Welcome to mirror list, hosted at ThFree Co, Russian Federation.

euler.c « generic « python « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e78a57393477f1bd9e1f8c9a3e62495be6de4254 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/*
 * $Id$
 *
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * 
 * Contributor(s): Joseph Gilbert
 *
 * ***** END GPL LICENSE BLOCK *****
 */

#include "Mathutils.h"

#include "BLI_arithb.h"
#include "BKE_utildefines.h"
#include "BLI_blenlib.h"


//-------------------------DOC STRINGS ---------------------------
static char Euler_Zero_doc[] = "() - set all values in the euler to 0";
static char Euler_Unique_doc[] ="() - sets the euler rotation a unique shortest arc rotation - tests for gimbal lock";
static char Euler_ToMatrix_doc[] =	"() - returns a rotation matrix representing the euler rotation";
static char Euler_ToQuat_doc[] = "() - returns a quaternion representing the euler rotation";
static char Euler_Rotate_doc[] = "() - rotate a euler by certain amount around an axis of rotation";
static char Euler_copy_doc[] = "() - returns a copy of the euler.";
static char Euler_MakeCompatible_doc[] = "(euler) - Make this user compatible with another (no axis flipping).";

static PyObject *Euler_Zero( EulerObject * self );
static PyObject *Euler_Unique( EulerObject * self );
static PyObject *Euler_ToMatrix( EulerObject * self );
static PyObject *Euler_ToQuat( EulerObject * self );
static PyObject *Euler_Rotate( EulerObject * self, PyObject *args );
static PyObject *Euler_MakeCompatible( EulerObject * self, EulerObject *value );
static PyObject *Euler_copy( EulerObject * self, PyObject *args );

//-----------------------METHOD DEFINITIONS ----------------------
static struct PyMethodDef Euler_methods[] = {
	{"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc},
	{"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc},
	{"toMatrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc},
	{"toQuat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc},
	{"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, Euler_Rotate_doc},
	{"makeCompatible", (PyCFunction) Euler_MakeCompatible, METH_O, Euler_MakeCompatible_doc},
	{"__copy__", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
	{"copy", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
	{NULL, NULL, 0, NULL}
};

//----------------------------------Mathutils.Euler() -------------------
//makes a new euler for you to play with
static PyObject *Euler_new(PyObject * self, PyObject * args)
{

	PyObject *listObject = NULL;
	int size, i;
	float eul[3], scalar;
	PyObject *e;

	size = PyTuple_GET_SIZE(args);
	if (size == 1) {
		listObject = PyTuple_GET_ITEM(args, 0);
		if (PySequence_Check(listObject)) {
			size = PySequence_Length(listObject);
		} else { // Single argument was not a sequence
			PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
			return NULL;
		}
	} else if (size == 0) {
		//returns a new empty 3d euler
		return newEulerObject(NULL, Py_NEW); 
	} else {
		listObject = args;
	}

	if (size != 3) { // Invalid euler size
		PyErr_SetString(PyExc_AttributeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
		return NULL;
	}

	for (i=0; i<size; i++) {
		e = PySequence_GetItem(listObject, i);
		if (e == NULL) { // Failed to read sequence
			Py_DECREF(listObject);
			PyErr_SetString(PyExc_RuntimeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
			return NULL;
		}

		scalar= (float)PyFloat_AsDouble(e);
		Py_DECREF(e);
		
		if(scalar==-1 && PyErr_Occurred()) { // parsed item is not a number
			PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
			return NULL;
		}

		eul[i]= scalar;
	}
	return newEulerObject(eul, Py_NEW);
}

//-----------------------------METHODS----------------------------
//----------------------------Euler.toQuat()----------------------
//return a quaternion representation of the euler
static PyObject *Euler_ToQuat(EulerObject * self)
{
	float eul[3], quat[4];
	int x;

	for(x = 0; x < 3; x++) {
		eul[x] = self->eul[x] * ((float)Py_PI / 180);
	}
	EulToQuat(eul, quat);
	return newQuaternionObject(quat, Py_NEW);
}
//----------------------------Euler.toMatrix()---------------------
//return a matrix representation of the euler
static PyObject *Euler_ToMatrix(EulerObject * self)
{
	float eul[3];
	float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
	int x;

	for(x = 0; x < 3; x++) {
		eul[x] = self->eul[x] * ((float)Py_PI / 180);
	}
	EulToMat3(eul, (float (*)[3]) mat);
	return newMatrixObject(mat, 3, 3 , Py_NEW);
}
//----------------------------Euler.unique()-----------------------
//sets the x,y,z values to a unique euler rotation
static PyObject *Euler_Unique(EulerObject * self)
{
	double heading, pitch, bank;
	double pi2 =  Py_PI * 2.0f;
	double piO2 = Py_PI / 2.0f;
	double Opi2 = 1.0f / pi2;

	//radians
	heading = self->eul[0] * (float)Py_PI / 180;
	pitch = self->eul[1] * (float)Py_PI / 180;
	bank = self->eul[2] * (float)Py_PI / 180;

	//wrap heading in +180 / -180
	pitch += Py_PI;
	pitch -= floor(pitch * Opi2) * pi2;
	pitch -= Py_PI;


	if(pitch < -piO2) {
		pitch = -Py_PI - pitch;
		heading += Py_PI;
		bank += Py_PI;
	} else if(pitch > piO2) {
		pitch = Py_PI - pitch;
		heading += Py_PI;
		bank += Py_PI;
	}
	//gimbal lock test
	if(fabs(pitch) > piO2 - 1e-4) {
		heading += bank;
		bank = 0.0f;
	} else {
		bank += Py_PI;
		bank -= (floor(bank * Opi2)) * pi2;
		bank -= Py_PI;
	}

	heading += Py_PI;
	heading -= (floor(heading * Opi2)) * pi2;
	heading -= Py_PI;

	//back to degrees
	self->eul[0] = (float)(heading * 180 / (float)Py_PI);
	self->eul[1] = (float)(pitch * 180 / (float)Py_PI);
	self->eul[2] = (float)(bank * 180 / (float)Py_PI);

	Py_INCREF(self);
	return (PyObject *)self;
}
//----------------------------Euler.zero()-------------------------
//sets the euler to 0,0,0
static PyObject *Euler_Zero(EulerObject * self)
{
	self->eul[0] = 0.0;
	self->eul[1] = 0.0;
	self->eul[2] = 0.0;

	Py_INCREF(self);
	return (PyObject *)self;
}
//----------------------------Euler.rotate()-----------------------
//rotates a euler a certain amount and returns the result
//should return a unique euler rotation (i.e. no 720 degree pitches :)
static PyObject *Euler_Rotate(EulerObject * self, PyObject *args)
{
	float angle = 0.0f;
	char *axis;
	int x;

	if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){
		PyErr_SetString(PyExc_TypeError, "euler.rotate():expected angle (float) and axis (x,y,z)");
		return NULL;
	}
	if(!STREQ3(axis,"x","y","z")){
		PyErr_SetString(PyExc_TypeError, "euler.rotate(): expected axis to be 'x', 'y' or 'z'");
		return NULL;
	}

	//covert to radians
	angle *= ((float)Py_PI / 180);
	for(x = 0; x < 3; x++) {
		self->eul[x] *= ((float)Py_PI / 180);
	}
	euler_rot(self->eul, angle, *axis);
	//convert back from radians
	for(x = 0; x < 3; x++) {
		self->eul[x] *= (180 / (float)Py_PI);
	}

	Py_INCREF(self);
	return (PyObject *)self;
}

static PyObject *Euler_MakeCompatible(EulerObject * self, EulerObject *value)
{
	float eul_from_rad[3];
	int x;
	
	if(!EulerObject_Check(value)) {
		PyErr_SetString(PyExc_TypeError, "euler.makeCompatible(euler):expected a single euler argument.");
		return NULL;
	}
	
	//covert to radians
	for(x = 0; x < 3; x++) {
		self->eul[x] = self->eul[x] * ((float)Py_PI / 180);
		eul_from_rad[x] = value->eul[x] * ((float)Py_PI / 180);
	}
	compatible_eul(self->eul, eul_from_rad);
	//convert back from radians
	for(x = 0; x < 3; x++) {
		self->eul[x] *= (180 / (float)Py_PI);
	}
	
	Py_INCREF(self);
	return (PyObject *)self;
}

//----------------------------Euler.rotate()-----------------------
// return a copy of the euler
static PyObject *Euler_copy(EulerObject * self, PyObject *args)
{
	return newEulerObject(self->eul, Py_NEW);
}


//----------------------------dealloc()(internal) ------------------
//free the py_object
static void Euler_dealloc(EulerObject * self)
{
	//only free py_data
	if(self->data.py_data){
		PyMem_Free(self->data.py_data);
	}
	PyObject_DEL(self);
}

//----------------------------print object (internal)--------------
//print the object to screen
static PyObject *Euler_repr(EulerObject * self)
{
	char str[64];
	sprintf(str, "[%.6f, %.6f, %.6f](euler)", self->eul[0], self->eul[1], self->eul[2]);
	return PyUnicode_FromString(str);
}
//------------------------tp_richcmpr
//returns -1 execption, 0 false, 1 true
static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
{
	EulerObject *eulA = NULL, *eulB = NULL;
	int result = 0;

	if (!EulerObject_Check(objectA) || !EulerObject_Check(objectB)){
		if (comparison_type == Py_NE){
			Py_RETURN_TRUE;
		}else{
			Py_RETURN_FALSE;
		}
	}
	eulA = (EulerObject*)objectA;
	eulB = (EulerObject*)objectB;

	switch (comparison_type){
		case Py_EQ:
			result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
			break;
		case Py_NE:
			result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
			if (result == 0){
				result = 1;
			}else{
				result = 0;
			}
			break;
		default:
			printf("The result of the comparison could not be evaluated");
			break;
	}
	if (result == 1){
		Py_RETURN_TRUE;
	}else{
		Py_RETURN_FALSE;
	}
}
//------------------------tp_doc
static char EulerObject_doc[] = "This is a wrapper for euler objects.";
//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Euler_len(EulerObject * self)
{
	return 3;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Euler_item(EulerObject * self, int i)
{
	if(i<0)
		i= 3-i;
	
	if(i < 0 || i >= 3) {
		PyErr_SetString(PyExc_IndexError, "euler[attribute]: array index out of range");
		return NULL;
	}
	return PyFloat_FromDouble(self->eul[i]);

}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Euler_ass_item(EulerObject * self, int i, PyObject * value)
{
	float f = PyFloat_AsDouble(value);

	if(f == -1 && PyErr_Occurred()) { // parsed item not a number
		PyErr_SetString(PyExc_TypeError, "euler[attribute] = x: argument not a number");
		return -1;
	}

	if(i<0)
		i= 3-i;
	
	if(i < 0 || i >= 3){
		PyErr_SetString(PyExc_IndexError, "euler[attribute] = x: array assignment index out of range\n");
		return -1;
	}
	
	self->eul[i] = f;
	return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Euler_slice(EulerObject * self, int begin, int end)
{
	PyObject *list = NULL;
	int count;

	CLAMP(begin, 0, 3);
	if (end<0) end= 4+end;
	CLAMP(end, 0, 3);
	begin = MIN2(begin,end);

	list = PyList_New(end - begin);
	for(count = begin; count < end; count++) {
		PyList_SetItem(list, count - begin,
				PyFloat_FromDouble(self->eul[count]));
	}

	return list;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Euler_ass_slice(EulerObject * self, int begin, int end,
			     PyObject * seq)
{
	int i, y, size = 0;
	float eul[3];
	PyObject *e, *f;

	CLAMP(begin, 0, 3);
	if (end<0) end= 4+end;
	CLAMP(end, 0, 3);
	begin = MIN2(begin,end);

	size = PySequence_Length(seq);
	if(size != (end - begin)){
		PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: size mismatch in slice assignment");
		return -1;
	}

	for (i = 0; i < size; i++) {
		e = PySequence_GetItem(seq, i);
		if (e == NULL) { // Failed to read sequence
			PyErr_SetString(PyExc_RuntimeError, "euler[begin:end] = []: unable to read sequence");
			return -1;
		}

		f = PyNumber_Float(e);
		if(f == NULL) { // parsed item not a number
			Py_DECREF(e);
			PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: sequence argument not a number");
			return -1;
		}

		eul[i] = (float)PyFloat_AS_DOUBLE(f);
		Py_DECREF(f);
		Py_DECREF(e);
	}
	//parsed well - now set in vector
	for(y = 0; y < 3; y++){
		self->eul[begin + y] = eul[y];
	}
	return 0;
}
//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Euler_SeqMethods = {
	(inquiry) Euler_len,						/* sq_length */
	(binaryfunc) 0,								/* sq_concat */
	(ssizeargfunc) 0,								/* sq_repeat */
	(ssizeargfunc) Euler_item,					/* sq_item */
	(ssizessizeargfunc) Euler_slice,				/* sq_slice */
	(ssizeobjargproc) Euler_ass_item,				/* sq_ass_item */
	(ssizessizeobjargproc) Euler_ass_slice,			/* sq_ass_slice */
};



/*
 * vector axis, vector.x/y/z/w
 */
	
static PyObject *Euler_getAxis( EulerObject * self, void *type )
{
	switch( (long)type ) {
    case 'X':	/* these are backwards, but that how it works */
		return PyFloat_FromDouble(self->eul[0]);
    case 'Y':
		return PyFloat_FromDouble(self->eul[1]);
    case 'Z':
		return PyFloat_FromDouble(self->eul[2]);
	}
	
	PyErr_SetString(PyExc_SystemError, "corrupt euler, cannot get axis");
	return NULL;
}

static int Euler_setAxis( EulerObject * self, PyObject * value, void * type )
{
	float param= (float)PyFloat_AsDouble( value );
	
	if (param==-1 && PyErr_Occurred()) {
		PyErr_SetString(PyExc_TypeError, "expected a number for the vector axis");
		return -1;
	}
	
	switch( (long)type ) {
    case 'X':	/* these are backwards, but that how it works */
		self->eul[0]= param;
		break;
    case 'Y':
		self->eul[1]= param;
		break;
    case 'Z':
		self->eul[2]= param;
		break;
	}

	return 0;
}

static PyObject *Euler_getWrapped( VectorObject * self, void *type )
{
	if (self->wrapped == Py_WRAP)
		Py_RETURN_TRUE;
	else
		Py_RETURN_FALSE;
}


/*****************************************************************************/
/* Python attributes get/set structure:                                      */
/*****************************************************************************/
static PyGetSetDef Euler_getseters[] = {
	{"x",
	 (getter)Euler_getAxis, (setter)Euler_setAxis,
	 "Euler X axis",
	 (void *)'X'},
	{"y",
	 (getter)Euler_getAxis, (setter)Euler_setAxis,
	 "Euler Y axis",
	 (void *)'Y'},
	{"z",
	 (getter)Euler_getAxis, (setter)Euler_setAxis,
	 "Euler Z axis",
	 (void *)'Z'},
	{"wrapped",
	 (getter)Euler_getWrapped, (setter)NULL,
	 "True when this wraps blenders internal data",
	 NULL},
	{NULL,NULL,NULL,NULL,NULL}  /* Sentinel */
};

//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject euler_Type = {
#if (PY_VERSION_HEX >= 0x02060000)
	PyVarObject_HEAD_INIT(NULL, 0)
#else
	/* python 2.5 and below */
	PyObject_HEAD_INIT( NULL )  /* required py macro */
	0,                          /* ob_size */
#endif
	"euler",						//tp_name
	sizeof(EulerObject),			//tp_basicsize
	0,								//tp_itemsize
	(destructor)Euler_dealloc,		//tp_dealloc
	0,								//tp_print
	0,								//tp_getattr
	0,								//tp_setattr
	0,								//tp_compare
	(reprfunc) Euler_repr,			//tp_repr
	0,				//tp_as_number
	&Euler_SeqMethods,				//tp_as_sequence
	0,								//tp_as_mapping
	0,								//tp_hash
	0,								//tp_call
	0,								//tp_str
	0,								//tp_getattro
	0,								//tp_setattro
	0,								//tp_as_buffer
	Py_TPFLAGS_DEFAULT,				//tp_flags
	EulerObject_doc,				//tp_doc
	0,								//tp_traverse
	0,								//tp_clear
	(richcmpfunc)Euler_richcmpr,	//tp_richcompare
	0,								//tp_weaklistoffset
	0,								//tp_iter
	0,								//tp_iternext
	Euler_methods,					//tp_methods
	0,								//tp_members
	Euler_getseters,				//tp_getset
	0,								//tp_base
	0,								//tp_dict
	0,								//tp_descr_get
	0,								//tp_descr_set
	0,								//tp_dictoffset
	0,								//tp_init
	0,								//tp_alloc
	Euler_new,						//tp_new
	0,								//tp_free
	0,								//tp_is_gc
	0,								//tp_bases
	0,								//tp_mro
	0,								//tp_cache
	0,								//tp_subclasses
	0,								//tp_weaklist
	0								//tp_del
};
//------------------------newEulerObject (internal)-------------
//creates a new euler object
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 (i.e. it was allocated elsewhere by MEM_mallocN())
  pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 (i.e. it must be created here with PyMEM_malloc())*/
PyObject *newEulerObject(float *eul, int type)
{
	EulerObject *self;
	int x;

	self = PyObject_NEW(EulerObject, &euler_Type);
	self->data.blend_data = NULL;
	self->data.py_data = NULL;

	if(type == Py_WRAP){
		self->data.blend_data = eul;
		self->eul = self->data.blend_data;
		self->wrapped = Py_WRAP;
	}else if (type == Py_NEW){
		self->data.py_data = PyMem_Malloc(3 * sizeof(float));
		self->eul = self->data.py_data;
		if(!eul) { //new empty
			for(x = 0; x < 3; x++) {
				self->eul[x] = 0.0f;
			}
		}else{
			for(x = 0; x < 3; x++){
				self->eul[x] = eul[x];
			}
		}
		self->wrapped = Py_NEW;
	}else{ //bad type
		return NULL;
	}
	return (PyObject *)self;
}