Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mathutils_geometry.c « mathutils « python « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 52ea2a9ed3162c789b4084e9967eac223223fa18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
/* SPDX-License-Identifier: GPL-2.0-or-later */

/** \file
 * \ingroup pymathutils
 */

#include <Python.h>

#include "mathutils.h"
#include "mathutils_geometry.h"

/* Used for PolyFill */
#ifndef MATH_STANDALONE /* define when building outside blender */
#  include "BKE_curve.h"
#  include "BKE_displist.h"
#  include "BLI_blenlib.h"
#  include "BLI_boxpack_2d.h"
#  include "BLI_convexhull_2d.h"
#  include "BLI_delaunay_2d.h"
#  include "MEM_guardedalloc.h"
#endif

#include "BLI_math.h"
#include "BLI_utildefines.h"

#include "../generic/py_capi_utils.h"
#include "../generic/python_utildefines.h"

/*-------------------------DOC STRINGS ---------------------------*/
PyDoc_STRVAR(M_Geometry_doc, "The Blender geometry module");

/* ---------------------------------INTERSECTION FUNCTIONS-------------------- */

PyDoc_STRVAR(M_Geometry_intersect_ray_tri_doc,
             ".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True)\n"
             "\n"
             "   Returns the intersection between a ray and a triangle, if possible, returns None "
             "otherwise.\n"
             "\n"
             "   :arg v1: Point1\n"
             "   :type v1: :class:`mathutils.Vector`\n"
             "   :arg v2: Point2\n"
             "   :type v2: :class:`mathutils.Vector`\n"
             "   :arg v3: Point3\n"
             "   :type v3: :class:`mathutils.Vector`\n"
             "   :arg ray: Direction of the projection\n"
             "   :type ray: :class:`mathutils.Vector`\n"
             "   :arg orig: Origin\n"
             "   :type orig: :class:`mathutils.Vector`\n"
             "   :arg clip: When False, don't restrict the intersection to the area of the "
             "triangle, use the infinite plane defined by the triangle.\n"
             "   :type clip: boolean\n"
             "   :return: The point of intersection or None if no intersection is found\n"
             "   :rtype: :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_ray_tri(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_ray_tri";
  PyObject *py_ray, *py_ray_off, *py_tri[3];
  float dir[3], orig[3], tri[3][3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
  float det, inv_det, u, v, t;
  bool clip = true;
  int i;

  if (!PyArg_ParseTuple(args,
                        "OOOOO|O&:intersect_ray_tri",
                        UNPACK3_EX(&, py_tri, ),
                        &py_ray,
                        &py_ray_off,
                        PyC_ParseBool,
                        &clip)) {
    return NULL;
  }

  if (((mathutils_array_parse(dir, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray, error_prefix) !=
        -1) &&
       (mathutils_array_parse(
            orig, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray_off, error_prefix) != -1)) == 0) {
    return NULL;
  }

  for (i = 0; i < ARRAY_SIZE(tri); i++) {
    if (mathutils_array_parse(
            tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
      return NULL;
    }
  }

  normalize_v3(dir);

  /* find vectors for two edges sharing v1 */
  sub_v3_v3v3(e1, tri[1], tri[0]);
  sub_v3_v3v3(e2, tri[2], tri[0]);

  /* begin calculating determinant - also used to calculated U parameter */
  cross_v3_v3v3(pvec, dir, e2);

  /* if determinant is near zero, ray lies in plane of triangle */
  det = dot_v3v3(e1, pvec);

  if (det > -0.000001f && det < 0.000001f) {
    Py_RETURN_NONE;
  }

  inv_det = 1.0f / det;

  /* calculate distance from v1 to ray origin */
  sub_v3_v3v3(tvec, orig, tri[0]);

  /* calculate U parameter and test bounds */
  u = dot_v3v3(tvec, pvec) * inv_det;
  if (clip && (u < 0.0f || u > 1.0f)) {
    Py_RETURN_NONE;
  }

  /* prepare to test the V parameter */
  cross_v3_v3v3(qvec, tvec, e1);

  /* calculate V parameter and test bounds */
  v = dot_v3v3(dir, qvec) * inv_det;

  if (clip && (v < 0.0f || u + v > 1.0f)) {
    Py_RETURN_NONE;
  }

  /* calculate t, ray intersects triangle */
  t = dot_v3v3(e2, qvec) * inv_det;

  /* ray hit behind */
  if (t < 0.0f) {
    Py_RETURN_NONE;
  }

  mul_v3_fl(dir, t);
  add_v3_v3v3(pvec, orig, dir);

  return Vector_CreatePyObject(pvec, 3, NULL);
}

/* Line-Line intersection using algorithm from mathworld.wolfram.com */

PyDoc_STRVAR(M_Geometry_intersect_line_line_doc,
             ".. function:: intersect_line_line(v1, v2, v3, v4)\n"
             "\n"
             "   Returns a tuple with the points on each line respectively closest to the other.\n"
             "\n"
             "   :arg v1: First point of the first line\n"
             "   :type v1: :class:`mathutils.Vector`\n"
             "   :arg v2: Second point of the first line\n"
             "   :type v2: :class:`mathutils.Vector`\n"
             "   :arg v3: First point of the second line\n"
             "   :type v3: :class:`mathutils.Vector`\n"
             "   :arg v4: Second point of the second line\n"
             "   :type v4: :class:`mathutils.Vector`\n"
             "   :rtype: tuple of :class:`mathutils.Vector`'s\n");
static PyObject *M_Geometry_intersect_line_line(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_line_line";
  PyObject *tuple;
  PyObject *py_lines[4];
  float lines[4][3], i1[3], i2[3];
  int ix_vec_num;
  int result;

  if (!PyArg_ParseTuple(args, "OOOO:intersect_line_line", UNPACK4_EX(&, py_lines, ))) {
    return NULL;
  }

  if ((((ix_vec_num = mathutils_array_parse(
             lines[0], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[0], error_prefix)) != -1) &&
       (mathutils_array_parse(lines[1],
                              ix_vec_num,
                              ix_vec_num | MU_ARRAY_SPILL | MU_ARRAY_ZERO,
                              py_lines[1],
                              error_prefix) != -1) &&
       (mathutils_array_parse(lines[2],
                              ix_vec_num,
                              ix_vec_num | MU_ARRAY_SPILL | MU_ARRAY_ZERO,
                              py_lines[2],
                              error_prefix) != -1) &&
       (mathutils_array_parse(lines[3],
                              ix_vec_num,
                              ix_vec_num | MU_ARRAY_SPILL | MU_ARRAY_ZERO,
                              py_lines[3],
                              error_prefix) != -1)) == 0) {
    return NULL;
  }

  /* Zero 3rd axis of 2D vectors. */
  if (ix_vec_num == 2) {
    lines[1][2] = 0.0f;
    lines[2][2] = 0.0f;
    lines[3][2] = 0.0f;
  }

  result = isect_line_line_v3(UNPACK4(lines), i1, i2);
  /* The return-code isn't exposed,
   * this way we can check know how close the lines are. */
  if (result == 1) {
    closest_to_line_v3(i2, i1, lines[2], lines[3]);
  }

  if (result == 0) {
    /* Collinear. */
    Py_RETURN_NONE;
  }

  tuple = PyTuple_New(2);
  PyTuple_SET_ITEMS(tuple,
                    Vector_CreatePyObject(i1, ix_vec_num, NULL),
                    Vector_CreatePyObject(i2, ix_vec_num, NULL));
  return tuple;
}

/* Line-Line intersection using algorithm from mathworld.wolfram.com */

PyDoc_STRVAR(
    M_Geometry_intersect_sphere_sphere_2d_doc,
    ".. function:: intersect_sphere_sphere_2d(p_a, radius_a, p_b, radius_b)\n"
    "\n"
    "   Returns 2 points on between intersecting circles.\n"
    "\n"
    "   :arg p_a: Center of the first circle\n"
    "   :type p_a: :class:`mathutils.Vector`\n"
    "   :arg radius_a: Radius of the first circle\n"
    "   :type radius_a: float\n"
    "   :arg p_b: Center of the second circle\n"
    "   :type p_b: :class:`mathutils.Vector`\n"
    "   :arg radius_b: Radius of the second circle\n"
    "   :type radius_b: float\n"
    "   :rtype: tuple of :class:`mathutils.Vector`'s or None when there is no intersection\n");
static PyObject *M_Geometry_intersect_sphere_sphere_2d(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_sphere_sphere_2d";
  PyObject *ret;
  PyObject *py_v_a, *py_v_b;
  float v_a[2], v_b[2];
  float rad_a, rad_b;
  float v_ab[2];
  float dist;

  if (!PyArg_ParseTuple(
          args, "OfOf:intersect_sphere_sphere_2d", &py_v_a, &rad_a, &py_v_b, &rad_b)) {
    return NULL;
  }

  if (((mathutils_array_parse(v_a, 2, 2, py_v_a, error_prefix) != -1) &&
       (mathutils_array_parse(v_b, 2, 2, py_v_b, error_prefix) != -1)) == 0) {
    return NULL;
  }

  ret = PyTuple_New(2);

  sub_v2_v2v2(v_ab, v_b, v_a);
  dist = len_v2(v_ab);

  if (/* out of range */
      (dist > rad_a + rad_b) ||
      /* fully-contained in the other */
      (dist < fabsf(rad_a - rad_b)) ||
      /* co-incident */
      (dist < FLT_EPSILON)) {
    /* out of range */
    PyTuple_SET_ITEMS(ret, Py_INCREF_RET(Py_None), Py_INCREF_RET(Py_None));
  }
  else {
    const float dist_delta = ((rad_a * rad_a) - (rad_b * rad_b) + (dist * dist)) / (2.0f * dist);
    const float h = powf(fabsf((rad_a * rad_a) - (dist_delta * dist_delta)), 0.5f);
    float i_cent[2];
    float i1[2], i2[2];

    i_cent[0] = v_a[0] + ((v_ab[0] * dist_delta) / dist);
    i_cent[1] = v_a[1] + ((v_ab[1] * dist_delta) / dist);

    i1[0] = i_cent[0] + h * v_ab[1] / dist;
    i1[1] = i_cent[1] - h * v_ab[0] / dist;

    i2[0] = i_cent[0] - h * v_ab[1] / dist;
    i2[1] = i_cent[1] + h * v_ab[0] / dist;

    PyTuple_SET_ITEMS(ret, Vector_CreatePyObject(i1, 2, NULL), Vector_CreatePyObject(i2, 2, NULL));
  }

  return ret;
}

PyDoc_STRVAR(M_Geometry_intersect_tri_tri_2d_doc,
             ".. function:: intersect_tri_tri_2d(tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n"
             "\n"
             "   Check if two 2D triangles intersect.\n"
             "\n"
             "   :rtype: bool\n");
static PyObject *M_Geometry_intersect_tri_tri_2d(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_tri_tri_2d";
  PyObject *tri_pair_py[2][3];
  float tri_pair[2][3][2];

  if (!PyArg_ParseTuple(args,
                        "OOOOOO:intersect_tri_tri_2d",
                        &tri_pair_py[0][0],
                        &tri_pair_py[0][1],
                        &tri_pair_py[0][2],
                        &tri_pair_py[1][0],
                        &tri_pair_py[1][1],
                        &tri_pair_py[1][2])) {
    return NULL;
  }

  for (int i = 0; i < 2; i++) {
    for (int j = 0; j < 3; j++) {
      if (mathutils_array_parse(
              tri_pair[i][j], 2, 2 | MU_ARRAY_SPILL, tri_pair_py[i][j], error_prefix) == -1) {
        return NULL;
      }
    }
  }

  const bool ret = isect_tri_tri_v2(UNPACK3(tri_pair[0]), UNPACK3(tri_pair[1]));
  return PyBool_FromLong(ret);
}

PyDoc_STRVAR(M_Geometry_normal_doc,
             ".. function:: normal(vectors)\n"
             "\n"
             "   Returns the normal of a 3D polygon.\n"
             "\n"
             "   :arg vectors: Vectors to calculate normals with\n"
             "   :type vectors: sequence of 3 or more 3d vector\n"
             "   :rtype: :class:`mathutils.Vector`\n");
static PyObject *M_Geometry_normal(PyObject *UNUSED(self), PyObject *args)
{
  float(*coords)[3];
  int coords_len;
  float n[3];
  PyObject *ret = NULL;

  /* use */
  if (PyTuple_GET_SIZE(args) == 1) {
    args = PyTuple_GET_ITEM(args, 0);
  }

  if ((coords_len = mathutils_array_parse_alloc_v(
           (float **)&coords, 3 | MU_ARRAY_SPILL, args, "normal")) == -1) {
    return NULL;
  }

  if (coords_len < 3) {
    PyErr_SetString(PyExc_ValueError, "Expected 3 or more vectors");
    goto finally;
  }

  normal_poly_v3(n, coords, coords_len);
  ret = Vector_CreatePyObject(n, 3, NULL);

finally:
  PyMem_Free(coords);
  return ret;
}

/* --------------------------------- AREA FUNCTIONS-------------------- */

PyDoc_STRVAR(M_Geometry_area_tri_doc,
             ".. function:: area_tri(v1, v2, v3)\n"
             "\n"
             "   Returns the area size of the 2D or 3D triangle defined.\n"
             "\n"
             "   :arg v1: Point1\n"
             "   :type v1: :class:`mathutils.Vector`\n"
             "   :arg v2: Point2\n"
             "   :type v2: :class:`mathutils.Vector`\n"
             "   :arg v3: Point3\n"
             "   :type v3: :class:`mathutils.Vector`\n"
             "   :rtype: float\n");
static PyObject *M_Geometry_area_tri(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "area_tri";
  PyObject *py_tri[3];
  float tri[3][3];
  int len;

  if (!PyArg_ParseTuple(args, "OOO:area_tri", UNPACK3_EX(&, py_tri, ))) {
    return NULL;
  }

  if ((((len = mathutils_array_parse(tri[0], 2, 3, py_tri[0], error_prefix)) != -1) &&
       (mathutils_array_parse(tri[1], len, len, py_tri[1], error_prefix) != -1) &&
       (mathutils_array_parse(tri[2], len, len, py_tri[2], error_prefix) != -1)) == 0) {
    return NULL;
  }

  return PyFloat_FromDouble((len == 3 ? area_tri_v3 : area_tri_v2)(UNPACK3(tri)));
}

PyDoc_STRVAR(M_Geometry_volume_tetrahedron_doc,
             ".. function:: volume_tetrahedron(v1, v2, v3, v4)\n"
             "\n"
             "   Return the volume formed by a tetrahedron (points can be in any order).\n"
             "\n"
             "   :arg v1: Point1\n"
             "   :type v1: :class:`mathutils.Vector`\n"
             "   :arg v2: Point2\n"
             "   :type v2: :class:`mathutils.Vector`\n"
             "   :arg v3: Point3\n"
             "   :type v3: :class:`mathutils.Vector`\n"
             "   :arg v4: Point4\n"
             "   :type v4: :class:`mathutils.Vector`\n"
             "   :rtype: float\n");
static PyObject *M_Geometry_volume_tetrahedron(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "volume_tetrahedron";
  PyObject *py_tet[4];
  float tet[4][3];
  int i;

  if (!PyArg_ParseTuple(args, "OOOO:volume_tetrahedron", UNPACK4_EX(&, py_tet, ))) {
    return NULL;
  }

  for (i = 0; i < ARRAY_SIZE(tet); i++) {
    if (mathutils_array_parse(tet[i], 3, 3 | MU_ARRAY_SPILL, py_tet[i], error_prefix) == -1) {
      return NULL;
    }
  }

  return PyFloat_FromDouble(volume_tetrahedron_v3(UNPACK4(tet)));
}

PyDoc_STRVAR(
    M_Geometry_intersect_line_line_2d_doc,
    ".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n"
    "\n"
    "   Takes 2 segments (defined by 4 vectors) and returns a vector for their point of "
    "intersection or None.\n"
    "\n"
    "   .. warning:: Despite its name, this function works on segments, and not on lines.\n"
    "\n"
    "   :arg lineA_p1: First point of the first line\n"
    "   :type lineA_p1: :class:`mathutils.Vector`\n"
    "   :arg lineA_p2: Second point of the first line\n"
    "   :type lineA_p2: :class:`mathutils.Vector`\n"
    "   :arg lineB_p1: First point of the second line\n"
    "   :type lineB_p1: :class:`mathutils.Vector`\n"
    "   :arg lineB_p2: Second point of the second line\n"
    "   :type lineB_p2: :class:`mathutils.Vector`\n"
    "   :return: The point of intersection or None when not found\n"
    "   :rtype: :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_line_line_2d(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_line_line_2d";
  PyObject *py_lines[4];
  float lines[4][2];
  float vi[2];
  int i;

  if (!PyArg_ParseTuple(args, "OOOO:intersect_line_line_2d", UNPACK4_EX(&, py_lines, ))) {
    return NULL;
  }

  for (i = 0; i < ARRAY_SIZE(lines); i++) {
    if (mathutils_array_parse(lines[i], 2, 2 | MU_ARRAY_SPILL, py_lines[i], error_prefix) == -1) {
      return NULL;
    }
  }

  if (isect_seg_seg_v2_point(UNPACK4(lines), vi) == 1) {
    return Vector_CreatePyObject(vi, 2, NULL);
  }

  Py_RETURN_NONE;
}

PyDoc_STRVAR(
    M_Geometry_intersect_line_plane_doc,
    ".. function:: intersect_line_plane(line_a, line_b, plane_co, plane_no, no_flip=False)\n"
    "\n"
    "   Calculate the intersection between a line (as 2 vectors) and a plane.\n"
    "   Returns a vector for the intersection or None.\n"
    "\n"
    "   :arg line_a: First point of the first line\n"
    "   :type line_a: :class:`mathutils.Vector`\n"
    "   :arg line_b: Second point of the first line\n"
    "   :type line_b: :class:`mathutils.Vector`\n"
    "   :arg plane_co: A point on the plane\n"
    "   :type plane_co: :class:`mathutils.Vector`\n"
    "   :arg plane_no: The direction the plane is facing\n"
    "   :type plane_no: :class:`mathutils.Vector`\n"
    "   :return: The point of intersection or None when not found\n"
    "   :rtype: :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_line_plane(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_line_plane";
  PyObject *py_line_a, *py_line_b, *py_plane_co, *py_plane_no;
  float line_a[3], line_b[3], plane_co[3], plane_no[3];
  float isect[3];
  const bool no_flip = false;

  if (!PyArg_ParseTuple(args,
                        "OOOO|O&:intersect_line_plane",
                        &py_line_a,
                        &py_line_b,
                        &py_plane_co,
                        &py_plane_no,
                        PyC_ParseBool,
                        &no_flip)) {
    return NULL;
  }

  if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
       (mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
       (mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) &&
       (mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) !=
        -1)) == 0) {
    return NULL;
  }

  /* TODO: implements no_flip */
  if (isect_line_plane_v3(isect, line_a, line_b, plane_co, plane_no) == 1) {
    return Vector_CreatePyObject(isect, 3, NULL);
  }

  Py_RETURN_NONE;
}

PyDoc_STRVAR(
    M_Geometry_intersect_plane_plane_doc,
    ".. function:: intersect_plane_plane(plane_a_co, plane_a_no, plane_b_co, plane_b_no)\n"
    "\n"
    "   Return the intersection between two planes\n"
    "\n"
    "   :arg plane_a_co: Point on the first plane\n"
    "   :type plane_a_co: :class:`mathutils.Vector`\n"
    "   :arg plane_a_no: Normal of the first plane\n"
    "   :type plane_a_no: :class:`mathutils.Vector`\n"
    "   :arg plane_b_co: Point on the second plane\n"
    "   :type plane_b_co: :class:`mathutils.Vector`\n"
    "   :arg plane_b_no: Normal of the second plane\n"
    "   :type plane_b_no: :class:`mathutils.Vector`\n"
    "   :return: The line of the intersection represented as a point and a vector\n"
    "   :rtype: tuple pair of :class:`mathutils.Vector` or None if the intersection can't be "
    "calculated\n");
static PyObject *M_Geometry_intersect_plane_plane(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_plane_plane";
  PyObject *ret, *ret_co, *ret_no;
  PyObject *py_plane_a_co, *py_plane_a_no, *py_plane_b_co, *py_plane_b_no;
  float plane_a_co[3], plane_a_no[3], plane_b_co[3], plane_b_no[3];
  float plane_a[4], plane_b[4];

  float isect_co[3];
  float isect_no[3];

  if (!PyArg_ParseTuple(args,
                        "OOOO:intersect_plane_plane",
                        &py_plane_a_co,
                        &py_plane_a_no,
                        &py_plane_b_co,
                        &py_plane_b_no)) {
    return NULL;
  }

  if (((mathutils_array_parse(plane_a_co, 3, 3 | MU_ARRAY_SPILL, py_plane_a_co, error_prefix) !=
        -1) &&
       (mathutils_array_parse(plane_a_no, 3, 3 | MU_ARRAY_SPILL, py_plane_a_no, error_prefix) !=
        -1) &&
       (mathutils_array_parse(plane_b_co, 3, 3 | MU_ARRAY_SPILL, py_plane_b_co, error_prefix) !=
        -1) &&
       (mathutils_array_parse(plane_b_no, 3, 3 | MU_ARRAY_SPILL, py_plane_b_no, error_prefix) !=
        -1)) == 0) {
    return NULL;
  }

  plane_from_point_normal_v3(plane_a, plane_a_co, plane_a_no);
  plane_from_point_normal_v3(plane_b, plane_b_co, plane_b_no);

  if (isect_plane_plane_v3(plane_a, plane_b, isect_co, isect_no)) {
    normalize_v3(isect_no);

    ret_co = Vector_CreatePyObject(isect_co, 3, NULL);
    ret_no = Vector_CreatePyObject(isect_no, 3, NULL);
  }
  else {
    ret_co = Py_INCREF_RET(Py_None);
    ret_no = Py_INCREF_RET(Py_None);
  }

  ret = PyTuple_New(2);
  PyTuple_SET_ITEMS(ret, ret_co, ret_no);
  return ret;
}

PyDoc_STRVAR(
    M_Geometry_intersect_line_sphere_doc,
    ".. function:: intersect_line_sphere(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
    "\n"
    "   Takes a line (as 2 points) and a sphere (as a point and a radius) and\n"
    "   returns the intersection\n"
    "\n"
    "   :arg line_a: First point of the line\n"
    "   :type line_a: :class:`mathutils.Vector`\n"
    "   :arg line_b: Second point of the line\n"
    "   :type line_b: :class:`mathutils.Vector`\n"
    "   :arg sphere_co: The center of the sphere\n"
    "   :type sphere_co: :class:`mathutils.Vector`\n"
    "   :arg sphere_radius: Radius of the sphere\n"
    "   :type sphere_radius: sphere_radius\n"
    "   :return: The intersection points as a pair of vectors or None when there is no "
    "intersection\n"
    "   :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_line_sphere(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_line_sphere";
  PyObject *py_line_a, *py_line_b, *py_sphere_co;
  float line_a[3], line_b[3], sphere_co[3];
  float sphere_radius;
  bool clip = true;

  float isect_a[3];
  float isect_b[3];

  if (!PyArg_ParseTuple(args,
                        "OOOf|O&:intersect_line_sphere",
                        &py_line_a,
                        &py_line_b,
                        &py_sphere_co,
                        &sphere_radius,
                        PyC_ParseBool,
                        &clip)) {
    return NULL;
  }

  if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
       (mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
       (mathutils_array_parse(sphere_co, 3, 3 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) !=
        -1)) == 0) {
    return NULL;
  }

  bool use_a = true;
  bool use_b = true;
  float lambda;

  PyObject *ret = PyTuple_New(2);

  switch (isect_line_sphere_v3(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) {
    case 1:
      if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) &&
                      (lambda <= 1.0f)))) {
        use_a = false;
      }
      use_b = false;
      break;
    case 2:
      if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) &&
                      (lambda <= 1.0f)))) {
        use_a = false;
      }
      if (!(!clip || (((lambda = line_point_factor_v3(isect_b, line_a, line_b)) >= 0.0f) &&
                      (lambda <= 1.0f)))) {
        use_b = false;
      }
      break;
    default:
      use_a = false;
      use_b = false;
      break;
  }

  PyTuple_SET_ITEMS(ret,
                    use_a ? Vector_CreatePyObject(isect_a, 3, NULL) : Py_INCREF_RET(Py_None),
                    use_b ? Vector_CreatePyObject(isect_b, 3, NULL) : Py_INCREF_RET(Py_None));

  return ret;
}

/* keep in sync with M_Geometry_intersect_line_sphere */
PyDoc_STRVAR(
    M_Geometry_intersect_line_sphere_2d_doc,
    ".. function:: intersect_line_sphere_2d(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
    "\n"
    "   Takes a line (as 2 points) and a sphere (as a point and a radius) and\n"
    "   returns the intersection\n"
    "\n"
    "   :arg line_a: First point of the line\n"
    "   :type line_a: :class:`mathutils.Vector`\n"
    "   :arg line_b: Second point of the line\n"
    "   :type line_b: :class:`mathutils.Vector`\n"
    "   :arg sphere_co: The center of the sphere\n"
    "   :type sphere_co: :class:`mathutils.Vector`\n"
    "   :arg sphere_radius: Radius of the sphere\n"
    "   :type sphere_radius: sphere_radius\n"
    "   :return: The intersection points as a pair of vectors or None when there is no "
    "intersection\n"
    "   :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_line_sphere_2d(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_line_sphere_2d";
  PyObject *py_line_a, *py_line_b, *py_sphere_co;
  float line_a[2], line_b[2], sphere_co[2];
  float sphere_radius;
  bool clip = true;

  float isect_a[2];
  float isect_b[2];

  if (!PyArg_ParseTuple(args,
                        "OOOf|O&:intersect_line_sphere_2d",
                        &py_line_a,
                        &py_line_b,
                        &py_sphere_co,
                        &sphere_radius,
                        PyC_ParseBool,
                        &clip)) {
    return NULL;
  }

  if (((mathutils_array_parse(line_a, 2, 2 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
       (mathutils_array_parse(line_b, 2, 2 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
       (mathutils_array_parse(sphere_co, 2, 2 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) !=
        -1)) == 0) {
    return NULL;
  }

  bool use_a = true;
  bool use_b = true;
  float lambda;

  PyObject *ret = PyTuple_New(2);

  switch (isect_line_sphere_v2(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) {
    case 1:
      if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) &&
                      (lambda <= 1.0f)))) {
        use_a = false;
      }
      use_b = false;
      break;
    case 2:
      if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) &&
                      (lambda <= 1.0f)))) {
        use_a = false;
      }
      if (!(!clip || (((lambda = line_point_factor_v2(isect_b, line_a, line_b)) >= 0.0f) &&
                      (lambda <= 1.0f)))) {
        use_b = false;
      }
      break;
    default:
      use_a = false;
      use_b = false;
      break;
  }

  PyTuple_SET_ITEMS(ret,
                    use_a ? Vector_CreatePyObject(isect_a, 2, NULL) : Py_INCREF_RET(Py_None),
                    use_b ? Vector_CreatePyObject(isect_b, 2, NULL) : Py_INCREF_RET(Py_None));

  return ret;
}

PyDoc_STRVAR(
    M_Geometry_intersect_point_line_doc,
    ".. function:: intersect_point_line(pt, line_p1, line_p2)\n"
    "\n"
    "   Takes a point and a line and returns a tuple with the closest point on the line and its "
    "distance from the first point of the line as a percentage of the length of the line.\n"
    "\n"
    "   :arg pt: Point\n"
    "   :type pt: :class:`mathutils.Vector`\n"
    "   :arg line_p1: First point of the line\n"
    "   :type line_p1: :class:`mathutils.Vector`\n"
    "   :arg line_p1: Second point of the line\n"
    "   :type line_p1: :class:`mathutils.Vector`\n"
    "   :rtype: (:class:`mathutils.Vector`, float)\n");
static PyObject *M_Geometry_intersect_point_line(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_point_line";
  PyObject *py_pt, *py_line_a, *py_line_b;
  float pt[3], pt_out[3], line_a[3], line_b[3];
  float lambda;
  PyObject *ret;
  int pt_num = 2;

  if (!PyArg_ParseTuple(args, "OOO:intersect_point_line", &py_pt, &py_line_a, &py_line_b)) {
    return NULL;
  }

  /* accept 2d verts */
  if ((((pt_num = mathutils_array_parse(
             pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix)) != -1) &&
       (mathutils_array_parse(
            line_a, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_a, error_prefix) != -1) &&
       (mathutils_array_parse(
            line_b, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_b, error_prefix) != -1)) == 0) {
    return NULL;
  }

  /* do the calculation */
  lambda = closest_to_line_v3(pt_out, pt, line_a, line_b);

  ret = PyTuple_New(2);
  PyTuple_SET_ITEMS(ret, Vector_CreatePyObject(pt_out, pt_num, NULL), PyFloat_FromDouble(lambda));
  return ret;
}

PyDoc_STRVAR(M_Geometry_intersect_point_tri_doc,
             ".. function:: intersect_point_tri(pt, tri_p1, tri_p2, tri_p3)\n"
             "\n"
             "   Takes 4 vectors: one is the point and the next 3 define the triangle. Projects "
             "the point onto the triangle plane and checks if it is within the triangle.\n"
             "\n"
             "   :arg pt: Point\n"
             "   :type pt: :class:`mathutils.Vector`\n"
             "   :arg tri_p1: First point of the triangle\n"
             "   :type tri_p1: :class:`mathutils.Vector`\n"
             "   :arg tri_p2: Second point of the triangle\n"
             "   :type tri_p2: :class:`mathutils.Vector`\n"
             "   :arg tri_p3: Third point of the triangle\n"
             "   :type tri_p3: :class:`mathutils.Vector`\n"
             "   :return: Point on the triangles plane or None if its outside the triangle\n"
             "   :rtype: :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_point_tri(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_point_tri";
  PyObject *py_pt, *py_tri[3];
  float pt[3], tri[3][3];
  float vi[3];
  int i;

  if (!PyArg_ParseTuple(args, "OOOO:intersect_point_tri", &py_pt, UNPACK3_EX(&, py_tri, ))) {
    return NULL;
  }

  if (mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix) ==
      -1) {
    return NULL;
  }
  for (i = 0; i < ARRAY_SIZE(tri); i++) {
    if (mathutils_array_parse(
            tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
      return NULL;
    }
  }

  if (isect_point_tri_v3(pt, UNPACK3(tri), vi)) {
    return Vector_CreatePyObject(vi, 3, NULL);
  }

  Py_RETURN_NONE;
}

PyDoc_STRVAR(M_Geometry_closest_point_on_tri_doc,
             ".. function:: closest_point_on_tri(pt, tri_p1, tri_p2, tri_p3)\n"
             "\n"
             "   Takes 4 vectors: one is the point and the next 3 define the triangle.\n"
             "\n"
             "   :arg pt: Point\n"
             "   :type pt: :class:`mathutils.Vector`\n"
             "   :arg tri_p1: First point of the triangle\n"
             "   :type tri_p1: :class:`mathutils.Vector`\n"
             "   :arg tri_p2: Second point of the triangle\n"
             "   :type tri_p2: :class:`mathutils.Vector`\n"
             "   :arg tri_p3: Third point of the triangle\n"
             "   :type tri_p3: :class:`mathutils.Vector`\n"
             "   :return: The closest point of the triangle.\n"
             "   :rtype: :class:`mathutils.Vector`\n");
static PyObject *M_Geometry_closest_point_on_tri(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "closest_point_on_tri";
  PyObject *py_pt, *py_tri[3];
  float pt[3], tri[3][3];
  float vi[3];
  int i;

  if (!PyArg_ParseTuple(args, "OOOO:closest_point_on_tri", &py_pt, UNPACK3_EX(&, py_tri, ))) {
    return NULL;
  }

  if (mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix) ==
      -1) {
    return NULL;
  }
  for (i = 0; i < ARRAY_SIZE(tri); i++) {
    if (mathutils_array_parse(
            tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
      return NULL;
    }
  }

  closest_on_tri_to_point_v3(vi, pt, UNPACK3(tri));

  return Vector_CreatePyObject(vi, 3, NULL);
}

PyDoc_STRVAR(
    M_Geometry_intersect_point_tri_2d_doc,
    ".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n"
    "\n"
    "   Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 "
    "define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n"
    "\n"
    "   :arg pt: Point\n"
    "   :type pt: :class:`mathutils.Vector`\n"
    "   :arg tri_p1: First point of the triangle\n"
    "   :type tri_p1: :class:`mathutils.Vector`\n"
    "   :arg tri_p2: Second point of the triangle\n"
    "   :type tri_p2: :class:`mathutils.Vector`\n"
    "   :arg tri_p3: Third point of the triangle\n"
    "   :type tri_p3: :class:`mathutils.Vector`\n"
    "   :rtype: int\n");
static PyObject *M_Geometry_intersect_point_tri_2d(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_point_tri_2d";
  PyObject *py_pt, *py_tri[3];
  float pt[2], tri[3][2];
  int i;

  if (!PyArg_ParseTuple(args, "OOOO:intersect_point_tri_2d", &py_pt, UNPACK3_EX(&, py_tri, ))) {
    return NULL;
  }

  if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) {
    return NULL;
  }
  for (i = 0; i < ARRAY_SIZE(tri); i++) {
    if (mathutils_array_parse(tri[i], 2, 2 | MU_ARRAY_SPILL, py_tri[i], error_prefix) == -1) {
      return NULL;
    }
  }

  return PyLong_FromLong(isect_point_tri_v2(pt, UNPACK3(tri)));
}

PyDoc_STRVAR(M_Geometry_intersect_point_quad_2d_doc,
             ".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n"
             "\n"
             "   Takes 5 vectors (using only the x and y coordinates): one is the point and the "
             "next 4 define the quad,\n"
             "   only the x and y are used from the vectors. Returns 1 if the point is within the "
             "quad, otherwise 0.\n"
             "   Works only with convex quads without singular edges.\n"
             "\n"
             "   :arg pt: Point\n"
             "   :type pt: :class:`mathutils.Vector`\n"
             "   :arg quad_p1: First point of the quad\n"
             "   :type quad_p1: :class:`mathutils.Vector`\n"
             "   :arg quad_p2: Second point of the quad\n"
             "   :type quad_p2: :class:`mathutils.Vector`\n"
             "   :arg quad_p3: Third point of the quad\n"
             "   :type quad_p3: :class:`mathutils.Vector`\n"
             "   :arg quad_p4: Fourth point of the quad\n"
             "   :type quad_p4: :class:`mathutils.Vector`\n"
             "   :rtype: int\n");
static PyObject *M_Geometry_intersect_point_quad_2d(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "intersect_point_quad_2d";
  PyObject *py_pt, *py_quad[4];
  float pt[2], quad[4][2];
  int i;

  if (!PyArg_ParseTuple(args, "OOOOO:intersect_point_quad_2d", &py_pt, UNPACK4_EX(&, py_quad, ))) {
    return NULL;
  }

  if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) {
    return NULL;
  }
  for (i = 0; i < ARRAY_SIZE(quad); i++) {
    if (mathutils_array_parse(quad[i], 2, 2 | MU_ARRAY_SPILL, py_quad[i], error_prefix) == -1) {
      return NULL;
    }
  }

  return PyLong_FromLong(isect_point_quad_v2(pt, UNPACK4(quad)));
}

PyDoc_STRVAR(M_Geometry_distance_point_to_plane_doc,
             ".. function:: distance_point_to_plane(pt, plane_co, plane_no)\n"
             "\n"
             "   Returns the signed distance between a point and a plane "
             "   (negative when below the normal).\n"
             "\n"
             "   :arg pt: Point\n"
             "   :type pt: :class:`mathutils.Vector`\n"
             "   :arg plane_co: A point on the plane\n"
             "   :type plane_co: :class:`mathutils.Vector`\n"
             "   :arg plane_no: The direction the plane is facing\n"
             "   :type plane_no: :class:`mathutils.Vector`\n"
             "   :rtype: float\n");
static PyObject *M_Geometry_distance_point_to_plane(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "distance_point_to_plane";
  PyObject *py_pt, *py_plane_co, *py_plane_no;
  float pt[3], plane_co[3], plane_no[3];
  float plane[4];

  if (!PyArg_ParseTuple(args, "OOO:distance_point_to_plane", &py_pt, &py_plane_co, &py_plane_no)) {
    return NULL;
  }

  if (((mathutils_array_parse(pt, 3, 3 | MU_ARRAY_SPILL, py_pt, error_prefix) != -1) &&
       (mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) &&
       (mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) !=
        -1)) == 0) {
    return NULL;
  }

  plane_from_point_normal_v3(plane, plane_co, plane_no);
  return PyFloat_FromDouble(dist_signed_to_plane_v3(pt, plane));
}

PyDoc_STRVAR(
    M_Geometry_barycentric_transform_doc,
    ".. function:: barycentric_transform(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n"
    "\n"
    "   Return a transformed point, the transformation is defined by 2 triangles.\n"
    "\n"
    "   :arg point: The point to transform.\n"
    "   :type point: :class:`mathutils.Vector`\n"
    "   :arg tri_a1: source triangle vertex.\n"
    "   :type tri_a1: :class:`mathutils.Vector`\n"
    "   :arg tri_a2: source triangle vertex.\n"
    "   :type tri_a2: :class:`mathutils.Vector`\n"
    "   :arg tri_a3: source triangle vertex.\n"
    "   :type tri_a3: :class:`mathutils.Vector`\n"
    "   :arg tri_b1: target triangle vertex.\n"
    "   :type tri_b1: :class:`mathutils.Vector`\n"
    "   :arg tri_b2: target triangle vertex.\n"
    "   :type tri_b2: :class:`mathutils.Vector`\n"
    "   :arg tri_b3: target triangle vertex.\n"
    "   :type tri_b3: :class:`mathutils.Vector`\n"
    "   :return: The transformed point\n"
    "   :rtype: :class:`mathutils.Vector`'s\n");
static PyObject *M_Geometry_barycentric_transform(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "barycentric_transform";
  PyObject *py_pt_src, *py_tri_src[3], *py_tri_dst[3];
  float pt_src[3], pt_dst[3], tri_src[3][3], tri_dst[3][3];
  int i;

  if (!PyArg_ParseTuple(args,
                        "OOOOOOO:barycentric_transform",
                        &py_pt_src,
                        UNPACK3_EX(&, py_tri_src, ),
                        UNPACK3_EX(&, py_tri_dst, ))) {
    return NULL;
  }

  if (mathutils_array_parse(pt_src, 3, 3 | MU_ARRAY_SPILL, py_pt_src, error_prefix) == -1) {
    return NULL;
  }
  for (i = 0; i < ARRAY_SIZE(tri_src); i++) {
    if (((mathutils_array_parse(tri_src[i], 3, 3 | MU_ARRAY_SPILL, py_tri_src[i], error_prefix) !=
          -1) &&
         (mathutils_array_parse(tri_dst[i], 3, 3 | MU_ARRAY_SPILL, py_tri_dst[i], error_prefix) !=
          -1)) == 0) {
      return NULL;
    }
  }

  transform_point_by_tri_v3(pt_dst, pt_src, UNPACK3(tri_dst), UNPACK3(tri_src));

  return Vector_CreatePyObject(pt_dst, 3, NULL);
}

struct PointsInPlanes_UserData {
  PyObject *py_verts;
  char *planes_used;
};

static void points_in_planes_fn(const float co[3], int i, int j, int k, void *user_data_p)
{
  struct PointsInPlanes_UserData *user_data = user_data_p;
  PyList_APPEND(user_data->py_verts, Vector_CreatePyObject(co, 3, NULL));
  user_data->planes_used[i] = true;
  user_data->planes_used[j] = true;
  user_data->planes_used[k] = true;
}

PyDoc_STRVAR(M_Geometry_points_in_planes_doc,
             ".. function:: points_in_planes(planes)\n"
             "\n"
             "   Returns a list of points inside all planes given and a list of index values for "
             "the planes used.\n"
             "\n"
             "   :arg planes: List of planes (4D vectors).\n"
             "   :type planes: list of :class:`mathutils.Vector`\n"
             "   :return: two lists, once containing the vertices inside the planes, another "
             "containing the plane indices used\n"
             "   :rtype: pair of lists\n");
static PyObject *M_Geometry_points_in_planes(PyObject *UNUSED(self), PyObject *args)
{
  PyObject *py_planes;
  float(*planes)[4];
  uint planes_len;

  if (!PyArg_ParseTuple(args, "O:points_in_planes", &py_planes)) {
    return NULL;
  }

  if ((planes_len = mathutils_array_parse_alloc_v(
           (float **)&planes, 4, py_planes, "points_in_planes")) == -1) {
    return NULL;
  }

  /* NOTE: this could be refactored into plain C easy - py bits are noted. */

  struct PointsInPlanes_UserData user_data = {
      .py_verts = PyList_New(0),
      .planes_used = PyMem_Malloc(sizeof(char) * planes_len),
  };

  /* python */
  PyObject *py_plane_index = PyList_New(0);

  memset(user_data.planes_used, 0, sizeof(char) * planes_len);

  const float eps_coplanar = 1e-4f;
  const float eps_isect = 1e-6f;

  const bool has_isect = isect_planes_v3_fn(
      planes, planes_len, eps_coplanar, eps_isect, points_in_planes_fn, &user_data);
  PyMem_Free(planes);

  /* Now make user_data list of used planes. */
  if (has_isect) {
    for (int i = 0; i < planes_len; i++) {
      if (user_data.planes_used[i]) {
        PyList_APPEND(py_plane_index, PyLong_FromLong(i));
      }
    }
  }
  PyMem_Free(user_data.planes_used);

  {
    PyObject *ret = PyTuple_New(2);
    PyTuple_SET_ITEMS(ret, user_data.py_verts, py_plane_index);
    return ret;
  }
}

#ifndef MATH_STANDALONE

PyDoc_STRVAR(M_Geometry_interpolate_bezier_doc,
             ".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution)\n"
             "\n"
             "   Interpolate a bezier spline segment.\n"
             "\n"
             "   :arg knot1: First bezier spline point.\n"
             "   :type knot1: :class:`mathutils.Vector`\n"
             "   :arg handle1: First bezier spline handle.\n"
             "   :type handle1: :class:`mathutils.Vector`\n"
             "   :arg handle2: Second bezier spline handle.\n"
             "   :type handle2: :class:`mathutils.Vector`\n"
             "   :arg knot2: Second bezier spline point.\n"
             "   :type knot2: :class:`mathutils.Vector`\n"
             "   :arg resolution: Number of points to return.\n"
             "   :type resolution: int\n"
             "   :return: The interpolated points\n"
             "   :rtype: list of :class:`mathutils.Vector`'s\n");
static PyObject *M_Geometry_interpolate_bezier(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "interpolate_bezier";
  PyObject *py_data[4];
  float data[4][4] = {{0.0f}};
  int resolu;
  int dims = 0;
  int i;
  float *coord_array, *fp;
  PyObject *list;

  if (!PyArg_ParseTuple(args, "OOOOi:interpolate_bezier", UNPACK4_EX(&, py_data, ), &resolu)) {
    return NULL;
  }

  for (i = 0; i < 4; i++) {
    int dims_tmp;
    if ((dims_tmp = mathutils_array_parse(
             data[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_data[i], error_prefix)) == -1) {
      return NULL;
    }
    dims = max_ii(dims, dims_tmp);
  }

  if (resolu <= 1) {
    PyErr_SetString(PyExc_ValueError, "resolution must be 2 or over");
    return NULL;
  }

  coord_array = MEM_callocN(dims * (resolu) * sizeof(float), error_prefix);
  for (i = 0; i < dims; i++) {
    BKE_curve_forward_diff_bezier(
        UNPACK4_EX(, data, [i]), coord_array + i, resolu - 1, sizeof(float) * dims);
  }

  list = PyList_New(resolu);
  fp = coord_array;
  for (i = 0; i < resolu; i++, fp = fp + dims) {
    PyList_SET_ITEM(list, i, Vector_CreatePyObject(fp, dims, NULL));
  }
  MEM_freeN(coord_array);
  return list;
}

PyDoc_STRVAR(M_Geometry_tessellate_polygon_doc,
             ".. function:: tessellate_polygon(veclist_list)\n"
             "\n"
             "   Takes a list of polylines (each point a pair or triplet of numbers) and returns "
             "the point indices for a polyline filled with triangles. Does not handle degenerate "
             "geometry (such as zero-length lines due to consecutive identical points).\n"
             "\n"
             "   :arg veclist_list: list of polylines\n"
             "   :rtype: list\n");
/* PolyFill function, uses Blenders scan-fill to fill multiple poly lines. */
static PyObject *M_Geometry_tessellate_polygon(PyObject *UNUSED(self), PyObject *polyLineSeq)
{
  PyObject *tri_list; /* Return this list of tri's */
  PyObject *polyLine, *polyVec;
  int i, len_polylines, len_polypoints;
  bool list_parse_error = false;
  bool is_2d = true;

  /* Display #ListBase. */
  ListBase dispbase = {NULL, NULL};
  DispList *dl;
  float *fp; /* Pointer to the array of malloced dl->verts to set the points from the vectors. */
  int totpoints = 0;

  if (!PySequence_Check(polyLineSeq)) {
    PyErr_SetString(PyExc_TypeError, "expected a sequence of poly lines");
    return NULL;
  }

  len_polylines = PySequence_Size(polyLineSeq);

  for (i = 0; i < len_polylines; i++) {
    polyLine = PySequence_GetItem(polyLineSeq, i);
    if (!PySequence_Check(polyLine)) {
      BKE_displist_free(&dispbase);
      Py_XDECREF(polyLine); /* May be null so use #Py_XDECREF. */
      PyErr_SetString(PyExc_TypeError,
                      "One or more of the polylines is not a sequence of mathutils.Vector's");
      return NULL;
    }

    len_polypoints = PySequence_Size(polyLine);
    if (len_polypoints > 0) { /* don't bother adding edges as polylines */
      dl = MEM_callocN(sizeof(DispList), "poly disp");
      BLI_addtail(&dispbase, dl);
      dl->type = DL_INDEX3;
      dl->nr = len_polypoints;
      dl->type = DL_POLY;
      dl->parts = 1; /* no faces, 1 edge loop */
      dl->col = 0;   /* no material */
      dl->verts = fp = MEM_mallocN(sizeof(float[3]) * len_polypoints, "dl verts");
      dl->index = MEM_callocN(sizeof(int[3]) * len_polypoints, "dl index");

      for (int index = 0; index < len_polypoints; index++, fp += 3) {
        polyVec = PySequence_GetItem(polyLine, index);
        const int polyVec_len = mathutils_array_parse(
            fp, 2, 3 | MU_ARRAY_SPILL, polyVec, "tessellate_polygon: parse coord");
        Py_DECREF(polyVec);

        if (UNLIKELY(polyVec_len == -1)) {
          list_parse_error = true;
        }
        else if (polyVec_len == 2) {
          fp[2] = 0.0f;
        }
        else if (polyVec_len == 3) {
          is_2d = false;
        }

        totpoints++;
      }
    }
    Py_DECREF(polyLine);
  }

  if (list_parse_error) {
    BKE_displist_free(&dispbase); /* possible some dl was allocated */
    return NULL;
  }
  if (totpoints) {
    /* now make the list to return */
    BKE_displist_fill(&dispbase, &dispbase, is_2d ? ((const float[3]){0, 0, -1}) : NULL, false);

    /* The faces are stored in a new DisplayList
     * that's added to the head of the #ListBase. */
    dl = dispbase.first;

    tri_list = PyList_New(dl->parts);
    if (!tri_list) {
      BKE_displist_free(&dispbase);
      PyErr_SetString(PyExc_RuntimeError, "failed to make a new list");
      return NULL;
    }

    int *dl_face = dl->index;
    for (int index = 0; index < dl->parts; index++) {
      PyList_SET_ITEM(tri_list, index, PyC_Tuple_Pack_I32(dl_face[0], dl_face[1], dl_face[2]));
      dl_face += 3;
    }
    BKE_displist_free(&dispbase);
  }
  else {
    /* no points, do this so scripts don't barf */
    BKE_displist_free(&dispbase); /* possible some dl was allocated */
    tri_list = PyList_New(0);
  }

  return tri_list;
}

static int boxPack_FromPyObject(PyObject *value, BoxPack **r_boxarray)
{
  Py_ssize_t len, i;
  PyObject *list_item, *item_1, *item_2;
  BoxPack *boxarray;

  /* Error checking must already be done */
  if (!PyList_Check(value)) {
    PyErr_SetString(PyExc_TypeError, "can only back a list of [x, y, w, h]");
    return -1;
  }

  len = PyList_GET_SIZE(value);

  boxarray = MEM_mallocN(sizeof(BoxPack) * len, __func__);

  for (i = 0; i < len; i++) {
    list_item = PyList_GET_ITEM(value, i);
    if (!PyList_Check(list_item) || PyList_GET_SIZE(list_item) < 4) {
      MEM_freeN(boxarray);
      PyErr_SetString(PyExc_TypeError, "can only pack a list of [x, y, w, h]");
      return -1;
    }

    BoxPack *box = &boxarray[i];

    item_1 = PyList_GET_ITEM(list_item, 2);
    item_2 = PyList_GET_ITEM(list_item, 3);

    box->w = (float)PyFloat_AsDouble(item_1);
    box->h = (float)PyFloat_AsDouble(item_2);
    box->index = i;

    /* accounts for error case too and overwrites with own error */
    if (box->w < 0.0f || box->h < 0.0f) {
      MEM_freeN(boxarray);
      PyErr_SetString(PyExc_TypeError,
                      "error parsing width and height values from list: "
                      "[x, y, w, h], not numbers or below zero");
      return -1;
    }

    /* verts will be added later */
  }

  *r_boxarray = boxarray;
  return 0;
}

static void boxPack_ToPyObject(PyObject *value, const BoxPack *boxarray)
{
  Py_ssize_t len, i;
  PyObject *list_item;

  len = PyList_GET_SIZE(value);

  for (i = 0; i < len; i++) {
    const BoxPack *box = &boxarray[i];
    list_item = PyList_GET_ITEM(value, box->index);
    PyList_SET_ITEM(list_item, 0, PyFloat_FromDouble(box->x));
    PyList_SET_ITEM(list_item, 1, PyFloat_FromDouble(box->y));
  }
}

PyDoc_STRVAR(M_Geometry_box_pack_2d_doc,
             ".. function:: box_pack_2d(boxes)\n"
             "\n"
             "   Returns a tuple with the width and height of the packed bounding box.\n"
             "\n"
             "   :arg boxes: list of boxes, each box is a list where the first 4 items are [x, y, "
             "width, height, ...] other items are ignored.\n"
             "   :type boxes: list\n"
             "   :return: the width and height of the packed bounding box\n"
             "   :rtype: tuple, pair of floats\n");
static PyObject *M_Geometry_box_pack_2d(PyObject *UNUSED(self), PyObject *boxlist)
{
  float tot_width = 0.0f, tot_height = 0.0f;
  Py_ssize_t len;

  PyObject *ret;

  if (!PyList_Check(boxlist)) {
    PyErr_SetString(PyExc_TypeError, "expected a list of boxes [[x, y, w, h], ... ]");
    return NULL;
  }

  len = PyList_GET_SIZE(boxlist);
  if (len) {
    BoxPack *boxarray = NULL;
    if (boxPack_FromPyObject(boxlist, &boxarray) == -1) {
      return NULL; /* exception set */
    }

    /* Non Python function */
    BLI_box_pack_2d(boxarray, len, &tot_width, &tot_height);

    boxPack_ToPyObject(boxlist, boxarray);
    MEM_freeN(boxarray);
  }

  ret = PyTuple_New(2);
  PyTuple_SET_ITEMS(ret, PyFloat_FromDouble(tot_width), PyFloat_FromDouble(tot_height));
  return ret;
}

PyDoc_STRVAR(M_Geometry_box_fit_2d_doc,
             ".. function:: box_fit_2d(points)\n"
             "\n"
             "   Returns an angle that best fits the points to an axis aligned rectangle\n"
             "\n"
             "   :arg points: list of 2d points.\n"
             "   :type points: list\n"
             "   :return: angle\n"
             "   :rtype: float\n");
static PyObject *M_Geometry_box_fit_2d(PyObject *UNUSED(self), PyObject *pointlist)
{
  float(*points)[2];
  Py_ssize_t len;

  float angle = 0.0f;

  len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "box_fit_2d");
  if (len == -1) {
    return NULL;
  }

  if (len) {
    /* Non Python function */
    angle = BLI_convexhull_aabb_fit_points_2d(points, len);

    PyMem_Free(points);
  }

  return PyFloat_FromDouble(angle);
}

PyDoc_STRVAR(M_Geometry_convex_hull_2d_doc,
             ".. function:: convex_hull_2d(points)\n"
             "\n"
             "   Returns a list of indices into the list given\n"
             "\n"
             "   :arg points: list of 2d points.\n"
             "   :type points: list\n"
             "   :return: a list of indices\n"
             "   :rtype: list of ints\n");
static PyObject *M_Geometry_convex_hull_2d(PyObject *UNUSED(self), PyObject *pointlist)
{
  float(*points)[2];
  Py_ssize_t len;

  PyObject *ret;

  len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "convex_hull_2d");
  if (len == -1) {
    return NULL;
  }

  if (len) {
    int *index_map;
    Py_ssize_t len_ret, i;

    index_map = MEM_mallocN(sizeof(*index_map) * len, __func__);

    /* Non Python function */
    len_ret = BLI_convexhull_2d(points, len, index_map);

    ret = PyList_New(len_ret);
    for (i = 0; i < len_ret; i++) {
      PyList_SET_ITEM(ret, i, PyLong_FromLong(index_map[i]));
    }

    MEM_freeN(index_map);

    PyMem_Free(points);
  }
  else {
    ret = PyList_New(0);
  }

  return ret;
}

/* Return a PyObject that is a list of lists, using the flattened list array
 * to fill values, with start_table and len_table giving the start index
 * and length of the toplevel_len sub-lists.
 */
static PyObject *list_of_lists_from_arrays(const int *array,
                                           const int *start_table,
                                           const int *len_table,
                                           int toplevel_len)
{
  PyObject *ret, *sublist;
  int i, j, sublist_len, sublist_start, val;

  if (array == NULL) {
    return PyList_New(0);
  }
  ret = PyList_New(toplevel_len);
  for (i = 0; i < toplevel_len; i++) {
    sublist_len = len_table[i];
    sublist = PyList_New(sublist_len);
    sublist_start = start_table[i];
    for (j = 0; j < sublist_len; j++) {
      val = array[sublist_start + j];
      PyList_SET_ITEM(sublist, j, PyLong_FromLong(val));
    }
    PyList_SET_ITEM(ret, i, sublist);
  }
  return ret;
}

PyDoc_STRVAR(
    M_Geometry_delaunay_2d_cdt_doc,
    ".. function:: delaunay_2d_cdt(vert_coords, edges, faces, output_type, epsilon, "
    "need_ids=True)\n"
    "\n"
    "   Computes the Constrained Delaunay Triangulation of a set of vertices,\n"
    "   with edges and faces that must appear in the triangulation.\n"
    "   Some triangles may be eaten away, or combined with other triangles,\n"
    "   according to output type.\n"
    "   The returned verts may be in a different order from input verts, may be moved\n"
    "   slightly, and may be merged with other nearby verts.\n"
    "   The three returned orig lists give, for each of verts, edges, and faces, the list of\n"
    "   input element indices corresponding to the positionally same output element.\n"
    "   For edges, the orig indices start with the input edges and then continue\n"
    "   with the edges implied by each of the faces (n of them for an n-gon).\n"
    "   If the need_ids argument is supplied, and False, then the code skips the preparation\n"
    "   of the orig arrays, which may save some time."
    "\n"
    "   :arg vert_coords: Vertex coordinates (2d)\n"
    "   :type vert_coords: list of :class:`mathutils.Vector`\n"
    "   :arg edges: Edges, as pairs of indices in `vert_coords`\n"
    "   :type edges: list of (int, int)\n"
    "   :arg faces: Faces, each sublist is a face, as indices in `vert_coords` (CCW oriented)\n"
    "   :type faces: list of list of int\n"
    "   :arg output_type: What output looks like. 0 => triangles with convex hull. "
    "1 => triangles inside constraints. "
    "2 => the input constraints, intersected. "
    "3 => like 2 but detect holes and omit them from output. "
    "4 => like 2 but with extra edges to make valid BMesh faces. "
    "5 => like 4 but detect holes and omit them from output.\n"
    "   :type output_type: int\\n"
    "   :arg epsilon: For nearness tests; should not be zero\n"
    "   :type epsilon: float\n"
    "   :arg need_ids: are the orig output arrays needed?\n"
    "   :type need_args: bool\n"
    "   :return: Output tuple, (vert_coords, edges, faces, orig_verts, orig_edges, orig_faces)\n"
    "   :rtype: (list of `mathutils.Vector`, "
    "list of (int, int), "
    "list of list of int, "
    "list of list of int, "
    "list of list of int, "
    "list of list of int)\n"
    "\n");
static PyObject *M_Geometry_delaunay_2d_cdt(PyObject *UNUSED(self), PyObject *args)
{
  const char *error_prefix = "delaunay_2d_cdt";
  PyObject *vert_coords, *edges, *faces, *item;
  int output_type;
  float epsilon;
  bool need_ids = true;
  float(*in_coords)[2] = NULL;
  int(*in_edges)[2] = NULL;
  int *in_faces = NULL;
  int *in_faces_start_table = NULL;
  int *in_faces_len_table = NULL;
  Py_ssize_t vert_coords_len, edges_len, faces_len;
  CDT_input in;
  CDT_result *res = NULL;
  PyObject *out_vert_coords = NULL;
  PyObject *out_edges = NULL;
  PyObject *out_faces = NULL;
  PyObject *out_orig_verts = NULL;
  PyObject *out_orig_edges = NULL;
  PyObject *out_orig_faces = NULL;
  PyObject *ret_value = NULL;
  int i;

  if (!PyArg_ParseTuple(args,
                        "OOOif|p:delaunay_2d_cdt",
                        &vert_coords,
                        &edges,
                        &faces,
                        &output_type,
                        &epsilon,
                        &need_ids)) {
    return NULL;
  }

  vert_coords_len = mathutils_array_parse_alloc_v(
      (float **)&in_coords, 2, vert_coords, error_prefix);
  if (vert_coords_len == -1) {
    return NULL;
  }

  edges_len = mathutils_array_parse_alloc_vi((int **)&in_edges, 2, edges, error_prefix);
  if (edges_len == -1) {
    goto exit_cdt;
  }

  faces_len = mathutils_array_parse_alloc_viseq(
      &in_faces, &in_faces_start_table, &in_faces_len_table, faces, error_prefix);
  if (faces_len == -1) {
    goto exit_cdt;
  }

  in.verts_len = (int)vert_coords_len;
  in.vert_coords = in_coords;
  in.edges_len = edges_len;
  in.faces_len = faces_len;
  in.edges = in_edges;
  in.faces = in_faces;
  in.faces_start_table = in_faces_start_table;
  in.faces_len_table = in_faces_len_table;
  in.epsilon = epsilon;
  in.need_ids = need_ids;

  res = BLI_delaunay_2d_cdt_calc(&in, output_type);

  ret_value = PyTuple_New(6);

  out_vert_coords = PyList_New(res->verts_len);
  for (i = 0; i < res->verts_len; i++) {
    item = Vector_CreatePyObject(res->vert_coords[i], 2, NULL);
    if (item == NULL) {
      Py_DECREF(ret_value);
      Py_DECREF(out_vert_coords);
      goto exit_cdt;
    }
    PyList_SET_ITEM(out_vert_coords, i, item);
  }
  PyTuple_SET_ITEM(ret_value, 0, out_vert_coords);

  out_edges = PyList_New(res->edges_len);
  for (i = 0; i < res->edges_len; i++) {
    item = PyTuple_New(2);
    PyTuple_SET_ITEM(item, 0, PyLong_FromLong((long)res->edges[i][0]));
    PyTuple_SET_ITEM(item, 1, PyLong_FromLong((long)res->edges[i][1]));
    PyList_SET_ITEM(out_edges, i, item);
  }
  PyTuple_SET_ITEM(ret_value, 1, out_edges);

  out_faces = list_of_lists_from_arrays(
      res->faces, res->faces_start_table, res->faces_len_table, res->faces_len);
  PyTuple_SET_ITEM(ret_value, 2, out_faces);

  out_orig_verts = list_of_lists_from_arrays(
      res->verts_orig, res->verts_orig_start_table, res->verts_orig_len_table, res->verts_len);
  PyTuple_SET_ITEM(ret_value, 3, out_orig_verts);

  out_orig_edges = list_of_lists_from_arrays(
      res->edges_orig, res->edges_orig_start_table, res->edges_orig_len_table, res->edges_len);
  PyTuple_SET_ITEM(ret_value, 4, out_orig_edges);

  out_orig_faces = list_of_lists_from_arrays(
      res->faces_orig, res->faces_orig_start_table, res->faces_orig_len_table, res->faces_len);
  PyTuple_SET_ITEM(ret_value, 5, out_orig_faces);

exit_cdt:
  if (in_coords != NULL) {
    PyMem_Free(in_coords);
  }
  if (in_edges != NULL) {
    PyMem_Free(in_edges);
  }
  if (in_faces != NULL) {
    PyMem_Free(in_faces);
  }
  if (in_faces_start_table != NULL) {
    PyMem_Free(in_faces_start_table);
  }
  if (in_faces_len_table != NULL) {
    PyMem_Free(in_faces_len_table);
  }
  if (res) {
    BLI_delaunay_2d_cdt_free(res);
  }
  return ret_value;
}

#endif /* MATH_STANDALONE */

static PyMethodDef M_Geometry_methods[] = {
    {"intersect_ray_tri",
     (PyCFunction)M_Geometry_intersect_ray_tri,
     METH_VARARGS,
     M_Geometry_intersect_ray_tri_doc},
    {"intersect_point_line",
     (PyCFunction)M_Geometry_intersect_point_line,
     METH_VARARGS,
     M_Geometry_intersect_point_line_doc},
    {"intersect_point_tri",
     (PyCFunction)M_Geometry_intersect_point_tri,
     METH_VARARGS,
     M_Geometry_intersect_point_tri_doc},
    {"closest_point_on_tri",
     (PyCFunction)M_Geometry_closest_point_on_tri,
     METH_VARARGS,
     M_Geometry_closest_point_on_tri_doc},
    {"intersect_point_tri_2d",
     (PyCFunction)M_Geometry_intersect_point_tri_2d,
     METH_VARARGS,
     M_Geometry_intersect_point_tri_2d_doc},
    {"intersect_point_quad_2d",
     (PyCFunction)M_Geometry_intersect_point_quad_2d,
     METH_VARARGS,
     M_Geometry_intersect_point_quad_2d_doc},
    {"intersect_line_line",
     (PyCFunction)M_Geometry_intersect_line_line,
     METH_VARARGS,
     M_Geometry_intersect_line_line_doc},
    {"intersect_line_line_2d",
     (PyCFunction)M_Geometry_intersect_line_line_2d,
     METH_VARARGS,
     M_Geometry_intersect_line_line_2d_doc},
    {"intersect_line_plane",
     (PyCFunction)M_Geometry_intersect_line_plane,
     METH_VARARGS,
     M_Geometry_intersect_line_plane_doc},
    {"intersect_plane_plane",
     (PyCFunction)M_Geometry_intersect_plane_plane,
     METH_VARARGS,
     M_Geometry_intersect_plane_plane_doc},
    {"intersect_line_sphere",
     (PyCFunction)M_Geometry_intersect_line_sphere,
     METH_VARARGS,
     M_Geometry_intersect_line_sphere_doc},
    {"intersect_line_sphere_2d",
     (PyCFunction)M_Geometry_intersect_line_sphere_2d,
     METH_VARARGS,
     M_Geometry_intersect_line_sphere_2d_doc},
    {"distance_point_to_plane",
     (PyCFunction)M_Geometry_distance_point_to_plane,
     METH_VARARGS,
     M_Geometry_distance_point_to_plane_doc},
    {"intersect_sphere_sphere_2d",
     (PyCFunction)M_Geometry_intersect_sphere_sphere_2d,
     METH_VARARGS,
     M_Geometry_intersect_sphere_sphere_2d_doc},
    {"intersect_tri_tri_2d",
     (PyCFunction)M_Geometry_intersect_tri_tri_2d,
     METH_VARARGS,
     M_Geometry_intersect_tri_tri_2d_doc},
    {"area_tri", (PyCFunction)M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc},
    {"volume_tetrahedron",
     (PyCFunction)M_Geometry_volume_tetrahedron,
     METH_VARARGS,
     M_Geometry_volume_tetrahedron_doc},
    {"normal", (PyCFunction)M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc},
    {"barycentric_transform",
     (PyCFunction)M_Geometry_barycentric_transform,
     METH_VARARGS,
     M_Geometry_barycentric_transform_doc},
    {"points_in_planes",
     (PyCFunction)M_Geometry_points_in_planes,
     METH_VARARGS,
     M_Geometry_points_in_planes_doc},
#ifndef MATH_STANDALONE
    {"interpolate_bezier",
     (PyCFunction)M_Geometry_interpolate_bezier,
     METH_VARARGS,
     M_Geometry_interpolate_bezier_doc},
    {"tessellate_polygon",
     (PyCFunction)M_Geometry_tessellate_polygon,
     METH_O,
     M_Geometry_tessellate_polygon_doc},
    {"convex_hull_2d",
     (PyCFunction)M_Geometry_convex_hull_2d,
     METH_O,
     M_Geometry_convex_hull_2d_doc},
    {"delaunay_2d_cdt",
     (PyCFunction)M_Geometry_delaunay_2d_cdt,
     METH_VARARGS,
     M_Geometry_delaunay_2d_cdt_doc},
    {"box_fit_2d", (PyCFunction)M_Geometry_box_fit_2d, METH_O, M_Geometry_box_fit_2d_doc},
    {"box_pack_2d", (PyCFunction)M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc},
#endif
    {NULL, NULL, 0, NULL},
};

static struct PyModuleDef M_Geometry_module_def = {
    PyModuleDef_HEAD_INIT,
    "mathutils.geometry", /* m_name */
    M_Geometry_doc,       /* m_doc */
    0,                    /* m_size */
    M_Geometry_methods,   /* m_methods */
    NULL,                 /* m_slots */
    NULL,                 /* m_traverse */
    NULL,                 /* m_clear */
    NULL,                 /* m_free */
};

/*----------------------------MODULE INIT-------------------------*/
PyMODINIT_FUNC PyInit_mathutils_geometry(void)
{
  PyObject *submodule = PyModule_Create(&M_Geometry_module_def);
  return submodule;
}