Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Geometry.c « generic « python « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 70295d1c2d974b34220138611f35f85eacc46289 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/* 
 * $Id$
 *
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA	02111-1307, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * This is a new part of Blender.
 *
 * Contributor(s): Joseph Gilbert, Campbell Barton
 *
 * ***** END GPL LICENSE BLOCK *****
 */

#include "Geometry.h"

/*  - Not needed for now though other geometry functions will probably need them
#include "BLI_arithb.h"
#include "BKE_utildefines.h"
*/

/* Used for PolyFill */
#include "BKE_displist.h"
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
 
#include "BKE_utildefines.h"
#include "BKE_curve.h"
#include "BLI_boxpack2d.h"
#include "BLI_arithb.h"

#define SWAP_FLOAT(a,b,tmp) tmp=a; a=b; b=tmp
#define eul 0.000001

/*-- forward declarations -- */
static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq );
static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args );
static PyObject *M_Geometry_ClosestPointOnLine( PyObject * self, PyObject * args );
static PyObject *M_Geometry_PointInTriangle2D( PyObject * self, PyObject * args );
static PyObject *M_Geometry_PointInQuad2D( PyObject * self, PyObject * args );
static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * args );
static PyObject *M_Geometry_BezierInterp( PyObject * self, PyObject * args );


/*-------------------------DOC STRINGS ---------------------------*/
static char M_Geometry_doc[] = "The Blender Geometry module\n\n";
static char M_Geometry_PolyFill_doc[] = "(veclist_list) - takes a list of polylines (each point a vector) and returns the point indicies for a polyline filled with triangles";
static char M_Geometry_LineIntersect2D_doc[] = "(lineA_p1, lineA_p2, lineB_p1, lineB_p2) - takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None";
static char M_Geometry_ClosestPointOnLine_doc[] = "(pt, line_p1, line_p2) - takes a point and a line and returns a (Vector, float) for the point on the line, and the bool so you can know if the point was between the 2 points";
static char M_Geometry_PointInTriangle2D_doc[] = "(pt, tri_p1, tri_p2, tri_p3) - takes 4 vectors, one is the point and the next 3 define the triangle, only the x and y are used from the vectors";
static char M_Geometry_PointInQuad2D_doc[] = "(pt, quad_p1, quad_p2, quad_p3, quad_p4) - takes 5 vectors, one is the point and the next 4 define the quad, only the x and y are used from the vectors";
static char M_Geometry_BoxPack2D_doc[] = "";
static char M_Geometry_BezierInterp_doc[] = "";
/*-----------------------METHOD DEFINITIONS ----------------------*/
struct PyMethodDef M_Geometry_methods[] = {
	{"PolyFill", ( PyCFunction ) M_Geometry_PolyFill, METH_O, M_Geometry_PolyFill_doc},
	{"LineIntersect2D", ( PyCFunction ) M_Geometry_LineIntersect2D, METH_VARARGS, M_Geometry_LineIntersect2D_doc},
	{"ClosestPointOnLine", ( PyCFunction ) M_Geometry_ClosestPointOnLine, METH_VARARGS, M_Geometry_ClosestPointOnLine_doc},
	{"PointInTriangle2D", ( PyCFunction ) M_Geometry_PointInTriangle2D, METH_VARARGS, M_Geometry_PointInTriangle2D_doc},
	{"PointInQuad2D", ( PyCFunction ) M_Geometry_PointInQuad2D, METH_VARARGS, M_Geometry_PointInQuad2D_doc},
	{"BoxPack2D", ( PyCFunction ) M_Geometry_BoxPack2D, METH_O, M_Geometry_BoxPack2D_doc},
	{"BezierInterp", ( PyCFunction ) M_Geometry_BezierInterp, METH_VARARGS, M_Geometry_BezierInterp_doc},
	{NULL, NULL, 0, NULL}
};

static struct PyModuleDef M_Geometry_module_def = {
	PyModuleDef_HEAD_INIT,
	"Geometry",  /* m_name */
	M_Geometry_doc,  /* m_doc */
	0,  /* m_size */
	M_Geometry_methods,  /* m_methods */
	0,  /* m_reload */
	0,  /* m_traverse */
	0,  /* m_clear */
	0,  /* m_free */
};

/*----------------------------MODULE INIT-------------------------*/
PyObject *Geometry_Init(void)
{
	PyObject *submodule;
	
	submodule = PyModule_Create(&M_Geometry_module_def);
	PyDict_SetItemString(PySys_GetObject("modules"), M_Geometry_module_def.m_name, submodule);
	
	return (submodule);
}

/*----------------------------------Geometry.PolyFill() -------------------*/
/* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq )
{
	PyObject *tri_list; /*return this list of tri's */
	PyObject *polyLine, *polyVec;
	int i, len_polylines, len_polypoints, ls_error = 0;
	
	/* display listbase */
	ListBase dispbase={NULL, NULL};
	DispList *dl;
	float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
	int index, *dl_face, totpoints=0;
	
	
	dispbase.first= dispbase.last= NULL;
	
	
	if(!PySequence_Check(polyLineSeq)) {
		PyErr_SetString( PyExc_TypeError, "expected a sequence of poly lines" );
		return NULL;
	}
	
	len_polylines = PySequence_Size( polyLineSeq );
	
	for( i = 0; i < len_polylines; ++i ) {
		polyLine= PySequence_GetItem( polyLineSeq, i );
		if (!PySequence_Check(polyLine)) {
			freedisplist(&dispbase);
			Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
			PyErr_SetString( PyExc_TypeError, "One or more of the polylines is not a sequence of Mathutils.Vector's" );
			return NULL;
		}
		
		len_polypoints= PySequence_Size( polyLine );
		if (len_polypoints>0) { /* dont bother adding edges as polylines */
#if 0
			if (EXPP_check_sequence_consistency( polyLine, &vector_Type ) != 1) {
				freedisplist(&dispbase);
				Py_DECREF(polyLine);
				PyErr_SetString( PyExc_TypeError, "A point in one of the polylines is not a Mathutils.Vector type" );
				return NULL;
			}
#endif
			dl= MEM_callocN(sizeof(DispList), "poly disp");
			BLI_addtail(&dispbase, dl);
			dl->type= DL_INDEX3;
			dl->nr= len_polypoints;
			dl->type= DL_POLY;
			dl->parts= 1; /* no faces, 1 edge loop */
			dl->col= 0; /* no material */
			dl->verts= fp= MEM_callocN( sizeof(float)*3*len_polypoints, "dl verts");
			dl->index= MEM_callocN(sizeof(int)*3*len_polypoints, "dl index");
			
			for( index = 0; index<len_polypoints; ++index, fp+=3) {
				polyVec= PySequence_GetItem( polyLine, index );
				if(VectorObject_Check(polyVec)) {
					
					if(!BaseMath_ReadCallback((VectorObject *)polyVec))
						ls_error= 1;
					
					fp[0] = ((VectorObject *)polyVec)->vec[0];
					fp[1] = ((VectorObject *)polyVec)->vec[1];
					if( ((VectorObject *)polyVec)->size > 2 )
						fp[2] = ((VectorObject *)polyVec)->vec[2];
					else
						fp[2]= 0.0f; /* if its a 2d vector then set the z to be zero */
				}
				else {
					ls_error= 1;
				}
				
				totpoints++;
				Py_DECREF(polyVec);
			}
		}
		Py_DECREF(polyLine);
	}
	
	if(ls_error) {
		freedisplist(&dispbase); /* possible some dl was allocated */
		PyErr_SetString( PyExc_TypeError, "A point in one of the polylines is not a Mathutils.Vector type" );
		return NULL;
	}
	else if (totpoints) {
		/* now make the list to return */
		filldisplist(&dispbase, &dispbase);
		
		/* The faces are stored in a new DisplayList
		thats added to the head of the listbase */
		dl= dispbase.first; 
		
		tri_list= PyList_New(dl->parts);
		if( !tri_list ) {
			freedisplist(&dispbase);
			PyErr_SetString( PyExc_RuntimeError, "Geometry.PolyFill failed to make a new list" );
			return NULL;
		}
		
		index= 0;
		dl_face= dl->index;
		while(index < dl->parts) {
			PyList_SetItem(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]) );
			dl_face+= 3;
			index++;
		}
		freedisplist(&dispbase);
	} else {
		/* no points, do this so scripts dont barf */
		freedisplist(&dispbase); /* possible some dl was allocated */
		tri_list= PyList_New(0);
	}
	
	return tri_list;
}


static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args )
{
	VectorObject *line_a1, *line_a2, *line_b1, *line_b2;
	float a1x, a1y, a2x, a2y,  b1x, b1y, b2x, b2y, xi, yi, a1,a2,b1,b2, newvec[2];
	if( !PyArg_ParseTuple ( args, "O!O!O!O!",
	  &vector_Type, &line_a1,
	  &vector_Type, &line_a2,
	  &vector_Type, &line_b1,
	  &vector_Type, &line_b2)
	) {
		PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
		return NULL;
	}
	
	if(!BaseMath_ReadCallback(line_a1) || !BaseMath_ReadCallback(line_a2) || !BaseMath_ReadCallback(line_b1) || !BaseMath_ReadCallback(line_b2))
		return NULL;
	
	a1x= line_a1->vec[0];
	a1y= line_a1->vec[1];
	a2x= line_a2->vec[0];
	a2y= line_a2->vec[1];

	b1x= line_b1->vec[0];
	b1y= line_b1->vec[1];
	b2x= line_b2->vec[0];
	b2y= line_b2->vec[1];
	
	if((MIN2(a1x, a2x) > MAX2(b1x, b2x)) ||
	   (MAX2(a1x, a2x) < MIN2(b1x, b2x)) ||
	   (MIN2(a1y, a2y) > MAX2(b1y, b2y)) ||
	   (MAX2(a1y, a2y) < MIN2(b1y, b2y))  ) {
		Py_RETURN_NONE;
	}
	/* Make sure the hoz/vert line comes first. */
	if (fabs(b1x - b2x) < eul || fabs(b1y - b2y) < eul) {
		SWAP_FLOAT(a1x, b1x, xi); /*abuse xi*/
		SWAP_FLOAT(a1y, b1y, xi);
		SWAP_FLOAT(a2x, b2x, xi);
		SWAP_FLOAT(a2y, b2y, xi);
	}
	
	if (fabs(a1x-a2x) < eul) { /* verticle line */
		if (fabs(b1x-b2x) < eul){ /*verticle second line */
			Py_RETURN_NONE; /* 2 verticle lines dont intersect. */
		}
		else if (fabs(b1y-b2y) < eul) {
			/*X of vert, Y of hoz. no calculation needed */
			newvec[0]= a1x;
			newvec[1]= b1y;
			return newVectorObject(newvec, 2, Py_NEW, NULL);
		}
		
		yi = (float)(((b1y / fabs(b1x - b2x)) * fabs(b2x - a1x)) + ((b2y / fabs(b1x - b2x)) * fabs(b1x - a1x)));
		
		if (yi > MAX2(a1y, a2y)) {/* New point above seg1's vert line */
			Py_RETURN_NONE;
		} else if (yi < MIN2(a1y, a2y)) { /* New point below seg1's vert line */
			Py_RETURN_NONE;
		}
		newvec[0]= a1x;
		newvec[1]= yi;
		return newVectorObject(newvec, 2, Py_NEW, NULL);
	} else if (fabs(a2y-a1y) < eul) {  /* hoz line1 */
		if (fabs(b2y-b1y) < eul) { /*hoz line2*/
			Py_RETURN_NONE; /*2 hoz lines dont intersect*/
		}
		
		/* Can skip vert line check for seg 2 since its covered above. */
		xi = (float)(((b1x / fabs(b1y - b2y)) * fabs(b2y - a1y)) + ((b2x / fabs(b1y - b2y)) * fabs(b1y - a1y)));
		if (xi > MAX2(a1x, a2x)) { /* New point right of hoz line1's */
			Py_RETURN_NONE;
		} else if (xi < MIN2(a1x, a2x)) { /*New point left of seg1's hoz line */
			Py_RETURN_NONE;
		}
		newvec[0]= xi;
		newvec[1]= a1y;
		return newVectorObject(newvec, 2, Py_NEW, NULL);
	}
	
	b1 = (a2y-a1y)/(a2x-a1x);
	b2 = (b2y-b1y)/(b2x-b1x);
	a1 = a1y-b1*a1x;
	a2 = b1y-b2*b1x;
	
	if (b1 - b2 == 0.0) {
		Py_RETURN_NONE;
	}
	
	xi = - (a1-a2)/(b1-b2);
	yi = a1+b1*xi;
	if ((a1x-xi)*(xi-a2x) >= 0 && (b1x-xi)*(xi-b2x) >= 0 && (a1y-yi)*(yi-a2y) >= 0 && (b1y-yi)*(yi-b2y)>=0) {
		newvec[0]= xi;
		newvec[1]= yi;
		return newVectorObject(newvec, 2, Py_NEW, NULL);
	}
	Py_RETURN_NONE;
}

static PyObject *M_Geometry_ClosestPointOnLine( PyObject * self, PyObject * args )
{
	VectorObject *pt, *line_1, *line_2;
	float pt_in[3], pt_out[3], l1[3], l2[3];
	float lambda;
	PyObject *ret;
	
	if( !PyArg_ParseTuple ( args, "O!O!O!",
	&vector_Type, &pt,
	&vector_Type, &line_1,
	&vector_Type, &line_2)
	  ) {
		PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n" );
		return NULL;
	}
	
	if(!BaseMath_ReadCallback(pt) || !BaseMath_ReadCallback(line_1) || !BaseMath_ReadCallback(line_2))
		return NULL;
	
	/* accept 2d verts */
	if (pt->size==3) { VECCOPY(pt_in, pt->vec);}
	else { pt_in[2]=0.0;	VECCOPY2D(pt_in, pt->vec) }
	
	if (line_1->size==3) { VECCOPY(l1, line_1->vec);}
	else { l1[2]=0.0;	VECCOPY2D(l1, line_1->vec) }
	
	if (line_2->size==3) { VECCOPY(l2, line_2->vec);}
	else { l2[2]=0.0;	VECCOPY2D(l2, line_2->vec) }
	
	/* do the calculation */
	lambda = lambda_cp_line_ex(pt_in, l1, l2, pt_out);
	
	ret = PyTuple_New(2);
	PyTuple_SET_ITEM( ret, 0, newVectorObject(pt_out, 3, Py_NEW, NULL) );
	PyTuple_SET_ITEM( ret, 1, PyFloat_FromDouble(lambda) );
	return ret;
}

static PyObject *M_Geometry_PointInTriangle2D( PyObject * self, PyObject * args )
{
	VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3;
	
	if( !PyArg_ParseTuple ( args, "O!O!O!O!",
	  &vector_Type, &pt_vec,
	  &vector_Type, &tri_p1,
	  &vector_Type, &tri_p2,
	  &vector_Type, &tri_p3)
	) {
		PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
		return NULL;
	}
	
	if(!BaseMath_ReadCallback(pt_vec) || !BaseMath_ReadCallback(tri_p1) || !BaseMath_ReadCallback(tri_p2) || !BaseMath_ReadCallback(tri_p3))
		return NULL;
	
	return PyLong_FromLong(IsectPT2Df(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec));
}

static PyObject *M_Geometry_PointInQuad2D( PyObject * self, PyObject * args )
{
	VectorObject *pt_vec, *quad_p1, *quad_p2, *quad_p3, *quad_p4;
	
	if( !PyArg_ParseTuple ( args, "O!O!O!O!O!",
	  &vector_Type, &pt_vec,
	  &vector_Type, &quad_p1,
	  &vector_Type, &quad_p2,
	  &vector_Type, &quad_p3,
	  &vector_Type, &quad_p4)
	) {
		PyErr_SetString( PyExc_TypeError, "expected 5 vector types\n" );
		return NULL;
	}
	
	if(!BaseMath_ReadCallback(pt_vec) || !BaseMath_ReadCallback(quad_p1) || !BaseMath_ReadCallback(quad_p2) || !BaseMath_ReadCallback(quad_p3) || !BaseMath_ReadCallback(quad_p4))
		return NULL;
	
	return PyLong_FromLong(IsectPQ2Df(pt_vec->vec, quad_p1->vec, quad_p2->vec, quad_p3->vec, quad_p4->vec));
}

static int boxPack_FromPyObject(PyObject * value, boxPack **boxarray )
{
	int len, i;
	PyObject *list_item, *item_1, *item_2;
	boxPack *box;
	
	
	/* Error checking must alredy be done */
	if( !PyList_Check( value ) ) {
		PyErr_SetString( PyExc_TypeError, "can only back a list of [x,y,x,w]" );
		return -1;
	}
	
	len = PyList_Size( value );
	
	(*boxarray) = MEM_mallocN( len*sizeof(boxPack), "boxPack box");
	
	
	for( i = 0; i < len; i++ ) {
		list_item = PyList_GET_ITEM( value, i );
		if( !PyList_Check( list_item ) || PyList_Size( list_item ) < 4 ) {
			MEM_freeN(*boxarray);
			PyErr_SetString( PyExc_TypeError, "can only back a list of [x,y,x,w]" );
			return -1;
		}
		
		box = (*boxarray)+i;
		
		item_1 = PyList_GET_ITEM(list_item, 2);
		item_2 = PyList_GET_ITEM(list_item, 3);
		
		if (!PyNumber_Check(item_1) || !PyNumber_Check(item_2)) {
			MEM_freeN(*boxarray);
			PyErr_SetString( PyExc_TypeError, "can only back a list of 2d boxes [x,y,x,w]" );
			return -1;
		}
		
		box->w =  (float)PyFloat_AsDouble( item_1 );
		box->h =  (float)PyFloat_AsDouble( item_2 );
		box->index = i;
		/* verts will be added later */
	}
	return 0;
}

static void boxPack_ToPyObject(PyObject * value, boxPack **boxarray)
{
	int len, i;
	PyObject *list_item;
	boxPack *box;
	
	len = PyList_Size( value );
	
	for( i = 0; i < len; i++ ) {
		box = (*boxarray)+i;
		list_item = PyList_GET_ITEM( value, box->index );
		PyList_SET_ITEM( list_item, 0, PyFloat_FromDouble( box->x ));
		PyList_SET_ITEM( list_item, 1, PyFloat_FromDouble( box->y ));
	}
	MEM_freeN(*boxarray);
}


static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * boxlist )
{
	boxPack *boxarray = NULL;
	float tot_width, tot_height;
	int len;
	int error;
	
	if(!PyList_Check(boxlist)) {
		PyErr_SetString( PyExc_TypeError, "expected a sequence of boxes [[x,y,w,h], ... ]" );
		return NULL;
	}
	
	len = PyList_Size( boxlist );
	
	if (!len)
		return Py_BuildValue( "ff", 0.0, 0.0);
	
	error = boxPack_FromPyObject(boxlist, &boxarray);
	if (error!=0)	return NULL;
	
	/* Non Python function */
	boxPack2D(boxarray, len, &tot_width, &tot_height);
	
	boxPack_ToPyObject(boxlist, &boxarray);
	
	return Py_BuildValue( "ff", tot_width, tot_height);
}

static PyObject *M_Geometry_BezierInterp( PyObject * self, PyObject * args )
{
	VectorObject *vec_k1, *vec_h1, *vec_k2, *vec_h2;
	int resolu;
	int dims;
	int i;
	float *coord_array, *fp;
	PyObject *list;
	
	float k1[4] = {0.0, 0.0, 0.0, 0.0};
	float h1[4] = {0.0, 0.0, 0.0, 0.0};
	float k2[4] = {0.0, 0.0, 0.0, 0.0};
	float h2[4] = {0.0, 0.0, 0.0, 0.0};
	
	
	if( !PyArg_ParseTuple ( args, "O!O!O!O!i",
	  &vector_Type, &vec_k1,
	  &vector_Type, &vec_h1,
	  &vector_Type, &vec_h2,
	  &vector_Type, &vec_k2, &resolu) || (resolu<=1)
	) {
		PyErr_SetString( PyExc_TypeError, "expected 4 vector types and an int greater then 1\n" );
		return NULL;
	}
	
	if(!BaseMath_ReadCallback(vec_k1) || !BaseMath_ReadCallback(vec_h1) || !BaseMath_ReadCallback(vec_k2) || !BaseMath_ReadCallback(vec_h2))
		return NULL;
	
	dims= MAX4(vec_k1->size, vec_h1->size, vec_h2->size, vec_k2->size);
	
	for(i=0; i < vec_k1->size; i++) k1[i]= vec_k1->vec[i];
	for(i=0; i < vec_h1->size; i++) h1[i]= vec_h1->vec[i];
	for(i=0; i < vec_k2->size; i++) k2[i]= vec_k2->vec[i];
	for(i=0; i < vec_h2->size; i++) h2[i]= vec_h2->vec[i];
	
	coord_array = MEM_callocN(dims * (resolu) * sizeof(float), "BezierInterp");
	for(i=0; i<dims; i++) {
		forward_diff_bezier(k1[i], h1[i], h2[i], k2[i], coord_array+i, resolu-1, dims);
	}
	
	list= PyList_New(resolu);
	fp= coord_array;
	for(i=0; i<resolu; i++, fp= fp+dims) {
		PyList_SET_ITEM(list, i, newVectorObject(fp, dims, Py_NEW, NULL));
	}
	MEM_freeN(coord_array);
	return list;
}