Welcome to mirror list, hosted at ThFree Co, Russian Federation.

euler.c « generic « python « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2ba3d1d76751aec2b7b0f12caed29639d4c378e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
/*
 * $Id$
 *
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * 
 * Contributor(s): Joseph Gilbert
 *
 * ***** END GPL LICENSE BLOCK *****
 */

#include "Mathutils.h"

#include "BLI_math.h"
#include "BKE_utildefines.h"
#include "BLI_blenlib.h"


//----------------------------------Mathutils.Euler() -------------------
//makes a new euler for you to play with
static PyObject *Euler_new(PyTypeObject * type, PyObject * args, PyObject * kwargs)
{
	PyObject *listObject = NULL;
	int size, i;
	float eul[3];
	PyObject *e;

	size = PyTuple_GET_SIZE(args);
	if (size == 1) {
		listObject = PyTuple_GET_ITEM(args, 0);
		if (PySequence_Check(listObject)) {
			size = PySequence_Length(listObject);
		} else { // Single argument was not a sequence
			PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
			return NULL;
		}
	} else if (size == 0) {
		//returns a new empty 3d euler
		return newEulerObject(NULL, Py_NEW, NULL);
	} else {
		listObject = args;
	}

	if (size != 3) { // Invalid euler size
		PyErr_SetString(PyExc_AttributeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
		return NULL;
	}

	for (i=0; i<size; i++) {
		e = PySequence_GetItem(listObject, i);
		if (e == NULL) { // Failed to read sequence
			Py_DECREF(listObject);
			PyErr_SetString(PyExc_RuntimeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
			return NULL;
		}

		eul[i]= (float)PyFloat_AsDouble(e);
		Py_DECREF(e);
		
		if(eul[i]==-1 && PyErr_Occurred()) { // parsed item is not a number
			PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
			return NULL;
		}
	}
	return newEulerObject(eul, Py_NEW, NULL);
}

//-----------------------------METHODS----------------------------
//----------------------------Euler.toQuat()----------------------
//return a quaternion representation of the euler

static char Euler_ToQuat_doc[] =
".. method:: to_quat()\n"
"\n"
"   Return a quaternion representation of the euler.\n"
"\n"
"   :return: Quaternion representation of the euler.\n"
"   :rtype: :class:`Quaternion`\n";

static PyObject *Euler_ToQuat(EulerObject * self)
{
	float quat[4];
#ifdef USE_MATHUTILS_DEG
	float eul[3];
	int x;
#endif

	if(!BaseMath_ReadCallback(self))
		return NULL;

#ifdef USE_MATHUTILS_DEG
	for(x = 0; x < 3; x++) {
		eul[x] = self->eul[x] * ((float)Py_PI / 180);
	}
	eul_to_quat( quat,eul);
#else
	eul_to_quat( quat,self->eul);
#endif

	return newQuaternionObject(quat, Py_NEW, NULL);
}
//----------------------------Euler.toMatrix()---------------------
//return a matrix representation of the euler
static char Euler_ToMatrix_doc[] =
".. method:: to_matrix()\n"
"\n"
"   Return a matrix representation of the euler.\n"
"\n"
"   :return: A 3x3 roation matrix representation of the euler.\n"
"   :rtype: :class:`Matrix`\n";

static PyObject *Euler_ToMatrix(EulerObject * self)
{
	float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};

	if(!BaseMath_ReadCallback(self))
		return NULL;

#ifdef USE_MATHUTILS_DEG
	{
		float eul[3];
		int x;
		
		for(x = 0; x < 3; x++) {
			eul[x] = self->eul[x] * ((float)Py_PI / 180);
		}
		eul_to_mat3( (float (*)[3]) mat,eul);
	}
#else
	eul_to_mat3( (float (*)[3]) mat,self->eul);
#endif
	return newMatrixObject(mat, 3, 3 , Py_NEW, NULL);
}
//----------------------------Euler.unique()-----------------------
//sets the x,y,z values to a unique euler rotation

static char Euler_Unique_doc[] =
".. method:: unique()\n"
"\n"
"   Calculate a unique rotation for this euler. Avoids gimble lock.\n"
"\n"
"   :return: an instance of itself\n"
"   :rtype: :class:`Euler`\n";

static PyObject *Euler_Unique(EulerObject * self)
{
#define PI_2		(Py_PI * 2.0)
#define PI_HALF		(Py_PI / 2.0)
#define PI_INV		(1.0 / Py_PI)

	double heading, pitch, bank;

	if(!BaseMath_ReadCallback(self))
		return NULL;

#ifdef USE_MATHUTILS_DEG
	//radians
	heading = self->eul[0] * (float)Py_PI / 180;
	pitch = self->eul[1] * (float)Py_PI / 180;
	bank = self->eul[2] * (float)Py_PI / 180;
#else
	heading = self->eul[0];
	pitch = self->eul[1];
	bank = self->eul[2];
#endif

	//wrap heading in +180 / -180
	pitch += Py_PI;
	pitch -= floor(pitch * PI_INV) * PI_2;
	pitch -= Py_PI;


	if(pitch < -PI_HALF) {
		pitch = -Py_PI - pitch;
		heading += Py_PI;
		bank += Py_PI;
	} else if(pitch > PI_HALF) {
		pitch = Py_PI - pitch;
		heading += Py_PI;
		bank += Py_PI;
	}
	//gimbal lock test
	if(fabs(pitch) > PI_HALF - 1e-4) {
		heading += bank;
		bank = 0.0f;
	} else {
		bank += Py_PI;
		bank -= (floor(bank * PI_INV)) * PI_2;
		bank -= Py_PI;
	}

	heading += Py_PI;
	heading -= (floor(heading * PI_INV)) * PI_2;
	heading -= Py_PI;

#ifdef USE_MATHUTILS_DEG
	//back to degrees
	self->eul[0] = (float)(heading * 180 / (float)Py_PI);
	self->eul[1] = (float)(pitch * 180 / (float)Py_PI);
	self->eul[2] = (float)(bank * 180 / (float)Py_PI);
#endif

	BaseMath_WriteCallback(self);
	Py_INCREF(self);
	return (PyObject *)self;
}
//----------------------------Euler.zero()-------------------------
//sets the euler to 0,0,0
static char Euler_Zero_doc[] =
".. method:: zero()\n"
"\n"
"   Set all values to zero.\n"
"\n"
"   :return: an instance of itself\n"
"   :rtype: :class:`Euler`\n";

static PyObject *Euler_Zero(EulerObject * self)
{
	self->eul[0] = 0.0;
	self->eul[1] = 0.0;
	self->eul[2] = 0.0;

	BaseMath_WriteCallback(self);
	Py_INCREF(self);
	return (PyObject *)self;
}
//----------------------------Euler.rotate()-----------------------
//rotates a euler a certain amount and returns the result
//should return a unique euler rotation (i.e. no 720 degree pitches :)
static PyObject *Euler_Rotate(EulerObject * self, PyObject *args)
{
	float angle = 0.0f;
	char *axis;

	if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){
		PyErr_SetString(PyExc_TypeError, "euler.rotate():expected angle (float) and axis (x,y,z)");
		return NULL;
	}
	if(ELEM3(*axis, 'x', 'y', 'z') && axis[1]=='\0'){
		PyErr_SetString(PyExc_TypeError, "euler.rotate(): expected axis to be 'x', 'y' or 'z'");
		return NULL;
	}

	if(!BaseMath_ReadCallback(self))
		return NULL;

#ifdef USE_MATHUTILS_DEG
	{
		int x;

		//covert to radians
		angle *= ((float)Py_PI / 180);
		for(x = 0; x < 3; x++) {
			self->eul[x] *= ((float)Py_PI / 180);
		}
	}
#endif
	rotate_eul(self->eul, *axis, angle);

#ifdef USE_MATHUTILS_DEG
	{
		int x;
		//convert back from radians
		for(x = 0; x < 3; x++) {
			self->eul[x] *= (180 / (float)Py_PI);
		}
	}
#endif

	BaseMath_WriteCallback(self);
	Py_INCREF(self);
	return (PyObject *)self;
}

static char Euler_MakeCompatible_doc[] =
".. method:: make_compatible(other)\n"
"\n"
"   Make this euler compatible with another, so interpolating between them works as intended.\n"
"\n"
"   :arg other: make compatible with this rotation.\n"
"   :type other: :class:`Euler`\n"
"   :return: an instance of itself.\n"
"   :rtype: :class:`Euler`\n";

static PyObject *Euler_MakeCompatible(EulerObject * self, EulerObject *value)
{
#ifdef USE_MATHUTILS_DEG
	float eul_from_rad[3];
	int x;
#endif
	
	if(!EulerObject_Check(value)) {
		PyErr_SetString(PyExc_TypeError, "euler.makeCompatible(euler):expected a single euler argument.");
		return NULL;
	}
	
	if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
		return NULL;

#ifdef USE_MATHUTILS_DEG
	//covert to radians
	for(x = 0; x < 3; x++) {
		self->eul[x] = self->eul[x] * ((float)Py_PI / 180);
		eul_from_rad[x] = value->eul[x] * ((float)Py_PI / 180);
	}
	compatible_eul(self->eul, eul_from_rad);
#else
	compatible_eul(self->eul, value->eul);
#endif

#ifdef USE_MATHUTILS_DEG
	//convert back from radians
	for(x = 0; x < 3; x++) {
		self->eul[x] *= (180 / (float)Py_PI);
	}
#endif
	BaseMath_WriteCallback(self);
	Py_INCREF(self);
	return (PyObject *)self;
}

//----------------------------Euler.rotate()-----------------------
// return a copy of the euler

static char Euler_copy_doc[] =
".. function:: copy()\n"
"\n"
"   Returns a copy of this euler.\n"
"\n"
"   :return: A copy of the euler.\n"
"   :rtype: :class:`Euler`\n"
"\n"
"   .. note:: use this to get a copy of a wrapped euler with no reference to the original data.\n";

static PyObject *Euler_copy(EulerObject * self, PyObject *args)
{
	if(!BaseMath_ReadCallback(self))
		return NULL;

	return newEulerObject(self->eul, Py_NEW, Py_TYPE(self));
}

//----------------------------print object (internal)--------------
//print the object to screen
static PyObject *Euler_repr(EulerObject * self)
{
	char str[64];

	if(!BaseMath_ReadCallback(self))
		return NULL;

	sprintf(str, "[%.6f, %.6f, %.6f](euler)", self->eul[0], self->eul[1], self->eul[2]);
	return PyUnicode_FromString(str);
}
//------------------------tp_richcmpr
//returns -1 execption, 0 false, 1 true
static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
{
	EulerObject *eulA = NULL, *eulB = NULL;
	int result = 0;

	if(EulerObject_Check(objectA)) {
		eulA = (EulerObject*)objectA;
		if(!BaseMath_ReadCallback(eulA))
			return NULL;
	}
	if(EulerObject_Check(objectB)) {
		eulB = (EulerObject*)objectB;
		if(!BaseMath_ReadCallback(eulB))
			return NULL;
	}

	if (!eulA || !eulB){
		if (comparison_type == Py_NE){
			Py_RETURN_TRUE;
		}else{
			Py_RETURN_FALSE;
		}
	}
	eulA = (EulerObject*)objectA;
	eulB = (EulerObject*)objectB;

	switch (comparison_type){
		case Py_EQ:
			result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
			break;
		case Py_NE:
			result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
			if (result == 0){
				result = 1;
			}else{
				result = 0;
			}
			break;
		default:
			printf("The result of the comparison could not be evaluated");
			break;
	}
	if (result == 1){
		Py_RETURN_TRUE;
	}else{
		Py_RETURN_FALSE;
	}
}

//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Euler_len(EulerObject * self)
{
	return 3;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Euler_item(EulerObject * self, int i)
{
	if(i<0) i= 3-i;
	
	if(i < 0 || i >= 3) {
		PyErr_SetString(PyExc_IndexError, "euler[attribute]: array index out of range");
		return NULL;
	}

	if(!BaseMath_ReadIndexCallback(self, i))
		return NULL;

	return PyFloat_FromDouble(self->eul[i]);

}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Euler_ass_item(EulerObject * self, int i, PyObject * value)
{
	float f = PyFloat_AsDouble(value);

	if(f == -1 && PyErr_Occurred()) { // parsed item not a number
		PyErr_SetString(PyExc_TypeError, "euler[attribute] = x: argument not a number");
		return -1;
	}

	if(i<0) i= 3-i;
	
	if(i < 0 || i >= 3){
		PyErr_SetString(PyExc_IndexError, "euler[attribute] = x: array assignment index out of range\n");
		return -1;
	}
	
	self->eul[i] = f;

	if(!BaseMath_WriteIndexCallback(self, i))
		return -1;

	return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Euler_slice(EulerObject * self, int begin, int end)
{
	PyObject *list = NULL;
	int count;

	if(!BaseMath_ReadCallback(self))
		return NULL;

	CLAMP(begin, 0, 3);
	if (end<0) end= 4+end;
	CLAMP(end, 0, 3);
	begin = MIN2(begin,end);

	list = PyList_New(end - begin);
	for(count = begin; count < end; count++) {
		PyList_SetItem(list, count - begin,
				PyFloat_FromDouble(self->eul[count]));
	}

	return list;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Euler_ass_slice(EulerObject * self, int begin, int end,
			     PyObject * seq)
{
	int i, y, size = 0;
	float eul[3];
	PyObject *e;

	if(!BaseMath_ReadCallback(self))
		return -1;

	CLAMP(begin, 0, 3);
	if (end<0) end= 4+end;
	CLAMP(end, 0, 3);
	begin = MIN2(begin,end);

	size = PySequence_Length(seq);
	if(size != (end - begin)){
		PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: size mismatch in slice assignment");
		return -1;
	}

	for (i = 0; i < size; i++) {
		e = PySequence_GetItem(seq, i);
		if (e == NULL) { // Failed to read sequence
			PyErr_SetString(PyExc_RuntimeError, "euler[begin:end] = []: unable to read sequence");
			return -1;
		}

		eul[i] = (float)PyFloat_AsDouble(e);
		Py_DECREF(e);

		if(eul[i]==-1 && PyErr_Occurred()) { // parsed item not a number
			PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: sequence argument not a number");
			return -1;
		}
	}
	//parsed well - now set in vector
	for(y = 0; y < 3; y++){
		self->eul[begin + y] = eul[y];
	}

	BaseMath_WriteCallback(self);
	return 0;
}
//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Euler_SeqMethods = {
	(lenfunc) Euler_len,						/* sq_length */
	(binaryfunc) 0,								/* sq_concat */
	(ssizeargfunc) 0,								/* sq_repeat */
	(ssizeargfunc) Euler_item,					/* sq_item */
	(ssizessizeargfunc) Euler_slice,				/* sq_slice */
	(ssizeobjargproc) Euler_ass_item,				/* sq_ass_item */
	(ssizessizeobjargproc) Euler_ass_slice,			/* sq_ass_slice */
};


/*
 * vector axis, vector.x/y/z/w
 */
static PyObject *Euler_getAxis( EulerObject * self, void *type )
{
	return Euler_item(self, GET_INT_FROM_POINTER(type));
}

static int Euler_setAxis( EulerObject * self, PyObject * value, void * type )
{
	return Euler_ass_item(self, GET_INT_FROM_POINTER(type), value);
}

/*****************************************************************************/
/* Python attributes get/set structure:                                      */
/*****************************************************************************/
static PyGetSetDef Euler_getseters[] = {
	{"x", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler X axis in radians. **type** float", (void *)0},
	{"y", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Y axis in radians. **type** float", (void *)1},
	{"z", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Z axis in radians. **type** float", (void *)2},

	{"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
	{"_owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
	{NULL,NULL,NULL,NULL,NULL}  /* Sentinel */
};


//-----------------------METHOD DEFINITIONS ----------------------
static struct PyMethodDef Euler_methods[] = {
	{"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc},
	{"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc},
	{"to_matrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc},
	{"to_quat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc},
	{"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, NULL},
	{"make_compatible", (PyCFunction) Euler_MakeCompatible, METH_O, Euler_MakeCompatible_doc},
	{"__copy__", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
	{"copy", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
	{NULL, NULL, 0, NULL}
};

//------------------PY_OBECT DEFINITION--------------------------
static char euler_doc[] =
"This object gives access to Eulers in Blender.\n"
"\n"
".. literalinclude:: ../examples/mathutils_euler.py\n";

PyTypeObject euler_Type = {
	PyVarObject_HEAD_INIT(NULL, 0)
	"euler",						//tp_name
	sizeof(EulerObject),			//tp_basicsize
	0,								//tp_itemsize
	(destructor)BaseMathObject_dealloc,		//tp_dealloc
	0,								//tp_print
	0,								//tp_getattr
	0,								//tp_setattr
	0,								//tp_compare
	(reprfunc) Euler_repr,			//tp_repr
	0,				//tp_as_number
	&Euler_SeqMethods,				//tp_as_sequence
	0,								//tp_as_mapping
	0,								//tp_hash
	0,								//tp_call
	0,								//tp_str
	0,								//tp_getattro
	0,								//tp_setattro
	0,								//tp_as_buffer
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags
	euler_doc, //tp_doc
	0,								//tp_traverse
	0,								//tp_clear
	(richcmpfunc)Euler_richcmpr,	//tp_richcompare
	0,								//tp_weaklistoffset
	0,								//tp_iter
	0,								//tp_iternext
	Euler_methods,					//tp_methods
	0,								//tp_members
	Euler_getseters,				//tp_getset
	0,								//tp_base
	0,								//tp_dict
	0,								//tp_descr_get
	0,								//tp_descr_set
	0,								//tp_dictoffset
	0,								//tp_init
	0,								//tp_alloc
	Euler_new,						//tp_new
	0,								//tp_free
	0,								//tp_is_gc
	0,								//tp_bases
	0,								//tp_mro
	0,								//tp_cache
	0,								//tp_subclasses
	0,								//tp_weaklist
	0								//tp_del
};
//------------------------newEulerObject (internal)-------------
//creates a new euler object
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 (i.e. it was allocated elsewhere by MEM_mallocN())
  pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 (i.e. it must be created here with PyMEM_malloc())*/
PyObject *newEulerObject(float *eul, int type, PyTypeObject *base_type)
{
	EulerObject *self;
	int x;

	if(base_type)	self = (EulerObject *)base_type->tp_alloc(base_type, 0);
	else			self = PyObject_NEW(EulerObject, &euler_Type);

	/* init callbacks as NULL */
	self->cb_user= NULL;
	self->cb_type= self->cb_subtype= 0;

	if(type == Py_WRAP){
		self->eul = eul;
		self->wrapped = Py_WRAP;
	}else if (type == Py_NEW){
		self->eul = PyMem_Malloc(3 * sizeof(float));
		if(!eul) { //new empty
			for(x = 0; x < 3; x++) {
				self->eul[x] = 0.0f;
			}
		}else{
			VECCOPY(self->eul, eul);
		}
		self->wrapped = Py_NEW;
	}else{ //bad type
		return NULL;
	}
	return (PyObject *)self;
}

PyObject *newEulerObject_cb(PyObject *cb_user, int cb_type, int cb_subtype)
{
	EulerObject *self= (EulerObject *)newEulerObject(NULL, Py_NEW, NULL);
	if(self) {
		Py_INCREF(cb_user);
		self->cb_user=			cb_user;
		self->cb_type=			(unsigned char)cb_type;
		self->cb_subtype=		(unsigned char)cb_subtype;
	}

	return (PyObject *)self;
}