Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bpy_rna_array.c « intern « python « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3e147d29c9027159e241777951f6a4b1b9a8098e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * Contributor(s): Arystanbek Dyussenov, Campbell Barton
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/python/intern/bpy_rna_array.c
 *  \ingroup pythonintern
 *
 * This file deals with array access for 'BPy_PropertyArrayRNA' from bpy_rna.c
 */

#include <Python.h>

#include "RNA_types.h"

#include "bpy_rna.h"
#include "BKE_global.h"
#include "MEM_guardedalloc.h"

#include "BLI_utildefines.h"

#include "RNA_access.h"

#include "../generic/py_capi_utils.h"

#define USE_MATHUTILS

#ifdef USE_MATHUTILS
#  include "../mathutils/mathutils.h" /* so we can have mathutils callbacks */
#endif

#define MAX_ARRAY_DIMENSION 10

struct ItemConvertArgData;

typedef void (*ItemConvertFunc)(const struct ItemConvertArgData *arg, PyObject *, char *);
typedef int (*ItemTypeCheckFunc)(PyObject *);
typedef void (*RNA_SetArrayFunc)(PointerRNA *, PropertyRNA *, const char *);
typedef void (*RNA_SetIndexFunc)(PointerRNA *, PropertyRNA *, int index, void *);

struct ItemConvertArgData {
	union {
		struct {
			int range[2];
		} int_data;
		struct {
			float range[2];
		} float_data;
	};
};

/**
 * Callback and args needed to apply the value (clamp range for now)
 */
typedef struct ItemConvert_FuncArg {
	ItemConvertFunc func;
	struct ItemConvertArgData arg;
} ItemConvert_FuncArg;

/*
 * arr[3][4][5]
 *     0  1  2  <- dimension index
 */

/*
 *  arr[2] = x
 *
 *  py_to_array_index(arraydim=0, arrayoffset=0, index=2)
 *      validate_array(lvalue_dim=0)
 *      ... make real index ...
 */

/* arr[3] = x, self->arraydim is 0, lvalue_dim is 1 */
/* Ensures that a python sequence has expected number of items/sub-items and items are of desired type. */
static int validate_array_type(PyObject *seq, int dim, int totdim, int dimsize[], const bool is_dynamic,
                               ItemTypeCheckFunc check_item_type, const char *item_type_str, const char *error_prefix)
{
	Py_ssize_t i;

	/* not the last dimension */
	if (dim + 1 < totdim) {
		/* check that a sequence contains dimsize[dim] items */
		const int seq_size = PySequence_Size(seq);
		if (seq_size == -1) {
			PyErr_Format(PyExc_ValueError, "%s sequence expected at dimension %d, not '%s'",
			             error_prefix, dim + 1, Py_TYPE(seq)->tp_name);
			return -1;
		}
		for (i = 0; i < seq_size; i++) {
			Py_ssize_t item_seq_size;
			PyObject *item;
			bool ok = true;
			item = PySequence_GetItem(seq, i);

			if (item == NULL) {
				PyErr_Format(PyExc_TypeError, "%s sequence type '%s' failed to retrieve index %d",
				             error_prefix, Py_TYPE(seq)->tp_name, i);
				ok = 0;
			}
			else if ((item_seq_size = PySequence_Size(item)) == -1) {
				/* BLI_snprintf(error_str, error_str_size, "expected a sequence of %s", item_type_str); */
				PyErr_Format(PyExc_TypeError, "%s expected a sequence of %s, not %s",
				             error_prefix, item_type_str, Py_TYPE(item)->tp_name);
				ok = 0;
			}
			/* arr[3][4][5]
			 * dimsize[1] = 4
			 * dimsize[2] = 5
			 *
			 * dim = 0 */
			else if (item_seq_size != dimsize[dim + 1]) {
				/* BLI_snprintf(error_str, error_str_size,
				 *              "sequences of dimension %d should contain %d items",
				 *              dim + 1, dimsize[dim + 1]); */
				PyErr_Format(PyExc_ValueError, "%s sequences of dimension %d should contain %d items, not %d",
				             error_prefix, dim + 1, dimsize[dim + 1], item_seq_size);
				ok = 0;
			}
			else if (validate_array_type(item, dim + 1, totdim, dimsize, is_dynamic,
			                             check_item_type, item_type_str, error_prefix) == -1)
			{
				ok = 0;
			}

			Py_XDECREF(item);

			if (!ok) {
				return -1;
			}
		}
	}
	else {
		/* check that items are of correct type */
		const int seq_size = PySequence_Size(seq);
		if (seq_size == -1) {
			PyErr_Format(PyExc_ValueError, "%s sequence expected at dimension %d, not '%s'",
			             error_prefix, dim + 1, Py_TYPE(seq)->tp_name);
			return -1;
		}
		else if ((seq_size != dimsize[dim]) && (is_dynamic == false)) {
			PyErr_Format(PyExc_ValueError, "%s sequences of dimension %d should contain %d items, not %d",
			             error_prefix, dim, dimsize[dim], seq_size);
			return -1;
		}

		for (i = 0; i < seq_size; i++) {
			PyObject *item = PySequence_GetItem(seq, i);

			if (item == NULL) {
				PyErr_Format(PyExc_TypeError, "%s sequence type '%s' failed to retrieve index %d",
				             error_prefix, Py_TYPE(seq)->tp_name, i);
				return -1;
			}
			else if (!check_item_type(item)) {
				Py_DECREF(item);

				/* BLI_snprintf(error_str, error_str_size, "sequence items should be of type %s", item_type_str); */
				PyErr_Format(PyExc_TypeError, "%s expected sequence items of type %s, not %s",
				             error_prefix, item_type_str, Py_TYPE(item)->tp_name);
				return -1;
			}

			Py_DECREF(item);
		}
	}

	return 0; /* ok */
}

/* Returns the number of items in a single- or multi-dimensional sequence. */
static int count_items(PyObject *seq, int dim)
{
	int totitem = 0;

	if (dim > 1) {
		const Py_ssize_t seq_size = PySequence_Size(seq);
		Py_ssize_t i;
		for (i = 0; i < seq_size; i++) {
			PyObject *item = PySequence_GetItem(seq, i);
			if (item) {
				const int tot = count_items(item, dim - 1);
				Py_DECREF(item);
				if (tot != -1) {
					totitem += tot;
				}
				else {
					totitem = -1;
					break;
				}
			}
			else {
				totitem = -1;
				break;
			}
		}
	}
	else {
		totitem = PySequence_Size(seq);
	}

	return totitem;
}

/* Modifies property array length if needed and PROP_DYNAMIC flag is set. */
static int validate_array_length(PyObject *rvalue, PointerRNA *ptr, PropertyRNA *prop,
                                 int lvalue_dim, int *totitem, const char *error_prefix)
{
	int dimsize[MAX_ARRAY_DIMENSION];
	int tot, totdim, len;

	totdim = RNA_property_array_dimension(ptr, prop, dimsize);
	tot = count_items(rvalue, totdim - lvalue_dim);

	if (tot == -1) {
		PyErr_Format(PyExc_ValueError, "%s %.200s.%.200s, error validating the sequence length",
		             error_prefix, RNA_struct_identifier(ptr->type), RNA_property_identifier(prop));
		return -1;
	}
	else if ((RNA_property_flag(prop) & PROP_DYNAMIC) && lvalue_dim == 0) {
		if (RNA_property_array_length(ptr, prop) != tot) {
#if 0
			/* length is flexible */
			if (!RNA_property_dynamic_array_set_length(ptr, prop, tot)) {
				/* BLI_snprintf(error_str, error_str_size,
				 *              "%s.%s: array length cannot be changed to %d",
				 *              RNA_struct_identifier(ptr->type), RNA_property_identifier(prop), tot); */
				PyErr_Format(PyExc_ValueError, "%s %s.%s: array length cannot be changed to %d",
				             error_prefix, RNA_struct_identifier(ptr->type), RNA_property_identifier(prop), tot);
				return -1;
			}
#else
			*totitem = tot;
			return 0;

#endif
		}

		len = tot;
	}
	else {
		/* length is a constraint */
		if (!lvalue_dim) {
			len = RNA_property_array_length(ptr, prop);
		}
		/* array item assignment */
		else {
			int i;

			len = 1;

			/* arr[3][4][5]
			 *
			 *    arr[2] = x
			 *    dimsize = {4, 5}
			 *    dimsize[1] = 4
			 *    dimsize[2] = 5
			 *    lvalue_dim = 0, totdim = 3
			 * 
			 *    arr[2][3] = x
			 *    lvalue_dim = 1
			 * 
			 *    arr[2][3][4] = x
			 *    lvalue_dim = 2 */
			for (i = lvalue_dim; i < totdim; i++)
				len *= dimsize[i];
		}

		if (tot != len) {
			/* BLI_snprintf(error_str, error_str_size, "sequence must have length of %d", len); */
			PyErr_Format(PyExc_ValueError, "%s %.200s.%.200s, sequence must have %d items total, not %d",
			             error_prefix, RNA_struct_identifier(ptr->type), RNA_property_identifier(prop), len, tot);
			return -1;
		}
	}

	*totitem = len;

	return 0;
}

static int validate_array(PyObject *rvalue, PointerRNA *ptr, PropertyRNA *prop,
                          int lvalue_dim, ItemTypeCheckFunc check_item_type, const char *item_type_str, int *totitem,
                          const char *error_prefix)
{
	int dimsize[MAX_ARRAY_DIMENSION];
	int totdim = RNA_property_array_dimension(ptr, prop, dimsize);

	/* validate type first because length validation may modify property array length */


#ifdef USE_MATHUTILS
	if (lvalue_dim == 0) { /* only valid for first level array */
		if (MatrixObject_Check(rvalue)) {
			MatrixObject *pymat = (MatrixObject *)rvalue;

			if (BaseMath_ReadCallback(pymat) == -1)
				return -1;

			if (RNA_property_type(prop) != PROP_FLOAT) {
				PyErr_Format(PyExc_ValueError, "%s %.200s.%.200s, matrix assign to non float array",
				             error_prefix, RNA_struct_identifier(ptr->type), RNA_property_identifier(prop));
				return -1;
			}
			else if (totdim != 2) {
				PyErr_Format(PyExc_ValueError, "%s %.200s.%.200s, matrix assign array with %d dimensions",
				             error_prefix, RNA_struct_identifier(ptr->type), RNA_property_identifier(prop), totdim);
				return -1;
			}
			else if (pymat->num_col != dimsize[0] || pymat->num_row != dimsize[1]) {
				PyErr_Format(PyExc_ValueError, "%s %.200s.%.200s, matrix assign dimension size mismatch, "
				             "is %dx%d, expected be %dx%d",
				             error_prefix, RNA_struct_identifier(ptr->type), RNA_property_identifier(prop),
				             pymat->num_col, pymat->num_row, dimsize[0], dimsize[1]);
				return -1;
			}
			else {
				*totitem = dimsize[0] * dimsize[1];
				return 0;
			}
		}
	}
#endif /* USE_MATHUTILS */


	{
		const int prop_flag = RNA_property_flag(prop);
		if (validate_array_type(rvalue, lvalue_dim, totdim, dimsize, (prop_flag & PROP_DYNAMIC) != 0,
		                        check_item_type, item_type_str, error_prefix) == -1)
		{
			return -1;
		}

		return validate_array_length(rvalue, ptr, prop, lvalue_dim, totitem, error_prefix);
	}
}

static char *copy_value_single(
        PyObject *item, PointerRNA *ptr, PropertyRNA *prop,
        char *data, unsigned int item_size, int *index,
        const ItemConvert_FuncArg *convert_item, RNA_SetIndexFunc rna_set_index)
{
	if (!data) {
		union { float fl; int i; } value_buf;
		char *value = (void *)&value_buf;

		convert_item->func(&convert_item->arg, item, value);
		rna_set_index(ptr, prop, *index, value);
		(*index) += 1;
	}
	else {
		convert_item->func(&convert_item->arg, item, data);
		data += item_size;
	}

	return data;
}

static char *copy_values(
        PyObject *seq, PointerRNA *ptr, PropertyRNA *prop,
        int dim, char *data, unsigned int item_size, int *index,
        const ItemConvert_FuncArg *convert_item, RNA_SetIndexFunc rna_set_index)
{
	int totdim = RNA_property_array_dimension(ptr, prop, NULL);
	const Py_ssize_t seq_size = PySequence_Size(seq);
	Py_ssize_t i;

	/* Regarding PySequence_GetItem() failing.
	 *
	 * This should never be NULL since we validated it, _but_ some tricky python
	 * developer could write their own sequence type which succeeds on
	 * validating but fails later somehow, so include checks for safety.
	 */

	/* Note that 'data can be NULL' */

	if (seq_size == -1) {
		return NULL;
	}


#ifdef USE_MATHUTILS
	if (dim == 0) {
		if (MatrixObject_Check(seq)) {
			MatrixObject *pymat = (MatrixObject *)seq;
			size_t allocsize = pymat->num_col * pymat->num_row * sizeof(float);

			/* read callback already done by validate */
			/* since this is the first iteration we can assume data is allocated */
			memcpy(data, pymat->matrix, allocsize);

			/* not really needed but do for completeness */
			data += allocsize;

			return data;
		}
	}
#endif /* USE_MATHUTILS */


	for (i = 0; i < seq_size; i++) {
		PyObject *item = PySequence_GetItem(seq, i);
		if (item) {
			if (dim + 1 < totdim) {
				data = copy_values(item, ptr, prop, dim + 1, data, item_size, index, convert_item, rna_set_index);
			}
			else {
				data = copy_value_single(item, ptr, prop, data, item_size, index, convert_item, rna_set_index);
			}

			Py_DECREF(item);

			/* data may be NULL, but the for loop checks */
		}
		else {
			return NULL;
		}
	}

	return data;
}

static int py_to_array(
        PyObject *seq, PointerRNA *ptr, PropertyRNA *prop,
        char *param_data, ItemTypeCheckFunc check_item_type, const char *item_type_str, int item_size,
        const ItemConvert_FuncArg *convert_item, RNA_SetArrayFunc rna_set_array, const char *error_prefix)
{
	/*int totdim, dim_size[MAX_ARRAY_DIMENSION];*/
	int totitem;
	char *data = NULL;

	/*totdim = RNA_property_array_dimension(ptr, prop, dim_size);*/ /*UNUSED*/

	if (validate_array(seq, ptr, prop, 0, check_item_type, item_type_str, &totitem, error_prefix) == -1) {
		return -1;
	}

	if (totitem) {
		/* note: this code is confusing */
		if (param_data && RNA_property_flag(prop) & PROP_DYNAMIC) {
			/* not freeing allocated mem, RNA_parameter_list_free() will do this */
			ParameterDynAlloc *param_alloc = (ParameterDynAlloc *)param_data;
			param_alloc->array_tot = (int)totitem;
			param_alloc->array = MEM_callocN(item_size * totitem, "py_to_array dyn"); /* freeing param list will free */

			data = param_alloc->array;
		}
		else if (param_data) {
			data = param_data;
		}
		else {
			data = PyMem_MALLOC(item_size * totitem);
		}

		/* will only fail in very rare cases since we already validated the
		 * python data, the check here is mainly for completeness. */
		if (copy_values(seq, ptr, prop, 0, data, item_size, NULL, convert_item, NULL) != NULL) {
			if (param_data == NULL) {
				/* NULL can only pass through in case RNA property arraylength is 0 (impossible?) */
				rna_set_array(ptr, prop, data);
				PyMem_FREE(data);
			}
		}
		else {
			if (param_data == NULL) {
				PyMem_FREE(data);
			}

			PyErr_Format(PyExc_TypeError, "%s internal error parsing sequence of type '%s' after successful validation",
			             error_prefix, Py_TYPE(seq)->tp_name);
			return -1;
		}
	}

	return 0;
}

static int py_to_array_index(
        PyObject *py, PointerRNA *ptr, PropertyRNA *prop,
        int lvalue_dim, int arrayoffset, int index,
        ItemTypeCheckFunc check_item_type, const char *item_type_str,
        const ItemConvert_FuncArg *convert_item, RNA_SetIndexFunc rna_set_index, const char *error_prefix)
{
	int totdim, dimsize[MAX_ARRAY_DIMENSION];
	int totitem, i;

	totdim = RNA_property_array_dimension(ptr, prop, dimsize);

	/* convert index */

	/* arr[3][4][5]
	 *
	 *    arr[2] = x
	 *    lvalue_dim = 0, index = 0 + 2 * 4 * 5
	 *
	 *    arr[2][3] = x
	 *    lvalue_dim = 1, index = 40 + 3 * 5 */

	lvalue_dim++;

	for (i = lvalue_dim; i < totdim; i++)
		index *= dimsize[i];

	index += arrayoffset;

	if (lvalue_dim == totdim) { /* single item, assign directly */
		if (!check_item_type(py)) {
			PyErr_Format(PyExc_TypeError, "%s %.200s.%.200s, expected a %s type, not %s",
			             error_prefix, RNA_struct_identifier(ptr->type),
			             RNA_property_identifier(prop), item_type_str,
			             Py_TYPE(py)->tp_name);
			return -1;
		}
		copy_value_single(py, ptr, prop, NULL, 0, &index, convert_item, rna_set_index);
	}
	else {
		if (validate_array(py, ptr, prop, lvalue_dim, check_item_type, item_type_str, &totitem, error_prefix) == -1) {
			return -1;
		}

		if (totitem) {
			copy_values(py, ptr, prop, lvalue_dim, NULL, 0, &index, convert_item, rna_set_index);
		}
	}
	return 0;
}

static void py_to_float(const struct ItemConvertArgData *arg, PyObject *py, char *data)
{
	const float *range = arg->float_data.range;
	float value = (float)PyFloat_AsDouble(py);
	CLAMP(value, range[0], range[1]);
	*(float *)data = value;
}

static void py_to_int(const struct ItemConvertArgData *arg, PyObject *py, char *data)
{
	const int *range = arg->int_data.range;
	int value = PyC_Long_AsI32(py);
	CLAMP(value, range[0], range[1]);
	*(int *)data = value;
}

static void py_to_bool(const struct ItemConvertArgData *UNUSED(arg), PyObject *py, char *data)
{
	*(int *)data = (int)PyObject_IsTrue(py);
}

static int py_float_check(PyObject *py)
{
	/* accept both floats and integers */
	return PyNumber_Check(py);
}

static int py_int_check(PyObject *py)
{
	/* accept only integers */
	return PyLong_Check(py);
}

static int py_bool_check(PyObject *py)
{
	return PyBool_Check(py);
}

static void float_set_index(PointerRNA *ptr, PropertyRNA *prop, int index, void *value)
{
	RNA_property_float_set_index(ptr, prop, index, *(float *)value);
}

static void int_set_index(PointerRNA *ptr, PropertyRNA *prop, int index, void *value)
{
	RNA_property_int_set_index(ptr, prop, index, *(int *)value);
}

static void bool_set_index(PointerRNA *ptr, PropertyRNA *prop, int index, void *value)
{
	RNA_property_boolean_set_index(ptr, prop, index, *(int *)value);
}

static void convert_item_init_float(
        PointerRNA *ptr, PropertyRNA *prop,
        ItemConvert_FuncArg *convert_item)
{
	float *range = convert_item->arg.float_data.range;
	convert_item->func = py_to_float;
	RNA_property_float_range(ptr, prop, &range[0], &range[1]);
}

static void convert_item_init_int(
        PointerRNA *ptr, PropertyRNA *prop,
        ItemConvert_FuncArg *convert_item)
{
	int *range = convert_item->arg.int_data.range;
	convert_item->func = py_to_int;
	RNA_property_int_range(ptr, prop, &range[0], &range[1]);
}

static void convert_item_init_bool(
        PointerRNA *UNUSED(ptr), PropertyRNA *UNUSED(prop),
        ItemConvert_FuncArg *convert_item)
{
	convert_item->func = py_to_bool;
}

int pyrna_py_to_array(PointerRNA *ptr, PropertyRNA *prop, char *param_data,
                      PyObject *py, const char *error_prefix)
{
	int ret;
	switch (RNA_property_type(prop)) {
		case PROP_FLOAT:
		{
			ItemConvert_FuncArg convert_item;
			convert_item_init_float(ptr, prop, &convert_item);

			ret = py_to_array(
			        py, ptr, prop, param_data, py_float_check, "float", sizeof(float),
			        &convert_item, (RNA_SetArrayFunc)RNA_property_float_set_array, error_prefix);
			break;
		}
		case PROP_INT:
		{
			ItemConvert_FuncArg convert_item;
			convert_item_init_int(ptr, prop, &convert_item);

			ret = py_to_array(
			        py, ptr, prop, param_data, py_int_check, "int", sizeof(int),
			        &convert_item, (RNA_SetArrayFunc)RNA_property_int_set_array, error_prefix);
			break;
		}
		case PROP_BOOLEAN:
		{
			ItemConvert_FuncArg convert_item;
			convert_item_init_bool(ptr, prop, &convert_item);

			ret = py_to_array(
			        py, ptr, prop, param_data, py_bool_check, "boolean", sizeof(int),
			        &convert_item, (RNA_SetArrayFunc)RNA_property_boolean_set_array, error_prefix);
			break;
		}
		default:
		{
			PyErr_SetString(PyExc_TypeError, "not an array type");
			ret = -1;
			break;
		}
	}

	return ret;
}

int pyrna_py_to_array_index(PointerRNA *ptr, PropertyRNA *prop, int arraydim, int arrayoffset, int index,
                            PyObject *py, const char *error_prefix)
{
	int ret;
	switch (RNA_property_type(prop)) {
		case PROP_FLOAT:
		{
			ItemConvert_FuncArg convert_item;
			convert_item_init_float(ptr, prop, &convert_item);

			ret = py_to_array_index(
			        py, ptr, prop, arraydim, arrayoffset, index,
			        py_float_check, "float",
			        &convert_item, float_set_index, error_prefix);
			break;
		}
		case PROP_INT:
		{
			ItemConvert_FuncArg convert_item;
			convert_item_init_int(ptr, prop, &convert_item);

			ret = py_to_array_index(
			        py, ptr, prop, arraydim, arrayoffset, index,
			        py_int_check, "int",
			        &convert_item, int_set_index, error_prefix);
			break;
		}
		case PROP_BOOLEAN:
		{
			ItemConvert_FuncArg convert_item;
			convert_item_init_bool(ptr, prop, &convert_item);

			ret = py_to_array_index(
			        py, ptr, prop, arraydim, arrayoffset, index,
			        py_bool_check, "boolean",
			        &convert_item, bool_set_index, error_prefix);
			break;
		}
		default:
		{
			PyErr_SetString(PyExc_TypeError, "not an array type");
			ret = -1;
			break;
		}
	}

	return ret;
}

PyObject *pyrna_array_index(PointerRNA *ptr, PropertyRNA *prop, int index)
{
	PyObject *item;

	switch (RNA_property_type(prop)) {
		case PROP_FLOAT:
			item = PyFloat_FromDouble(RNA_property_float_get_index(ptr, prop, index));
			break;
		case PROP_BOOLEAN:
			item = PyBool_FromLong(RNA_property_boolean_get_index(ptr, prop, index));
			break;
		case PROP_INT:
			item = PyLong_FromLong(RNA_property_int_get_index(ptr, prop, index));
			break;
		default:
			PyErr_SetString(PyExc_TypeError, "not an array type");
			item = NULL;
			break;
	}

	return item;
}

#if 0
/* XXX this is not used (and never will?) */
/* Given an array property, creates an N-dimensional tuple of values. */
static PyObject *pyrna_py_from_array_internal(PointerRNA *ptr, PropertyRNA *prop, int dim, int *index)
{
	PyObject *tuple;
	int i, len;
	int totdim = RNA_property_array_dimension(ptr, prop, NULL);

	len = RNA_property_multi_array_length(ptr, prop, dim);

	tuple = PyTuple_New(len);

	for (i = 0; i < len; i++) {
		PyObject *item;

		if (dim + 1 < totdim)
			item = pyrna_py_from_array_internal(ptr, prop, dim + 1, index);
		else {
			item = pyrna_array_index(ptr, prop, *index);
			*index = *index + 1;
		}

		if (!item) {
			Py_DECREF(tuple);
			return NULL;
		}

		PyTuple_SET_ITEM(tuple, i, item);
	}

	return tuple;
}
#endif

PyObject *pyrna_py_from_array_index(BPy_PropertyArrayRNA *self, PointerRNA *ptr, PropertyRNA *prop, int index)
{
	int totdim, arraydim, arrayoffset, dimsize[MAX_ARRAY_DIMENSION], i, len;
	BPy_PropertyArrayRNA *ret = NULL;

	arraydim = self ? self->arraydim : 0;
	arrayoffset = self ? self->arrayoffset : 0;

	/* just in case check */
	len = RNA_property_multi_array_length(ptr, prop, arraydim);
	if (index >= len || index < 0) {
		/* this shouldn't happen because higher level funcs must check for invalid index */
		if (G.debug & G_DEBUG_PYTHON)
			printf("%s: invalid index %d for array with length=%d\n", __func__, index, len);

		PyErr_SetString(PyExc_IndexError, "out of range");
		return NULL;
	}

	totdim = RNA_property_array_dimension(ptr, prop, dimsize);

	if (arraydim + 1 < totdim) {
		ret = (BPy_PropertyArrayRNA *)pyrna_prop_CreatePyObject(ptr, prop);
		ret->arraydim = arraydim + 1;

		/* arr[3][4][5]
		 *
		 *    x = arr[2]
		 *    index = 0 + 2 * 4 * 5
		 * 
		 *    x = arr[2][3]
		 *    index = offset + 3 * 5 */

		for (i = arraydim + 1; i < totdim; i++)
			index *= dimsize[i];

		ret->arrayoffset = arrayoffset + index;
	}
	else {
		index = arrayoffset + index;
		ret = (BPy_PropertyArrayRNA *)pyrna_array_index(ptr, prop, index);
	}

	return (PyObject *)ret;
}

PyObject *pyrna_py_from_array(PointerRNA *ptr, PropertyRNA *prop)
{
	PyObject *ret;

	ret = pyrna_math_object_from_array(ptr, prop);

	/* is this a maths object? */
	if (ret) return ret;

	return pyrna_prop_CreatePyObject(ptr, prop);
}

/* TODO, multi-dimensional arrays */
int pyrna_array_contains_py(PointerRNA *ptr, PropertyRNA *prop, PyObject *value)
{
	int len = RNA_property_array_length(ptr, prop);
	int type;
	int i;

	if (len == 0) /* possible with dynamic arrays */
		return 0;

	if (RNA_property_array_dimension(ptr, prop, NULL) > 1) {
		PyErr_SetString(PyExc_TypeError, "PropertyRNA - multi dimensional arrays not supported yet");
		return -1;
	}

	type = RNA_property_type(prop);

	switch (type) {
		case PROP_FLOAT:
		{
			float value_f = PyFloat_AsDouble(value);
			if (value_f == -1 && PyErr_Occurred()) {
				PyErr_Clear();
				return 0;
			}
			else {
				float tmp[32];
				float *tmp_arr;

				if (len * sizeof(float) > sizeof(tmp)) {
					tmp_arr = PyMem_MALLOC(len * sizeof(float));
				}
				else {
					tmp_arr = tmp;
				}

				RNA_property_float_get_array(ptr, prop, tmp_arr);

				for (i = 0; i < len; i++) {
					if (tmp_arr[i] == value_f) {
						break;
					}
				}

				if (tmp_arr != tmp)
					PyMem_FREE(tmp_arr);

				return i < len ? 1 : 0;
			}
			break;
		}
		case PROP_BOOLEAN:
		case PROP_INT:
		{
			int value_i = PyLong_AsLong(value);
			if (value_i == -1 && PyErr_Occurred()) {
				PyErr_Clear();
				return 0;
			}
			else {
				int tmp[32];
				int *tmp_arr;

				if (len * sizeof(int) > sizeof(tmp)) {
					tmp_arr = PyMem_MALLOC(len * sizeof(int));
				}
				else {
					tmp_arr = tmp;
				}

				if (type == PROP_BOOLEAN)
					RNA_property_boolean_get_array(ptr, prop, tmp_arr);
				else
					RNA_property_int_get_array(ptr, prop, tmp_arr);

				for (i = 0; i < len; i++) {
					if (tmp_arr[i] == value_i) {
						break;
					}
				}

				if (tmp_arr != tmp)
					PyMem_FREE(tmp_arr);

				return i < len ? 1 : 0;
			}
			break;
		}
	}

	/* should never reach this */
	PyErr_SetString(PyExc_TypeError, "PropertyRNA - type not in float/bool/int");
	return -1;
}