Welcome to mirror list, hosted at ThFree Co, Russian Federation.

reorganize.h « raytrace « intern « render « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 68b2b22ecddf4af075231767947f41712134c027 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version. 
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2009 Blender Foundation.
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * Contributor(s): André Pinto.
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/render/intern/raytrace/reorganize.h
 *  \ingroup render
 */


#include <float.h>
#include <math.h>
#include <stdio.h>

#include <algorithm>
#include <queue>
#include <vector>

#include "BKE_global.h"

#ifdef _WIN32
#  ifdef INFINITY
#    undef INFINITY
#  endif
#  define INFINITY FLT_MAX // in mingw math.h: (1.0F/0.0F). This generates compile error, though.
#endif

extern int tot_pushup;
extern int tot_pushdown;

#if !defined(INFINITY) && defined(HUGE_VAL)
#define INFINITY HUGE_VAL
#endif

template<class Node>
bool node_fits_inside(Node *a, Node *b)
{
	return bb_fits_inside(b->bb, b->bb+3, a->bb, a->bb+3);
}

template<class Node>
void reorganize_find_fittest_parent(Node *tree, Node *node, std::pair<float,Node*> &cost)
{
	std::queue<Node*> q;
	q.push(tree);
	
	while(!q.empty())
	{
		Node *parent = q.front();
		q.pop();
		
		if(parent == node) continue;
		if(node_fits_inside(node, parent) && RE_rayobject_isAligned(parent->child) )
		{
			float pcost = bb_area(parent->bb, parent->bb+3);
			cost = std::min( cost, std::make_pair(pcost,parent) );
			for(Node *child = parent->child; child; child = child->sibling)
				q.push(child);			
		}
	}
}

static int tot_moves = 0;
template<class Node>
void reorganize(Node *root)
{
	std::queue<Node*> q;

	q.push(root);
	while(!q.empty())
	{
		Node * node = q.front();
		q.pop();
		
		if( RE_rayobject_isAligned(node->child) )
		{
			for(Node **prev = &node->child; *prev; )
			{
				assert( RE_rayobject_isAligned(*prev) ); 
				q.push(*prev);

				std::pair<float,Node*> best(FLT_MAX, root);
				reorganize_find_fittest_parent( root, *prev, best );

				if(best.second == node)
				{
					//Already inside the fitnest BB
					prev = &(*prev)->sibling;
				}
				else
				{
					Node *tmp = *prev;
					*prev = (*prev)->sibling;
					
					tmp->sibling =  best.second->child;
					best.second->child = tmp;
					
					tot_moves++;
				}
			
			
			}
		}
		if(node != root)
		{
		}
	}
}

/*
 * Prunes useless nodes from trees:
 *  erases nodes with total amount of primitives = 0
 *  prunes nodes with only one child (except if that child is a primitive)
 */
template<class Node>
void remove_useless(Node *node, Node **new_node)
{
	if( RE_rayobject_isAligned(node->child) )
	{

		for(Node **prev = &node->child; *prev; )
		{
			Node *next = (*prev)->sibling;
			remove_useless(*prev, prev);
			if(*prev == NULL)
				*prev = next;
			else
			{
				(*prev)->sibling = next;
				prev = &((*prev)->sibling);
			}
		}			
	}
	if(node->child)
	{
		if(RE_rayobject_isAligned(node->child) && node->child->sibling == 0)
			*new_node = node->child;
	}
	else if(node->child == NULL)
	{
		*new_node = NULL;
	}
}

/*
 * Minimizes expected number of BBtest by colapsing nodes
 * it uses surface area heuristic for determining whether a node should be colapsed
 */
template<class Node>
void pushup(Node *parent)
{
	if(is_leaf(parent)) return;
	
	float p_area = bb_area(parent->bb, parent->bb+3);
	Node **prev = &parent->child;
	for(Node *child = parent->child; RE_rayobject_isAligned(child) && child; )
	{
		const float c_area = bb_area(child->bb, child->bb + 3);
		const int nchilds = count_childs(child);
		float original_cost = ((p_area != 0.0f)? (c_area / p_area)*nchilds: 1.0f) + 1;
		float flatten_cost = nchilds;
		if(flatten_cost < original_cost && nchilds >= 2)
		{
			append_sibling(child, child->child);
			child = child->sibling;
			*prev = child;

//			*prev = child->child;
//			append_sibling( *prev, child->sibling );
//			child = *prev;
			tot_pushup++;
		}
		else
		{
			*prev = child;
			prev = &(*prev)->sibling;
			child = *prev;
		}		
	}
	
	for(Node *child = parent->child; RE_rayobject_isAligned(child) && child; child = child->sibling)
		pushup(child);
}

/*
 * try to optimize number of childs to be a multiple of SSize
 */
template<class Node, int SSize>
void pushup_simd(Node *parent)
{
	if(is_leaf(parent)) return;
	
	int n = count_childs(parent);
		
	Node **prev = &parent->child;
	for(Node *child = parent->child; RE_rayobject_isAligned(child) && child; )
	{
		int cn = count_childs(child);
		if(cn-1 <= (SSize - (n%SSize) ) % SSize && RE_rayobject_isAligned(child->child) )
		{
			n += (cn - 1);
			append_sibling(child, child->child);
			child = child->sibling;
			*prev = child;	
		}
		else
		{
			*prev = child;
			prev = &(*prev)->sibling;
			child = *prev;
		}		
	}
		
	for(Node *child = parent->child; RE_rayobject_isAligned(child) && child; child = child->sibling)
		pushup_simd<Node,SSize>(child);
}


/*
 * Pushdown
 *	makes sure no child fits inside any of its sibling
 */
template<class Node>
void pushdown(Node *parent)
{
	Node **s_child = &parent->child;
	Node * child = parent->child;
	
	while(child && RE_rayobject_isAligned(child))
	{
		Node *next = child->sibling;
		Node **next_s_child = &child->sibling;
		
		//assert(bb_fits_inside(parent->bb, parent->bb+3, child->bb, child->bb+3));
		
		for(Node *i = parent->child; RE_rayobject_isAligned(i) && i; i = i->sibling)
		if(child != i && bb_fits_inside(i->bb, i->bb+3, child->bb, child->bb+3) && RE_rayobject_isAligned(i->child))
		{
//			todo optimize (should the one with the smallest area?)
//			float ia = bb_area(i->bb, i->bb+3)
//			if(child->i)
			*s_child = child->sibling;
			child->sibling = i->child;
			i->child = child;
			next_s_child = s_child;
			
			tot_pushdown++;
			break;
		}
		child = next;
		s_child = next_s_child;
	}
	
	for (Node *i = parent->child; RE_rayobject_isAligned(i) && i; i = i->sibling) {
		pushdown(i);
	}
}


/*
 * BVH refit
 * readjust nodes BB (useful if nodes childs where modified)
 */
template<class Node>
float bvh_refit(Node *node)
{
	if(is_leaf(node)) return 0;	
	if(is_leaf(node->child)) return 0;
	
	float total = 0;
	
	for(Node *child = node->child; child; child = child->sibling)
		total += bvh_refit(child);
		
	float old_area = bb_area(node->bb, node->bb+3);
	INIT_MINMAX(node->bb, node->bb+3);
	for(Node *child = node->child; child; child = child->sibling)
	{
		DO_MIN(child->bb, node->bb);
		DO_MAX(child->bb+3, node->bb+3);
	}
	total += old_area - bb_area(node->bb, node->bb+3);
	return total;
}


/*
 * this finds the best way to packing a tree according to a given test cost function
 * with the purpose to reduce the expected cost (eg.: number of BB tests).
 */
#include <vector>
#define MAX_CUT_SIZE		4				/* svbvh assumes max 4 children! */
#define MAX_OPTIMIZE_CHILDS	MAX_CUT_SIZE

struct OVBVHNode
{
	float	bb[6];

	OVBVHNode *child;
	OVBVHNode *sibling;
	
	/*
	 * Returns min cost to represent the subtree starting at the given node,
	 * allowing it to have a given cutsize
	 */
	float cut_cost[MAX_CUT_SIZE];
	float get_cost(int cutsize)
	{
		return cut_cost[cutsize-1];
	}
	
	/*
	 * This saves the cut size of this child, when parent is reaching
	 * its minimum cut with the given cut size
	 */
	int cut_size[MAX_CUT_SIZE];
	int get_cut_size(int parent_cut_size)
	{
		return cut_size[parent_cut_size-1];
	}
	
	/*
	 * Reorganize the node based on calculated cut costs
	 */	 
	int best_cutsize;
	void set_cut(int cutsize, OVBVHNode ***cut)
	{
		if(cutsize == 1)
		{
			**cut = this;
			 *cut = &(**cut)->sibling;
		}
		else
		{
			if(cutsize > MAX_CUT_SIZE)
			{
				for(OVBVHNode *child = this->child; child && RE_rayobject_isAligned(child); child = child->sibling)
				{
					child->set_cut( 1, cut );
					cutsize--;
				}
				assert(cutsize == 0);
			}
			else
				for(OVBVHNode *child = this->child; child && RE_rayobject_isAligned(child); child = child->sibling)
					child->set_cut( child->get_cut_size( cutsize ), cut );
		}
	}

	void optimize()
	{
		if(RE_rayobject_isAligned(this->child))
		{
			//Calc new childs
			{
				OVBVHNode **cut = &(this->child);
				set_cut( best_cutsize, &cut );
				*cut = NULL;
			}

			//Optimize new childs
			for(OVBVHNode *child = this->child; child && RE_rayobject_isAligned(child); child = child->sibling)
				child->optimize();
		}		
	}
};

/*
 * Calculates an optimal SIMD packing
 *
 */
template<class Node, class TestCost>
struct VBVH_optimalPackSIMD
{
	TestCost testcost;
	
	VBVH_optimalPackSIMD(TestCost testcost)
	{
		this->testcost = testcost;
	}
	
	/*
	 * calc best cut on a node
	 */
	struct calc_best
	{
		Node *child[MAX_OPTIMIZE_CHILDS];
		float child_hit_prob[MAX_OPTIMIZE_CHILDS];
		
		calc_best(Node *node)
		{
			int nchilds = 0;
			//Fetch childs and needed data
			{
				float parent_area = bb_area(node->bb, node->bb+3);
				for(Node *child = node->child; child && RE_rayobject_isAligned(child); child = child->sibling)
				{
					this->child[nchilds] = child;
					this->child_hit_prob[nchilds] = (parent_area != 0.0f)? bb_area(child->bb, child->bb+3) / parent_area: 1.0f;
					nchilds++;
				}

				assert(nchilds >= 2 && nchilds <= MAX_OPTIMIZE_CHILDS);
			}
			
			
			//Build DP table to find minimum cost to represent this node with a given cutsize
			int   bt  [MAX_OPTIMIZE_CHILDS+1][MAX_CUT_SIZE+1]; //backtrace table
			float cost[MAX_OPTIMIZE_CHILDS+1][MAX_CUT_SIZE+1]; //cost table (can be reduced to float[2][MAX_CUT_COST])
			
			for(int i=0; i<=nchilds; i++)
			for(int j=0; j<=MAX_CUT_SIZE; j++)
				cost[i][j] = INFINITY;

			cost[0][0] = 0;
			
			for(int i=1; i<=nchilds; i++)
			for(int size=i-1; size/*+(nchilds-i)*/<=MAX_CUT_SIZE; size++)
			for(int cut=1; cut+size/*+(nchilds-i)*/<=MAX_CUT_SIZE; cut++)
			{
				float new_cost = cost[i-1][size] + child_hit_prob[i-1]*child[i-1]->get_cost(cut);
				if(new_cost < cost[i][size+cut])
				{
					cost[i][size+cut] = new_cost;
					bt[i][size+cut] = cut;
				}
			}
			
			//Save the ways to archieve the minimum cost with a given cutsize
			for(int i = nchilds; i <= MAX_CUT_SIZE; i++)
			{
				node->cut_cost[i-1] = cost[nchilds][i];
				if(cost[nchilds][i] < INFINITY)
				{
					int current_size = i;
					for(int j=nchilds; j>0; j--)
					{
						child[j-1]->cut_size[i-1] = bt[j][current_size];
						current_size -= bt[j][current_size];
					}
				}
			}			
		}
	};
	
	void calc_costs(Node *node)
	{
		
		if( RE_rayobject_isAligned(node->child) )
		{
			int nchilds = 0;
			for(Node *child = node->child; child && RE_rayobject_isAligned(child); child = child->sibling)
			{
				calc_costs(child);
				nchilds++;
			}

			for(int i=0; i<MAX_CUT_SIZE; i++)
				node->cut_cost[i] = INFINITY;

			//We are not allowed to look on nodes with with so many childs
			if(nchilds > MAX_CUT_SIZE)
			{
				float cost = 0;

				float parent_area = bb_area(node->bb, node->bb+3);
				for(Node *child = node->child; child && RE_rayobject_isAligned(child); child = child->sibling)
				{
					cost += ((parent_area != 0.0f)? ( bb_area(child->bb, child->bb+3) / parent_area ): 1.0f) * child->get_cost(1);
				}
				
				cost += testcost(nchilds);
				node->cut_cost[0] = cost;
				node->best_cutsize = nchilds;
			}
			else
			{
				calc_best calc(node);
		
				//calc expected cost if we optimaly pack this node
				for(int cutsize=nchilds; cutsize<=MAX_CUT_SIZE; cutsize++)
				{
					float m = node->get_cost(cutsize) + testcost(cutsize);
					if(m < node->cut_cost[0])
					{
						node->cut_cost[0] = m;
						node->best_cutsize = cutsize;
					}
				}
			}
			assert(node->cut_cost[0] != INFINITY);
		}
		else
		{
			node->cut_cost[0] = 1.0f;
			for(int i=1; i<MAX_CUT_SIZE; i++)
				node->cut_cost[i] = INFINITY;
		}
	}

	Node *transform(Node *node)
	{
		if(RE_rayobject_isAligned(node->child))
		{
			static int num = 0;
			bool first = false;
			if(num == 0) { num++; first = true; }
			
			calc_costs(node);
			if((G.debug & G_DEBUG) && first) printf("expected cost = %f (%d)\n", node->cut_cost[0], node->best_cutsize );
			node->optimize();
		}
		return node;		
	}	
};