) {
				for(y = 0; y < mat2->colSize; y++) {
					mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
				}
			}
			return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW);
		}
	}else{
		if(mat2->coerced_object){
			if(VectorObject_Check(mat2->coerced_object)){ //MATRIX * VECTOR
				vec = (VectorObject*)mat2->coerced_object;
				return column_vector_multiplication(mat1, vec);
			}else if(PointObject_Check(mat2->coerced_object)){ //MATRIX * POINT
				pt = (PointObject*)mat2->coerced_object;
				return column_point_multiplication(mat1, pt);
			}else if (PyFloat_Check(mat2->coerced_object) || 
				PyInt_Check(mat2->coerced_object)){	// MATRIX * FLOAT/INT
				f = PyNumber_Float(mat2->coerced_object);
				if(f == NULL) { // parsed item not a number
					return EXPP_ReturnPyObjError(PyExc_TypeError, 
						"Matrix multiplication: arguments not acceptable for this operation\n");
				}

				scalar = (float)PyFloat_AS_DOUBLE(f);
				for(x = 0; x < mat1->rowSize; x++) {
					for(y = 0; y < mat1->colSize; y++) {
						mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
					}
				}
				return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
			}
		}else{  //MATRIX * MATRIX
			if(mat1->colSize != mat2->rowSize){
				return EXPP_ReturnPyObjError(PyExc_AttributeError,
					"Matrix multiplication: matrix A rowsize must equal matrix B colsize\n");
			}
			for(x = 0; x < mat1->rowSize; x++) {
				for(y = 0; y < mat2->colSize; y++) {
					for(z = 0; z < mat1->colSize; z++) {
						dot += (mat1->matrix[x][z] * mat2->matrix[z][y]);
					}
					mat[((x * mat1->rowSize) + y)] = (float)dot;
					dot = 0.0f;
				}
			}
			return newMatrixObject(mat, mat1->rowSize, mat2->colSize, Py_NEW);
		}
	}

	return EXPP_ReturnPyObjError(PyExc_TypeError, 
		"Matrix multiplication: arguments not acceptable for this operation\n");
}
PyObject* Matrix_inv(MatrixObject *self)
{
	return Matrix_Invert(self);
}
//------------------------coerce(obj, obj)-----------------------
//coercion of unknown types to type MatrixObject for numeric protocols
/*Coercion() is called whenever a math operation has 2 operands that
 it doesn't understand how to evaluate. 2+Matrix for example. We want to 
 evaluate some of these operations like: (vector * 2), however, for math
 to proceed, the unknown operand must be cast to a type that python math will
 understand. (e.g. in the case above case, 2 must be cast to a vector and 
 then call vector.multiply(vector, scalar_cast_as_vector)*/
static int Matrix_coerce(PyObject ** m1, PyObject ** m2)
{
	PyObject *coerced = NULL;
	if(!MatrixObject_Check(*m2)) {
		if(VectorObject_Check(*m2) || PyFloat_Check(*m2) || PyInt_Check(*m2) ||
			PointObject_Check(*m2)) {
			coerced = EXPP_incr_ret(*m2);
			*m2 = newMatrixObject(NULL,3,3,Py_NEW);
			((MatrixObject*)*m2)->coerced_object = coerced;
		}else{
			return EXPP_ReturnIntError(PyExc_TypeError, 
				"matrix.coerce(): unknown operand - can't coerce for numeric protocols\n");
		}
	}
	EXPP_incr2(*m1, *m2);
	return 0;
}
//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Matrix_SeqMethods = {
	(inquiry) Matrix_len,					/* sq_length */
	(binaryfunc) 0,							/* sq_concat */
	(intargfunc) 0,							/* sq_repeat */
	(intargfunc) Matrix_item,				/* sq_item */
	(intintargfunc) Matrix_slice,			/* sq_slice */
	(intobjargproc) Matrix_ass_item,		/* sq_ass_item */
	(intintobjargproc) Matrix_ass_slice,	/* sq_ass_slice */
};
static PyNumberMethods Matrix_NumMethods = {
	(binaryfunc) Matrix_add,				/* __add__ */
	(binaryfunc) Matrix_sub,				/* __sub__ */
	(binaryfunc) Matrix_mul,				/* __mul__ */
	(binaryfunc) 0,							/* __div__ */
	(binaryfunc) 0,							/* __mod__ */
	(binaryfunc) 0,							/* __divmod__ */
	(ternaryfunc) 0,						/* __pow__ */
	(unaryfunc) 0,							/* __neg__ */
	(unaryfunc) 0,							/* __pos__ */
	(unaryfunc) 0,							/* __abs__ */
	(inquiry) 0,							/* __nonzero__ */
	(unaryfunc) Matrix_inv,					/* __invert__ */
	(binaryfunc) 0,							/* __lshift__ */
	(binaryfunc) 0,							/* __rshift__ */
	(binaryfunc) 0,							/* __and__ */
	(binaryfunc) 0,							/* __xor__ */
	(binaryfunc) 0,							/* __or__ */
	(coercion) Matrix_coerce,				/* __coerce__ */
	(unaryfunc) 0,							/* __int__ */
	(unaryfunc) 0,							/* __long__ */
	(unaryfunc) 0,							/* __float__ */
	(unaryfunc) 0,							/* __oct__ */
	(unaryfunc) 0,							/* __hex__ */
};
//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject matrix_Type = {
	PyObject_HEAD_INIT(NULL)				/* required python macro */
	0,										/*ob_size */
	"Matrix",								/*tp_name */
	sizeof(MatrixObject),					/*tp_basicsize */
	0,										/*tp_itemsize */
	(destructor) Matrix_dealloc,			/*tp_dealloc */
	(printfunc) 0,							/*tp_print */
	(getattrfunc) Matrix_getattr,			/*tp_getattr */
	(setattrfunc) Matrix_setattr,			/*tp_setattr */
	0,										/*tp_compare */
	(reprfunc) Matrix_repr,					/*tp_repr */
	&Matrix_NumMethods,						/*tp_as_number */
	&Matrix_SeqMethods,						/*tp_as_sequence */
};
//------------------------newMatrixObject (internal)-------------
//creates a new matrix object
//self->matrix     self->contiguous_ptr (reference to data.xxx)
//       [0]------------->[0]
//                        [1]
//                        [2]
//       [1]------------->[3]
//                        [4]
//                        [5]
//	             ....
//self->matrix[1][1] = self->contiguous_ptr[4] = self->data.xxx_data[4]
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 (i.e. it was allocated elsewhere by MEM_mallocN())
  pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 (i.e. it must be created here with PyMEM_malloc())*/
PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type)
{
	MatrixObject *self;
	int x, row, col;

	//matrix objects can be any 2-4row x 2-4col matrix
	if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){
		return EXPP_ReturnPyObjError(PyExc_RuntimeError,
			"matrix(): row and column sizes must be between 2 and 4\n");
	}

	matrix_Type.ob_type = &PyType_Type;
	self = PyObject_NEW(MatrixObject, &matrix_Type);
	self->data.blend_data = NULL;
	self->data.py_data = NULL;
	self->rowSize = rowSize;
	self->colSize = colSize;
	self->coerced_object = NULL;

	if(type == Py_WRAP){
		self->data.blend_data = mat;
		self->contigPtr = self->data.blend_data;
		//create pointer array
		self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
		if(self->matrix == NULL) { //allocation failure
			return EXPP_ReturnPyObjError( PyExc_MemoryError,
				"matrix(): problem allocating pointer space\n");
		}
		//pointer array points to contigous memory
		for(x = 0; x < rowSize; x++) {
			self->matrix[x] = self->contigPtr + (x * colSize);
		}
		self->wrapped = Py_WRAP;
	}else if (type == Py_NEW){
		self->data.py_data = PyMem_Malloc(rowSize * colSize * sizeof(float));
		if(self->data.py_data == NULL) { //allocation failure
			return EXPP_ReturnPyObjError( PyExc_MemoryError,
				"matrix(): problem allocating pointer space\n");
		}
		self->contigPtr = self->data.py_data;
		//create pointer array
		self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
		if(self->matrix == NULL) { //allocation failure
			PyMem_Free(self->data.py_data);
			return EXPP_ReturnPyObjError( PyExc_MemoryError,
				"matrix(): problem allocating pointer space\n");
		}
		//pointer array points to contigous memory
		for(x = 0; x < rowSize; x++) {
			self->matrix[x] = self->contigPtr + (x * colSize);
		}
		//parse
		if(mat) {	//if a float array passed
			for(row = 0; row < rowSize; row++) {
				for(col = 0; col < colSize; col++) {
					self->matrix[row][col] = mat[(row * colSize) + col];
				}
			}
		} else { //or if no arguments are passed return identity matrix
			Matrix_Identity(self);
		}
		self->wrapped = Py_NEW;
	}else{ //bad type
		return NULL;
	}
	return (PyObject *) self;
}