Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Mathutils.c « generic « python « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3675c5946dec29138a3bdeaff8ececd124a52e5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
/* 
 * $Id$
 *
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * This is a new part of Blender.
 *
 * Contributor(s): Joseph Gilbert, Campbell Barton
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/* Note: Changes to Mathutils since 2.4x
 * use radians rather then degrees
 * - Mathutils.MidpointVecs --> vector.lerp(other, fac)
 * - Mathutils.AngleBetweenVecs --> vector.angle(other)
 * - Mathutils.ProjectVecs --> vector.project(other)
 * - Mathutils.DifferenceQuats --> quat.difference(other)
 * - Mathutils.Slerp --> quat.slerp(other, fac)
 * - Mathutils.Rand: removed, use pythons random module
 * - Mathutils.RotationMatrix(angle, size, axis_flag, axis) --> Mathutils.RotationMatrix(angle, size, axis); merge axis & axis_flag args
 * - Matrix.scalePart --> Matrix.scale_part
 * - Matrix.translationPart --> Matrix.translation_part
 * - Matrix.rotationPart --> Matrix.rotation_part
 * - toMatrix --> to_matrix
 * - toEuler --> to_euler
 * - toQuat --> to_quat
 * - Vector.toTrackQuat --> Vector.to_track_quat
 *
 * Moved to Geometry module: Intersect, TriangleArea, TriangleNormal, QuadNormal, LineIntersect
 */

#include "Mathutils.h"

#include "BLI_math.h"
#include "PIL_time.h"
#include "BKE_utildefines.h"

//-------------------------DOC STRINGS ---------------------------
static char M_Mathutils_doc[] =
"This module provides access to matrices, eulers, quaternions and vectors.\n"
"\n"
".. literalinclude:: ../examples/mathutils.py\n";

//-----------------------------METHODS----------------------------
//-----------------quat_rotation (internal)-----------
//This function multiplies a vector/point * quat or vice versa
//to rotate the point/vector by the quaternion
//arguments should all be 3D
PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
{
	float rot[3];
	QuaternionObject *quat = NULL;
	VectorObject *vec = NULL;

	if(QuaternionObject_Check(arg1)){
		quat = (QuaternionObject*)arg1;
		if(!BaseMath_ReadCallback(quat))
			return NULL;

		if(VectorObject_Check(arg2)){
			vec = (VectorObject*)arg2;
			
			if(!BaseMath_ReadCallback(vec))
				return NULL;
			
			rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] - 
				2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] + 
				2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] - 
				quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
			rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] + 
				2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] - 
				quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] - 
				2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
			rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] + 
				quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] - 
				quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] - 
				quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
			return newVectorObject(rot, 3, Py_NEW, NULL);
		}
	}else if(VectorObject_Check(arg1)){
		vec = (VectorObject*)arg1;
		
		if(!BaseMath_ReadCallback(vec))
			return NULL;
		
		if(QuaternionObject_Check(arg2)){
			quat = (QuaternionObject*)arg2;
			if(!BaseMath_ReadCallback(quat))
				return NULL;

			rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] - 
				2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] + 
				2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] - 
				quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
			rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] + 
				2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] - 
				quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] - 
				2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
			rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] + 
				quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] - 
				quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] - 
				quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
			return newVectorObject(rot, 3, Py_NEW, NULL);
		}
	}

	PyErr_SetString(PyExc_RuntimeError, "quat_rotation(internal): internal problem rotating vector/point\n");
	return NULL;
	
}

//----------------------------------MATRIX FUNCTIONS--------------------
//----------------------------------Mathutils.RotationMatrix() ----------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char M_Mathutils_RotationMatrix_doc[] =
".. function:: RotationMatrix(angle, size, axis)\n"
"\n"
"   Create a matrix representing a rotation.\n"
"\n"
"   :arg angle: The angle of rotation desired.\n"
"   :type angle: float\n"
"   :arg size: The size of the rotation matrix to construct [2, 4].\n"
"   :type size: int\n"
"   :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
"   :type axis: string or :class:`Vector`\n"
"   :return: A new rotation matrix.\n"
"   :rtype: :class:`Matrix`\n";

static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
{
	VectorObject *vec= NULL;
	char *axis= NULL;
	int matSize;
	float angle = 0.0f;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};

	if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
		PyErr_SetString(PyExc_TypeError, "Mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
		return NULL;
	}

	if(vec && !VectorObject_Check(vec)) {
		axis= _PyUnicode_AsString((PyObject *)vec);
		if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
			PyErr_SetString(PyExc_TypeError, "Mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
			return NULL;
		}
		else {
			/* use the string */
			vec= NULL;
		}
	}

#ifdef USE_MATHUTILS_DEG
	/* Clamp to -360:360 */
	while (angle<-360.0f)
		angle+=360.0;
	while (angle>360.0f)
		angle-=360.0;
#else
	while (angle<-(Py_PI*2))
		angle+=(Py_PI*2);
	while (angle>(Py_PI*2))
		angle-=(Py_PI*2);
#endif
	
	if(matSize != 2 && matSize != 3 && matSize != 4) {
		PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
		return NULL;
	}
	if(matSize == 2 && (vec != NULL)) {
		PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
		return NULL;
	}
	if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
		PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
		return NULL;
	}
	if(vec) {
		if(vec->size != 3) {
			PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
			return NULL;
		}
		
		if(!BaseMath_ReadCallback(vec))
			return NULL;
		
	}
#ifdef USE_MATHUTILS_DEG
	//convert to radians
	angle = angle * (float) (Py_PI / 180);
#endif

	/* check for valid vector/axis above */
	if(vec) {
		axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
	}
	else if(matSize == 2) {
		//2D rotation matrix
		mat[0] = (float) cos (angle);
		mat[1] = (float) sin (angle);
		mat[2] = -((float) sin(angle));
		mat[3] = (float) cos(angle);
	} else if(strcmp(axis, "X") == 0) {
		//rotation around X
		mat[0] = 1.0f;
		mat[4] = (float) cos(angle);
		mat[5] = (float) sin(angle);
		mat[7] = -((float) sin(angle));
		mat[8] = (float) cos(angle);
	} else if(strcmp(axis, "Y") == 0) {
		//rotation around Y
		mat[0] = (float) cos(angle);
		mat[2] = -((float) sin(angle));
		mat[4] = 1.0f;
		mat[6] = (float) sin(angle);
		mat[8] = (float) cos(angle);
	} else if(strcmp(axis, "Z") == 0) {
		//rotation around Z
		mat[0] = (float) cos(angle);
		mat[1] = (float) sin(angle);
		mat[3] = -((float) sin(angle));
		mat[4] = (float) cos(angle);
		mat[8] = 1.0f;
	}
	else {
		/* should never get here */
		PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): unknown error\n");
		return NULL;
	}

	if(matSize == 4) {
		//resize matrix
		mat[10] = mat[8];
		mat[9] = mat[7];
		mat[8] = mat[6];
		mat[7] = 0.0f;
		mat[6] = mat[5];
		mat[5] = mat[4];
		mat[4] = mat[3];
		mat[3] = 0.0f;
	}
	//pass to matrix creation
	return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}

static char M_Mathutils_TranslationMatrix_doc[] =
".. function:: TranslationMatrix(vector)\n"
"\n"
"   Create a matrix representing a translation.\n"
"\n"
"   :arg vector: The translation vector.\n"
"   :type vector: :class:`Vector`\n"
"   :return: An identity matrix with a translation.\n"
"   :rtype: :class:`Matrix`\n";

static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec)
{
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
	
	if(!VectorObject_Check(vec)) {
		PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): expected vector\n");
		return NULL;
	}
	if(vec->size != 3 && vec->size != 4) {
		PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
		return NULL;
	}
	
	if(!BaseMath_ReadCallback(vec))
		return NULL;
	
	//create a identity matrix and add translation
	unit_m4((float(*)[4]) mat);
	mat[12] = vec->vec[0];
	mat[13] = vec->vec[1];
	mat[14] = vec->vec[2];

	return newMatrixObject(mat, 4, 4, Py_NEW, NULL);
}
//----------------------------------Mathutils.ScaleMatrix() -------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char M_Mathutils_ScaleMatrix_doc[] =
".. function:: ScaleMatrix(factor, size, axis)\n"
"\n"
"   Create a matrix representing a scaling.\n"
"\n"
"   :arg factor: The factor of scaling to apply.\n"
"   :type factor: float\n"
"   :arg size: The size of the scale matrix to construct [2, 4].\n"
"   :type size: int\n"
"   :arg axis: Direction to influence scale. (optional).\n"
"   :type axis: :class:`Vector`\n"
"   :return: A new scale matrix.\n"
"   :rtype: :class:`Matrix`\n";

static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
{
	VectorObject *vec = NULL;
	float norm = 0.0f, factor;
	int matSize, x;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};

	if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
		PyErr_SetString(PyExc_TypeError, "Mathutils.ScaleMatrix(): expected float int and optional vector\n");
		return NULL;
	}
	if(matSize != 2 && matSize != 3 && matSize != 4) {
		PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
		return NULL;
	}
	if(vec) {
		if(vec->size > 2 && matSize == 2) {
			PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
			return NULL;
		}
		
		if(!BaseMath_ReadCallback(vec))
			return NULL;
		
	}
	if(vec == NULL) {	//scaling along axis
		if(matSize == 2) {
			mat[0] = factor;
			mat[3] = factor;
		} else {
			mat[0] = factor;
			mat[4] = factor;
			mat[8] = factor;
		}
	} else { //scaling in arbitrary direction
		//normalize arbitrary axis
		for(x = 0; x < vec->size; x++) {
			norm += vec->vec[x] * vec->vec[x];
		}
		norm = (float) sqrt(norm);
		for(x = 0; x < vec->size; x++) {
			vec->vec[x] /= norm;
		}
		if(matSize == 2) {
			mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
			mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
			mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
			mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
		} else {
			mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
			mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
			mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
			mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
			mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
			mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
			mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
			mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
			mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
		}
	}
	if(matSize == 4) {
		//resize matrix
		mat[10] = mat[8];
		mat[9] = mat[7];
		mat[8] = mat[6];
		mat[7] = 0.0f;
		mat[6] = mat[5];
		mat[5] = mat[4];
		mat[4] = mat[3];
		mat[3] = 0.0f;
	}
	//pass to matrix creation
	return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
//----------------------------------Mathutils.OrthoProjectionMatrix() ---
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char M_Mathutils_OrthoProjectionMatrix_doc[] =
".. function:: OrthoProjectionMatrix(plane, size, axis)\n"
"\n"
"   Create a matrix to represent an orthographic projection.\n"
"\n"
"   :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
"   :type plane: string\n"
"   :arg size: The size of the projection matrix to construct [2, 4].\n"
"   :type size: int\n"
"   :arg axis: Arbitrary perpendicular plane vector (optional).\n"
"   :type axis: :class:`Vector`\n"
"   :return: A new projection matrix.\n"
"   :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
{
	VectorObject *vec = NULL;
	char *plane;
	int matSize, x;
	float norm = 0.0f;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
	
	if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
		PyErr_SetString(PyExc_TypeError, "Mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
		return NULL;
	}
	if(matSize != 2 && matSize != 3 && matSize != 4) {
		PyErr_SetString(PyExc_AttributeError,"Mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
		return NULL;
	}
	if(vec) {
		if(vec->size > 2 && matSize == 2) {
			PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
			return NULL;
		}
		
		if(!BaseMath_ReadCallback(vec))
			return NULL;
		
	}
	if(vec == NULL) {	//ortho projection onto cardinal plane
		if((strcmp(plane, "X") == 0) && matSize == 2) {
			mat[0] = 1.0f;
		} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
			mat[3] = 1.0f;
		} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
			mat[0] = 1.0f;
			mat[4] = 1.0f;
		} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
			mat[0] = 1.0f;
			mat[8] = 1.0f;
		} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
			mat[4] = 1.0f;
			mat[8] = 1.0f;
		} else {
			PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
			return NULL;
		}
	} else { //arbitrary plane
		//normalize arbitrary axis
		for(x = 0; x < vec->size; x++) {
			norm += vec->vec[x] * vec->vec[x];
		}
		norm = (float) sqrt(norm);
		for(x = 0; x < vec->size; x++) {
			vec->vec[x] /= norm;
		}
		if((strcmp(plane, "R") == 0) && matSize == 2) {
			mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
			mat[1] = -(vec->vec[0] * vec->vec[1]);
			mat[2] = -(vec->vec[0] * vec->vec[1]);
			mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
		} else if((strcmp(plane, "R") == 0) && matSize > 2) {
			mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
			mat[1] = -(vec->vec[0] * vec->vec[1]);
			mat[2] = -(vec->vec[0] * vec->vec[2]);
			mat[3] = -(vec->vec[0] * vec->vec[1]);
			mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
			mat[5] = -(vec->vec[1] * vec->vec[2]);
			mat[6] = -(vec->vec[0] * vec->vec[2]);
			mat[7] = -(vec->vec[1] * vec->vec[2]);
			mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
		} else {
			PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
			return NULL;
		}
	}
	if(matSize == 4) {
		//resize matrix
		mat[10] = mat[8];
		mat[9] = mat[7];
		mat[8] = mat[6];
		mat[7] = 0.0f;
		mat[6] = mat[5];
		mat[5] = mat[4];
		mat[4] = mat[3];
		mat[3] = 0.0f;
	}
	//pass to matrix creation
	return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}

static char M_Mathutils_ShearMatrix_doc[] =
".. function:: ShearMatrix(plane, factor, size)\n"
"\n"
"   Create a matrix to represent an shear transformation.\n"
"\n"
"   :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
"   :type plane: string\n"
"   :arg factor: The factor of shear to apply.\n"
"   :type factor: float\n"
"   :arg size: The size of the shear matrix to construct [2, 4].\n"
"   :type size: int\n"
"   :return: A new shear matrix.\n"
"   :rtype: :class:`Matrix`\n";

static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
{
	int matSize;
	char *plane;
	float factor;
	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};

	if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
		PyErr_SetString(PyExc_TypeError,"Mathutils.ShearMatrix(): expected string float and int\n");
		return NULL;
	}
	if(matSize != 2 && matSize != 3 && matSize != 4) {
		PyErr_SetString(PyExc_AttributeError,"Mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
		return NULL;
	}

	if((strcmp(plane, "X") == 0)
	    && matSize == 2) {
		mat[0] = 1.0f;
		mat[2] = factor;
		mat[3] = 1.0f;
	} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
		mat[0] = 1.0f;
		mat[1] = factor;
		mat[3] = 1.0f;
	} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
		mat[0] = 1.0f;
		mat[4] = 1.0f;
		mat[6] = factor;
		mat[7] = factor;
	} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
		mat[0] = 1.0f;
		mat[3] = factor;
		mat[4] = 1.0f;
		mat[5] = factor;
		mat[8] = 1.0f;
	} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
		mat[0] = 1.0f;
		mat[1] = factor;
		mat[2] = factor;
		mat[4] = 1.0f;
		mat[8] = 1.0f;
	} else {
		PyErr_SetString(PyExc_AttributeError, "Mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
		return NULL;
	}
	if(matSize == 4) {
		//resize matrix
		mat[10] = mat[8];
		mat[9] = mat[7];
		mat[8] = mat[6];
		mat[7] = 0.0f;
		mat[6] = mat[5];
		mat[5] = mat[4];
		mat[4] = mat[3];
		mat[3] = 0.0f;
	}
	//pass to matrix creation
	return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}

/* Utility functions */

/*---------------------- EXPP_FloatsAreEqual -------------------------
  Floating point comparisons 
  floatStep = number of representable floats allowable in between
   float A and float B to be considered equal. */
int EXPP_FloatsAreEqual(float A, float B, int floatSteps)
{
	int a, b, delta;
    assert(floatSteps > 0 && floatSteps < (4 * 1024 * 1024));
    a = *(int*)&A;
    if (a < 0)	
		a = 0x80000000 - a;
    b = *(int*)&B;
    if (b < 0)	
		b = 0x80000000 - b;
    delta = abs(a - b);
    if (delta <= floatSteps)	
		return 1;
    return 0;
}
/*---------------------- EXPP_VectorsAreEqual -------------------------
  Builds on EXPP_FloatsAreEqual to test vectors */
int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps)
{
	int x;
	for (x=0; x< size; x++){
		if (EXPP_FloatsAreEqual(vecA[x], vecB[x], floatSteps) == 0)
			return 0;
	}
	return 1;
}


/* Mathutils Callbacks */

/* for mathutils internal use only, eventually should re-alloc but to start with we only have a few users */
Mathutils_Callback *mathutils_callbacks[8] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};

int Mathutils_RegisterCallback(Mathutils_Callback *cb)
{
	int i;
	
	/* find the first free slot */
	for(i= 0; mathutils_callbacks[i]; i++) {
		if(mathutils_callbacks[i]==cb) /* alredy registered? */
			return i;
	}
	
	mathutils_callbacks[i] = cb;
	return i;
}

/* use macros to check for NULL */
int _BaseMathObject_ReadCallback(BaseMathObject *self)
{
	Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
	if(cb->get(self->cb_user, self->cb_subtype, self->data))
		return 1;

	PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
	return 0;
}

int _BaseMathObject_WriteCallback(BaseMathObject *self)
{
	Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
	if(cb->set(self->cb_user, self->cb_subtype, self->data))
		return 1;

	PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
	return 0;
}

int _BaseMathObject_ReadIndexCallback(BaseMathObject *self, int index)
{
	Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
	if(cb->get_index(self->cb_user, self->cb_subtype, self->data, index))
		return 1;

	PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
	return 0;
}

int _BaseMathObject_WriteIndexCallback(BaseMathObject *self, int index)
{
	Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
	if(cb->set_index(self->cb_user, self->cb_subtype, self->data, index))
		return 1;

	PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
	return 0;
}

/* BaseMathObject generic functions for all mathutils types */
char BaseMathObject_Owner_doc[] = "The item this is wrapping or None  (readonly).";
PyObject *BaseMathObject_getOwner( BaseMathObject * self, void *type )
{
	PyObject *ret= self->cb_user ? self->cb_user : Py_None;
	Py_INCREF(ret);
	return ret;
}

char BaseMathObject_Wrapped_doc[] = "True when this object wraps external data (readonly). **type** boolean";
PyObject *BaseMathObject_getWrapped( BaseMathObject *self, void *type )
{
	return PyBool_FromLong((self->wrapped == Py_WRAP) ? 1:0);
}

void BaseMathObject_dealloc(BaseMathObject * self)
{
	/* only free non wrapped */
	if(self->wrapped != Py_WRAP)
		PyMem_Free(self->data);

	Py_XDECREF(self->cb_user);
	Py_TYPE(self)->tp_free(self); // PyObject_DEL(self); // breaks subtypes
}

/*----------------------------MODULE INIT-------------------------*/
struct PyMethodDef M_Mathutils_methods[] = {
	{"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
	{"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
	{"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
	{"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc},
	{"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix,  METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
	{NULL, NULL, 0, NULL}
};

static struct PyModuleDef M_Mathutils_module_def = {
	PyModuleDef_HEAD_INIT,
	"Mathutils",  /* m_name */
	M_Mathutils_doc,  /* m_doc */
	0,  /* m_size */
	M_Mathutils_methods,  /* m_methods */
	0,  /* m_reload */
	0,  /* m_traverse */
	0,  /* m_clear */
	0,  /* m_free */
};

PyObject *Mathutils_Init(void)
{
	PyObject *submodule;
	
	if( PyType_Ready( &vector_Type ) < 0 )
		return NULL;
	if( PyType_Ready( &matrix_Type ) < 0 )
		return NULL;	
	if( PyType_Ready( &euler_Type ) < 0 )
		return NULL;
	if( PyType_Ready( &quaternion_Type ) < 0 )
		return NULL;
	
	submodule = PyModule_Create(&M_Mathutils_module_def);
	PyDict_SetItemString(PySys_GetObject("modules"), M_Mathutils_module_def.m_name, submodule);
	
	/* each type has its own new() function */
	PyModule_AddObject( submodule, "Vector",		(PyObject *)&vector_Type );
	PyModule_AddObject( submodule, "Matrix",		(PyObject *)&matrix_Type );
	PyModule_AddObject( submodule, "Euler",			(PyObject *)&euler_Type );
	PyModule_AddObject( submodule, "Quaternion",	(PyObject *)&quaternion_Type );
	
	mathutils_matrix_vector_cb_index= Mathutils_RegisterCallback(&mathutils_matrix_vector_cb);

	return (submodule);
}