Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mathutils_quat.c « generic « python « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 322dcf31092440ae5a6b6febb0637eb270caef71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
/*
 * $Id$
 *
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * 
 * Contributor(s): Joseph Gilbert
 *
 * ***** END GPL LICENSE BLOCK *****
 */

#include "mathutils.h"

#include "BLI_math.h"
#include "BKE_utildefines.h"

//-----------------------------METHODS------------------------------

/* note: BaseMath_ReadCallback must be called beforehand */
static PyObject *Quaternion_ToTupleExt(QuaternionObject *self, int ndigits)
{
	PyObject *ret;
	int i;

	ret= PyTuple_New(4);

	if(ndigits >= 0) {
		for(i= 0; i < 4; i++) {
			PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->quat[i], ndigits)));
		}
	}
	else {
		for(i= 0; i < 4; i++) {
			PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->quat[i]));
		}
	}

	return ret;
}

static char Quaternion_ToEuler_doc[] =
".. method:: to_euler(order, euler_compat)\n"
"\n"
"   Return Euler representation of the quaternion.\n"
"\n"
"   :arg order: Optional rotation order argument in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
"   :type order: string\n"
"   :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n"
"   :type euler_compat: :class:`Euler`\n"
"   :return: Euler representation of the quaternion.\n"
"   :rtype: :class:`Euler`\n";

static PyObject *Quaternion_ToEuler(QuaternionObject * self, PyObject *args)
{
	float eul[3];
	char *order_str= NULL;
	short order= 0;
	EulerObject *eul_compat = NULL;
	
	if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
		return NULL;
	
	if(!BaseMath_ReadCallback(self))
		return NULL;

	if(order_str) {
		order= euler_order_from_string(order_str, "Matrix.to_euler()");

		if(order < 0)
			return NULL;
	}

	if(eul_compat) {
		float mat[3][3];
		
		if(!BaseMath_ReadCallback(eul_compat))
			return NULL;
		
		quat_to_mat3(mat, self->quat);

		if(order == 0)	mat3_to_compatible_eul(eul, eul_compat->eul, mat);
		else			mat3_to_compatible_eulO(eul, eul_compat->eul, order, mat);
	}
	else {
		if(order == 0)	quat_to_eul(eul, self->quat);
		else			quat_to_eulO(eul, order, self->quat);
	}
	
	return newEulerObject(eul, order, Py_NEW, NULL);
}
//----------------------------Quaternion.toMatrix()------------------
static char Quaternion_ToMatrix_doc[] =
".. method:: to_matrix(other)\n"
"\n"
"   Return a matrix representation of the quaternion.\n"
"\n"
"   :return: A 3x3 rotation matrix representation of the quaternion.\n"
"   :rtype: :class:`Matrix`\n";

static PyObject *Quaternion_ToMatrix(QuaternionObject * self)
{
	float mat[9]; /* all values are set */

	if(!BaseMath_ReadCallback(self))
		return NULL;

	quat_to_mat3( (float (*)[3]) mat,self->quat);
	return newMatrixObject(mat, 3, 3, Py_NEW, NULL);
}

//----------------------------Quaternion.cross(other)------------------
static char Quaternion_Cross_doc[] =
".. method:: cross(other)\n"
"\n"
"   Return the cross product of this quaternion and another.\n"
"\n"
"   :arg other: The other quaternion to perform the cross product with.\n"
"   :type other: :class:`Quaternion`\n"
"   :return: The cross product.\n"
"   :rtype: :class:`Quaternion`\n";

static PyObject *Quaternion_Cross(QuaternionObject * self, QuaternionObject * value)
{
	float quat[4];
	
	if (!QuaternionObject_Check(value)) {
		PyErr_SetString( PyExc_TypeError, "quat.cross(value): expected a quaternion argument" );
		return NULL;
	}
	
	if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
		return NULL;

	mul_qt_qtqt(quat, self->quat, value->quat);
	return newQuaternionObject(quat, Py_NEW, NULL);
}

//----------------------------Quaternion.dot(other)------------------
static char Quaternion_Dot_doc[] =
".. method:: dot(other)\n"
"\n"
"   Return the dot product of this quaternion and another.\n"
"\n"
"   :arg other: The other quaternion to perform the dot product with.\n"
"   :type other: :class:`Quaternion`\n"
"   :return: The dot product.\n"
"   :rtype: :class:`Quaternion`\n";

static PyObject *Quaternion_Dot(QuaternionObject * self, QuaternionObject * value)
{
	if (!QuaternionObject_Check(value)) {
		PyErr_SetString( PyExc_TypeError, "quat.dot(value): expected a quaternion argument" );
		return NULL;
	}

	if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
		return NULL;

	return PyFloat_FromDouble(dot_qtqt(self->quat, value->quat));
}

static char Quaternion_Difference_doc[] =
".. function:: difference(other)\n"
"\n"
"   Returns a quaternion representing the rotational difference.\n"
"\n"
"   :arg other: second quaternion.\n"
"   :type other: :class:`Quaternion`\n"
"   :return: the rotational difference between the two quat rotations.\n"
"   :rtype: :class:`Quaternion`\n";

static PyObject *Quaternion_Difference(QuaternionObject * self, QuaternionObject * value)
{
	float quat[4], tempQuat[4];
	double dot = 0.0f;
	int x;

	if (!QuaternionObject_Check(value)) {
		PyErr_SetString( PyExc_TypeError, "quat.difference(value): expected a quaternion argument" );
		return NULL;
	}

	if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
		return NULL;

	tempQuat[0] = self->quat[0];
	tempQuat[1] = - self->quat[1];
	tempQuat[2] = - self->quat[2];
	tempQuat[3] = - self->quat[3];

	dot = sqrt(tempQuat[0] * tempQuat[0] + tempQuat[1] *  tempQuat[1] +
				   tempQuat[2] * tempQuat[2] + tempQuat[3] * tempQuat[3]);

	for(x = 0; x < 4; x++) {
		tempQuat[x] /= (float)(dot * dot);
	}
	mul_qt_qtqt(quat, tempQuat, value->quat);
	return newQuaternionObject(quat, Py_NEW, NULL);
}

static char Quaternion_Slerp_doc[] =
".. function:: slerp(other, factor)\n"
"\n"
"   Returns the interpolation of two quaternions.\n"
"\n"
"   :arg other: value to interpolate with.\n"
"   :type other: :class:`Quaternion`\n"
"   :arg factor: The interpolation value in [0.0, 1.0].\n"
"   :type factor: float\n"
"   :return: The interpolated rotation.\n"
"   :rtype: :class:`Quaternion`\n";

static PyObject *Quaternion_Slerp(QuaternionObject *self, PyObject *args)
{
	QuaternionObject *value;
	float quat[4], fac;

	if(!PyArg_ParseTuple(args, "O!f:slerp", &quaternion_Type, &value, &fac)) {
		PyErr_SetString(PyExc_TypeError, "quat.slerp(): expected Quaternion types and float");
		return NULL;
	}

	if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
		return NULL;

	if(fac > 1.0f || fac < 0.0f) {
		PyErr_SetString(PyExc_AttributeError, "quat.slerp(): interpolation factor must be between 0.0 and 1.0");
		return NULL;
	}

	interp_qt_qtqt(quat, self->quat, value->quat, fac);

	return newQuaternionObject(quat, Py_NEW, NULL);
}

//----------------------------Quaternion.normalize()----------------
//normalize the axis of rotation of [theta,vector]
static char Quaternion_Normalize_doc[] =
".. function:: normalize()\n"
"\n"
"   Normalize the quaternion.\n"
"\n"
"   :return: an instance of itself.\n"
"   :rtype: :class:`Quaternion`\n";

static PyObject *Quaternion_Normalize(QuaternionObject * self)
{
	if(!BaseMath_ReadCallback(self))
		return NULL;

	normalize_qt(self->quat);

	BaseMath_WriteCallback(self);
	Py_INCREF(self);
	return (PyObject*)self;
}
//----------------------------Quaternion.inverse()------------------
static char Quaternion_Inverse_doc[] =
".. function:: inverse()\n"
"\n"
"   Set the quaternion to its inverse.\n"
"\n"
"   :return: an instance of itself.\n"
"   :rtype: :class:`Quaternion`\n";

static PyObject *Quaternion_Inverse(QuaternionObject * self)
{
	if(!BaseMath_ReadCallback(self))
		return NULL;

	invert_qt(self->quat);

	BaseMath_WriteCallback(self);
	Py_INCREF(self);
	return (PyObject*)self;
}
//----------------------------Quaternion.identity()-----------------
static char Quaternion_Identity_doc[] =
".. function:: identity()\n"
"\n"
"   Set the quaternion to an identity quaternion.\n"
"\n"
"   :return: an instance of itself.\n"
"   :rtype: :class:`Quaternion`\n";

static PyObject *Quaternion_Identity(QuaternionObject * self)
{
	if(!BaseMath_ReadCallback(self))
		return NULL;

	unit_qt(self->quat);

	BaseMath_WriteCallback(self);
	Py_INCREF(self);
	return (PyObject*)self;
}
//----------------------------Quaternion.negate()-------------------
static char Quaternion_Negate_doc[] =
".. function:: negate()\n"
"\n"
"   Set the quaternion to its negative.\n"
"\n"
"   :return: an instance of itself.\n"
"   :rtype: :class:`Quaternion`\n";

static PyObject *Quaternion_Negate(QuaternionObject * self)
{
	if(!BaseMath_ReadCallback(self))
		return NULL;

	mul_qt_fl(self->quat, -1.0f);

	BaseMath_WriteCallback(self);
	Py_INCREF(self);
	return (PyObject*)self;
}
//----------------------------Quaternion.conjugate()----------------
static char Quaternion_Conjugate_doc[] =
".. function:: conjugate()\n"
"\n"
"   Set the quaternion to its conjugate (negate x, y, z).\n"
"\n"
"   :return: an instance of itself.\n"
"   :rtype: :class:`Quaternion`\n";

static PyObject *Quaternion_Conjugate(QuaternionObject * self)
{
	if(!BaseMath_ReadCallback(self))
		return NULL;

	conjugate_qt(self->quat);

	BaseMath_WriteCallback(self);
	Py_INCREF(self);
	return (PyObject*)self;
}
//----------------------------Quaternion.copy()----------------
static char Quaternion_copy_doc[] =
".. function:: copy()\n"
"\n"
"   Returns a copy of this quaternion.\n"
"\n"
"   :return: A copy of the quaternion.\n"
"   :rtype: :class:`Quaternion`\n"
"\n"
"   .. note:: use this to get a copy of a wrapped quaternion with no reference to the original data.\n";

static PyObject *Quaternion_copy(QuaternionObject * self)
{
	if(!BaseMath_ReadCallback(self))
		return NULL;

	return newQuaternionObject(self->quat, Py_NEW, Py_TYPE(self));
}

//----------------------------print object (internal)--------------
//print the object to screen
static PyObject *Quaternion_repr(QuaternionObject * self)
{
	PyObject *ret, *tuple;
	
	if(!BaseMath_ReadCallback(self))
		return NULL;

	tuple= Quaternion_ToTupleExt(self, -1);

	ret= PyUnicode_FromFormat("Quaternion%R", tuple);

	Py_DECREF(tuple);
	return ret;
}

//------------------------tp_richcmpr
//returns -1 execption, 0 false, 1 true
static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
{
	QuaternionObject *quatA = NULL, *quatB = NULL;
	int result = 0;

	if(QuaternionObject_Check(objectA)) {
		quatA = (QuaternionObject*)objectA;
		if(!BaseMath_ReadCallback(quatA))
			return NULL;
	}
	if(QuaternionObject_Check(objectB)) {
		quatB = (QuaternionObject*)objectB;
		if(!BaseMath_ReadCallback(quatB))
			return NULL;
	}

	if (!quatA || !quatB){
		if (comparison_type == Py_NE){
			Py_RETURN_TRUE;
		}else{
			Py_RETURN_FALSE;
		}
	}

	switch (comparison_type){
		case Py_EQ:
			result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1);
			break;
		case Py_NE:
			result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1);
			if (result == 0){
				result = 1;
			}else{
				result = 0;
			}
			break;
		default:
			printf("The result of the comparison could not be evaluated");
			break;
	}
	if (result == 1){
		Py_RETURN_TRUE;
	}else{
		Py_RETURN_FALSE;
	}
}

//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Quaternion_len(QuaternionObject * self)
{
	return 4;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Quaternion_item(QuaternionObject * self, int i)
{
	if(i<0)	i= 4-i;

	if(i < 0 || i >= 4) {
		PyErr_SetString(PyExc_IndexError, "quaternion[attribute]: array index out of range\n");
		return NULL;
	}

	if(!BaseMath_ReadIndexCallback(self, i))
		return NULL;

	return PyFloat_FromDouble(self->quat[i]);

}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob)
{
	float scalar= (float)PyFloat_AsDouble(ob);
	if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
		PyErr_SetString(PyExc_TypeError, "quaternion[index] = x: index argument not a number\n");
		return -1;
	}

	if(i<0)	i= 4-i;

	if(i < 0 || i >= 4){
		PyErr_SetString(PyExc_IndexError, "quaternion[attribute] = x: array assignment index out of range\n");
		return -1;
	}
	self->quat[i] = scalar;

	if(!BaseMath_WriteIndexCallback(self, i))
		return -1;

	return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end)
{
	PyObject *list = NULL;
	int count;

	if(!BaseMath_ReadCallback(self))
		return NULL;

	CLAMP(begin, 0, 4);
	if (end<0) end= 5+end;
	CLAMP(end, 0, 4);
	begin = MIN2(begin,end);

	list = PyList_New(end - begin);
	for(count = begin; count < end; count++) {
		PyList_SetItem(list, count - begin,
				PyFloat_FromDouble(self->quat[count]));
	}

	return list;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end, PyObject * seq)
{
	int i, y, size = 0;
	float quat[4];
	PyObject *q;

	if(!BaseMath_ReadCallback(self))
		return -1;

	CLAMP(begin, 0, 4);
	if (end<0) end= 5+end;
	CLAMP(end, 0, 4);
	begin = MIN2(begin,end);

	size = PySequence_Length(seq);
	if(size != (end - begin)){
		PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: size mismatch in slice assignment\n");
		return -1;
	}

	for (i = 0; i < size; i++) {
		q = PySequence_GetItem(seq, i);
		if (q == NULL) { // Failed to read sequence
			PyErr_SetString(PyExc_RuntimeError, "quaternion[begin:end] = []: unable to read sequence\n");
			return -1;
		}

		quat[i]= (float)PyFloat_AsDouble(q);
		Py_DECREF(q);

		if(quat[i]==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
			PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: sequence argument not a number\n");
			return -1;
		}
	}
	//parsed well - now set in vector
	for(y = 0; y < size; y++)
		self->quat[begin + y] = quat[y];

	BaseMath_WriteCallback(self);
	return 0;
}
//------------------------NUMERIC PROTOCOLS----------------------
//------------------------obj + obj------------------------------
//addition
static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
{
	float quat[4];
	QuaternionObject *quat1 = NULL, *quat2 = NULL;

	if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
		PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n");
		return NULL;
	}
	quat1 = (QuaternionObject*)q1;
	quat2 = (QuaternionObject*)q2;
	
	if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
		return NULL;

	add_qt_qtqt(quat, quat1->quat, quat2->quat, 1.0f);
	return newQuaternionObject(quat, Py_NEW, NULL);
}
//------------------------obj - obj------------------------------
//subtraction
static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
{
	int x;
	float quat[4];
	QuaternionObject *quat1 = NULL, *quat2 = NULL;

	if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
		PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n");
		return NULL;
	}
	
	quat1 = (QuaternionObject*)q1;
	quat2 = (QuaternionObject*)q2;
	
	if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
		return NULL;

	for(x = 0; x < 4; x++) {
		quat[x] = quat1->quat[x] - quat2->quat[x];
	}

	return newQuaternionObject(quat, Py_NEW, NULL);
}
//------------------------obj * obj------------------------------
//mulplication
static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
{
	float quat[4], scalar;
	QuaternionObject *quat1 = NULL, *quat2 = NULL;
	VectorObject *vec = NULL;

	if(QuaternionObject_Check(q1)) {
		quat1 = (QuaternionObject*)q1;
		if(!BaseMath_ReadCallback(quat1))
			return NULL;
	}
	if(QuaternionObject_Check(q2)) {
		quat2 = (QuaternionObject*)q2;
		if(!BaseMath_ReadCallback(quat2))
			return NULL;
	}

	if(quat1 && quat2) { /* QUAT*QUAT (dot product) */
		return PyFloat_FromDouble(dot_qtqt(quat1->quat, quat2->quat));
	}
	
	/* the only case this can happen (for a supported type is "FLOAT*QUAT" ) */
	if(!QuaternionObject_Check(q1)) {
		scalar= PyFloat_AsDouble(q1);
		if ((scalar == -1.0 && PyErr_Occurred())==0) { /* FLOAT*QUAT */
			QUATCOPY(quat, quat2->quat);
			mul_qt_fl(quat, scalar);
			return newQuaternionObject(quat, Py_NEW, NULL);
		}
		PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: val * quat, val is not an acceptable type");
		return NULL;
	}
	else { /* QUAT*SOMETHING */
		if(VectorObject_Check(q2)){  /* QUAT*VEC */
			vec = (VectorObject*)q2;
			if(vec->size != 3){
				PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: only 3D vector rotations currently supported\n");
				return NULL;
			}
			return quat_rotation((PyObject*)quat1, (PyObject*)vec); /* vector updating done inside the func */
		}
		
		scalar= PyFloat_AsDouble(q2);
		if ((scalar == -1.0 && PyErr_Occurred())==0) { /* QUAT*FLOAT */
			QUATCOPY(quat, quat1->quat);
			mul_qt_fl(quat, scalar);
			return newQuaternionObject(quat, Py_NEW, NULL);
		}
	}
	
	PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: arguments not acceptable for this operation\n");
	return NULL;
}

//-----------------PROTOCOL DECLARATIONS--------------------------
static PySequenceMethods Quaternion_SeqMethods = {
	(lenfunc) Quaternion_len,					/* sq_length */
	(binaryfunc) 0,								/* sq_concat */
	(ssizeargfunc) 0,								/* sq_repeat */
	(ssizeargfunc) Quaternion_item,				/* sq_item */
	(ssizessizeargfunc) Quaternion_slice,			/* sq_slice */
	(ssizeobjargproc) Quaternion_ass_item,		/* sq_ass_item */
	(ssizessizeobjargproc) Quaternion_ass_slice,	/* sq_ass_slice */
};

static PyNumberMethods Quaternion_NumMethods = {
		(binaryfunc)	Quaternion_add,	/*nb_add*/
		(binaryfunc)	Quaternion_sub,	/*nb_subtract*/
		(binaryfunc)	Quaternion_mul,	/*nb_multiply*/
		0,							/*nb_remainder*/
		0,							/*nb_divmod*/
		0,							/*nb_power*/
		(unaryfunc) 	0,	/*nb_negative*/
		(unaryfunc) 	0,	/*tp_positive*/
		(unaryfunc) 	0,	/*tp_absolute*/
		(inquiry)	0,	/*tp_bool*/
		(unaryfunc)	0,	/*nb_invert*/
		0,				/*nb_lshift*/
		(binaryfunc)0,	/*nb_rshift*/
		0,				/*nb_and*/
		0,				/*nb_xor*/
		0,				/*nb_or*/
		0,				/*nb_int*/
		0,				/*nb_reserved*/
		0,				/*nb_float*/
		0,				/* nb_inplace_add */
		0,				/* nb_inplace_subtract */
		0,				/* nb_inplace_multiply */
		0,				/* nb_inplace_remainder */
		0,				/* nb_inplace_power */
		0,				/* nb_inplace_lshift */
		0,				/* nb_inplace_rshift */
		0,				/* nb_inplace_and */
		0,				/* nb_inplace_xor */
		0,				/* nb_inplace_or */
		0,				/* nb_floor_divide */
		0,				/* nb_true_divide */
		0,				/* nb_inplace_floor_divide */
		0,				/* nb_inplace_true_divide */
		0,				/* nb_index */
};

static PyObject *Quaternion_getAxis( QuaternionObject * self, void *type )
{
	return Quaternion_item(self, GET_INT_FROM_POINTER(type));
}

static int Quaternion_setAxis( QuaternionObject * self, PyObject * value, void * type )
{
	return Quaternion_ass_item(self, GET_INT_FROM_POINTER(type), value);
}

static PyObject *Quaternion_getMagnitude( QuaternionObject * self, void *type )
{
	return PyFloat_FromDouble(sqrt(dot_qtqt(self->quat, self->quat)));
}

static PyObject *Quaternion_getAngle( QuaternionObject * self, void *type )
{
	return PyFloat_FromDouble(2.0 * (saacos(self->quat[0])));
}

static PyObject *Quaternion_getAxisVec( QuaternionObject * self, void *type )
{
	int i;
	float vec[3];
	double mag = self->quat[0] * (Py_PI / 180);
	mag = 2 * (saacos(mag));
	mag = sin(mag / 2);
	for(i = 0; i < 3; i++)
		vec[i] = (float)(self->quat[i + 1] / mag);
	
	normalize_v3(vec);
	//If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations
	if( EXPP_FloatsAreEqual(vec[0], 0.0f, 10) &&
		EXPP_FloatsAreEqual(vec[1], 0.0f, 10) &&
		EXPP_FloatsAreEqual(vec[2], 0.0f, 10) ){
		vec[0] = 1.0f;
	}
	return (PyObject *) newVectorObject(vec, 3, Py_NEW, NULL);
}

//----------------------------------mathutils.Quaternion() --------------
static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
	PyObject *listObject = NULL, *n, *q;
	int size, i;
	float quat[4];
	double angle = 0.0f;

	size = PyTuple_GET_SIZE(args);
	if (size == 1 || size == 2) { //seq?
		listObject = PyTuple_GET_ITEM(args, 0);
		if (PySequence_Check(listObject)) {
			size = PySequence_Length(listObject);
			if ((size == 4 && PySequence_Length(args) !=1) ||
				(size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) {
				// invalid args/size
				PyErr_SetString(PyExc_AttributeError, "mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
				return NULL;
			}
			   if(size == 3){ //get angle in axis/angle
				n = PySequence_GetItem(args, 1);
				if(n == NULL) { // parsed item not a number or getItem fail
					PyErr_SetString(PyExc_TypeError, "mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
					return NULL;
				}

				angle = PyFloat_AsDouble(n);
				Py_DECREF(n);

				if (angle==-1 && PyErr_Occurred()) {
					PyErr_SetString(PyExc_TypeError, "mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
					return NULL;
				}
			}
		}else{
			listObject = PyTuple_GET_ITEM(args, 1);
			if (size>1 && PySequence_Check(listObject)) {
				size = PySequence_Length(listObject);
				if (size != 3) {
					// invalid args/size
					PyErr_SetString(PyExc_AttributeError, "mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
					return NULL;
				}
				angle = PyFloat_AsDouble(PyTuple_GET_ITEM(args, 0));

				if (angle==-1 && PyErr_Occurred()) {
					PyErr_SetString(PyExc_TypeError, "mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
					return NULL;
				}
			} else { // argument was not a sequence
				PyErr_SetString(PyExc_TypeError, "mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
				return NULL;
			}
		}
	} else if (size == 0) { //returns a new empty quat
		return newQuaternionObject(NULL, Py_NEW, NULL);
	} else {
		listObject = args;
	}

	if (size == 3) { // invalid quat size
		if(PySequence_Length(args) != 2){
			PyErr_SetString(PyExc_AttributeError, "mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
			return NULL;
		}
	}else{
		if(size != 4){
			PyErr_SetString(PyExc_AttributeError, "mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
			return NULL;
		}
	}

	for (i=0; i<size; i++) { //parse
		q = PySequence_GetItem(listObject, i);
		if (q == NULL) { // Failed to read sequence
			PyErr_SetString(PyExc_RuntimeError, "mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
			return NULL;
		}

		quat[i] = PyFloat_AsDouble(q);
		Py_DECREF(q);

		if (quat[i]==-1 && PyErr_Occurred()) {
			PyErr_SetString(PyExc_TypeError, "mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
			return NULL;
		}
	}

	if(size == 3) //calculate the quat based on axis/angle
		axis_angle_to_quat(quat, quat, angle);

	return newQuaternionObject(quat, Py_NEW, NULL);
}


//-----------------------METHOD DEFINITIONS ----------------------
static struct PyMethodDef Quaternion_methods[] = {
	{"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, Quaternion_Identity_doc},
	{"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, Quaternion_Negate_doc},
	{"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, Quaternion_Conjugate_doc},
	{"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, Quaternion_Inverse_doc},
	{"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, Quaternion_Normalize_doc},
	{"to_euler", (PyCFunction) Quaternion_ToEuler, METH_VARARGS, Quaternion_ToEuler_doc},
	{"to_matrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, Quaternion_ToMatrix_doc},
	{"cross", (PyCFunction) Quaternion_Cross, METH_O, Quaternion_Cross_doc},
	{"dot", (PyCFunction) Quaternion_Dot, METH_O, Quaternion_Dot_doc},
	{"difference", (PyCFunction) Quaternion_Difference, METH_O, Quaternion_Difference_doc},
	{"slerp", (PyCFunction) Quaternion_Slerp, METH_VARARGS, Quaternion_Slerp_doc},
	{"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
	{"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
	{NULL, NULL, 0, NULL}
};

/*****************************************************************************/
/* Python attributes get/set structure:                                      */
/*****************************************************************************/
static PyGetSetDef Quaternion_getseters[] = {
	{"w", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion W value. **type** float", (void *)0},
	{"x", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion X axis. **type** float", (void *)1},
	{"y", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Y axis. **type** float", (void *)2},
	{"z", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Z axis. **type** float", (void *)3},
	{"magnitude", (getter)Quaternion_getMagnitude, (setter)NULL, "Size of the quaternion (readonly). **type** float", NULL},
	{"angle", (getter)Quaternion_getAngle, (setter)NULL, "angle of the quaternion (readonly). **type** float", NULL},
	{"axis",(getter)Quaternion_getAxisVec, (setter)NULL, "quaternion axis as a vector (readonly). **type** :class:`Vector`", NULL},
	{"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
	{"_owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
	{NULL,NULL,NULL,NULL,NULL}  /* Sentinel */
};

//------------------PY_OBECT DEFINITION--------------------------
static char quaternion_doc[] =
"This object gives access to Quaternions in Blender.";

PyTypeObject quaternion_Type = {
	PyVarObject_HEAD_INIT(NULL, 0)
	"quaternion",						//tp_name
	sizeof(QuaternionObject),			//tp_basicsize
	0,								//tp_itemsize
	(destructor)BaseMathObject_dealloc,		//tp_dealloc
	0,								//tp_print
	0,								//tp_getattr
	0,								//tp_setattr
	0,								//tp_compare
	(reprfunc) Quaternion_repr,			//tp_repr
	&Quaternion_NumMethods,				//tp_as_number
	&Quaternion_SeqMethods,				//tp_as_sequence
	0,								//tp_as_mapping
	0,								//tp_hash
	0,								//tp_call
	0,								//tp_str
	0,								//tp_getattro
	0,								//tp_setattro
	0,								//tp_as_buffer
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags
	quaternion_doc, //tp_doc
	0,								//tp_traverse
	0,								//tp_clear
	(richcmpfunc)Quaternion_richcmpr,	//tp_richcompare
	0,								//tp_weaklistoffset
	0,								//tp_iter
	0,								//tp_iternext
	Quaternion_methods,				//tp_methods
	0,								//tp_members
	Quaternion_getseters,			//tp_getset
	0,								//tp_base
	0,								//tp_dict
	0,								//tp_descr_get
	0,								//tp_descr_set
	0,								//tp_dictoffset
	0,								//tp_init
	0,								//tp_alloc
	Quaternion_new,					//tp_new
	0,								//tp_free
	0,								//tp_is_gc
	0,								//tp_bases
	0,								//tp_mro
	0,								//tp_cache
	0,								//tp_subclasses
	0,								//tp_weaklist
	0								//tp_del
};
//------------------------newQuaternionObject (internal)-------------
//creates a new quaternion object
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 (i.e. it was allocated elsewhere by MEM_mallocN())
  pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 (i.e. it must be created here with PyMEM_malloc())*/
PyObject *newQuaternionObject(float *quat, int type, PyTypeObject *base_type)
{
	QuaternionObject *self;
	
	if(base_type)	self = (QuaternionObject *)base_type->tp_alloc(base_type, 0);
	else			self = PyObject_NEW(QuaternionObject, &quaternion_Type);

	/* init callbacks as NULL */
	self->cb_user= NULL;
	self->cb_type= self->cb_subtype= 0;

	if(type == Py_WRAP){
		self->quat = quat;
		self->wrapped = Py_WRAP;
	}else if (type == Py_NEW){
		self->quat = PyMem_Malloc(4 * sizeof(float));
		if(!quat) { //new empty
			unit_qt(self->quat);
		}else{
			QUATCOPY(self->quat, quat);
		}
		self->wrapped = Py_NEW;
	}else{ //bad type
		return NULL;
	}
	return (PyObject *) self;
}

PyObject *newQuaternionObject_cb(PyObject *cb_user, int cb_type, int cb_subtype)
{
	QuaternionObject *self= (QuaternionObject *)newQuaternionObject(NULL, Py_NEW, NULL);
	if(self) {
		Py_INCREF(cb_user);
		self->cb_user=			cb_user;
		self->cb_type=			(unsigned char)cb_type;
		self->cb_subtype=		(unsigned char)cb_subtype;
	}

	return (PyObject *)self;
}