Welcome to mirror list, hosted at ThFree Co, Russian Federation.

volumetric.c « source « intern « render « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d5c4c407bf65366233d91c8aeb1c15c8b9793dbd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * Contributor(s): Matt Ebb, Raul Fernandez Hernandez (Farsthary)
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/render/intern/source/volumetric.c
 *  \ingroup render
 */

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>

#include "BLI_math.h"
#include "BLI_rand.h"
#include "BLI_voxel.h"
#include "BLI_utildefines.h"

#include "RE_shader_ext.h"

#include "DNA_material_types.h"
#include "DNA_group_types.h"
#include "DNA_lamp_types.h"
#include "DNA_meta_types.h"


#include "render_types.h"
#include "pixelshading.h"
#include "rayintersection.h"
#include "rayobject.h"
#include "renderdatabase.h"
#include "shading.h"
#include "shadbuf.h"
#include "texture.h"
#include "volumetric.h"
#include "volume_precache.h"

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
/* defined in pipeline.c, is hardcopy of active dynamic allocated Render */
/* only to be used here in this file, it's for speed */
extern struct Render R;
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

/* tracing */
static float vol_get_shadow(ShadeInput *shi, LampRen *lar, const float co[3])
{
	float visibility = 1.f;
	
	if (lar->shb) {
		float dxco[3] = {0.f, 0.f, 0.f}, dyco[3] = {0.f, 0.f, 0.f};
		
		visibility = testshadowbuf(&R, lar->shb, co, dxco, dyco, 1.0, 0.0);
	}
	else if (lar->mode & LA_SHAD_RAY) {
		/* trace shadow manually, no good lamp api atm */
		Isect is;
		
		copy_v3_v3(is.start, co);
		if (lar->type == LA_SUN || lar->type == LA_HEMI) {
			is.dir[0] = -lar->vec[0];
			is.dir[1] = -lar->vec[1];
			is.dir[2] = -lar->vec[2];
			is.dist = R.maxdist;
		}
		else {
			sub_v3_v3v3(is.dir, lar->co, is.start);
			is.dist = normalize_v3(is.dir);
		}

		is.mode = RE_RAY_MIRROR;
		is.check = RE_CHECK_VLR_NON_SOLID_MATERIAL;
		is.skip = 0;
		
		if (lar->mode & (LA_LAYER | LA_LAYER_SHADOW))
			is.lay = lar->lay;
		else
			is.lay = -1;
			
		is.orig.ob = NULL;
		is.orig.face = NULL;
		is.last_hit = lar->last_hit[shi->thread];
		
		RE_instance_rotate_ray(shi->obi, &is);

		if (RE_rayobject_raycast(R.raytree, &is)) {
			RE_instance_rotate_ray_restore(shi->obi, &is);

			visibility = 0.f;
		}
		
		lar->last_hit[shi->thread] = is.last_hit;
	}
	return visibility;
}

static int vol_get_bounds(ShadeInput *shi, const float co[3], const float vec[3], float hitco[3], Isect *isect, int intersect_type)
{
	
	copy_v3_v3(isect->start, co);
	copy_v3_v3(isect->dir, vec);
	isect->dist = FLT_MAX;
	isect->mode = RE_RAY_MIRROR;
	isect->last_hit = NULL;
	isect->lay = -1;
	isect->check = RE_CHECK_VLR_NONE;
	
	if (intersect_type == VOL_BOUNDS_DEPTH) {
		isect->skip = RE_SKIP_VLR_NEIGHBOUR;
		isect->orig.face = (void *)shi->vlr;
		isect->orig.ob = (void *)shi->obi;
	}
	else { // if (intersect_type == VOL_BOUNDS_SS) {
		isect->skip = 0;
		isect->orig.face = NULL;
		isect->orig.ob = NULL;
	}

	RE_instance_rotate_ray(shi->obi, isect);
	
	if (RE_rayobject_raycast(R.raytree, isect)) {
		RE_instance_rotate_ray_restore(shi->obi, isect);

		hitco[0] = isect->start[0] + isect->dist * isect->dir[0];
		hitco[1] = isect->start[1] + isect->dist * isect->dir[1];
		hitco[2] = isect->start[2] + isect->dist * isect->dir[2];
		return 1;
	}
	else {
		return 0;
	}
}

static void shade_intersection(ShadeInput *shi, float col_r[4], Isect *is)
{
	ShadeInput shi_new;
	ShadeResult shr_new;
	
	memset(&shi_new, 0, sizeof(ShadeInput)); 
	
	shi_new.mask = shi->mask;
	shi_new.osatex = shi->osatex;
	shi_new.thread = shi->thread;
	shi_new.depth = shi->depth + 1;
	shi_new.volume_depth = shi->volume_depth + 1;
	shi_new.xs = shi->xs;
	shi_new.ys = shi->ys;
	shi_new.lay = shi->lay;
	shi_new.passflag = SCE_PASS_COMBINED; /* result of tracing needs no pass info */
	shi_new.combinedflag = 0xFFFFFF;      /* ray trace does all options */
	shi_new.light_override = shi->light_override;
	shi_new.mat_override = shi->mat_override;
	
	copy_v3_v3(shi_new.camera_co, is->start);
	
	memset(&shr_new, 0, sizeof(ShadeResult));
	
	/* hardcoded limit of 100 for now - prevents problems in weird geometry */
	if (shi->volume_depth < 100) {
		shade_ray(is, &shi_new, &shr_new);
	}
	
	copy_v3_v3(col_r, shr_new.combined);
	col_r[3] = shr_new.alpha;
}

static void vol_trace_behind(ShadeInput *shi, VlakRen *vlr, const float co[3], float col_r[4])
{
	Isect isect;
	
	copy_v3_v3(isect.start, co);
	copy_v3_v3(isect.dir, shi->view);
	isect.dist = FLT_MAX;
	
	isect.mode = RE_RAY_MIRROR;
	isect.check = RE_CHECK_VLR_NONE;
	isect.skip = RE_SKIP_VLR_NEIGHBOUR;
	isect.orig.ob = (void *) shi->obi;
	isect.orig.face = (void *)vlr;
	isect.last_hit = NULL;
	isect.lay = -1;
	
	/* check to see if there's anything behind the volume, otherwise shade the sky */
	RE_instance_rotate_ray(shi->obi, &isect);

	if (RE_rayobject_raycast(R.raytree, &isect)) {
		RE_instance_rotate_ray_restore(shi->obi, &isect);

		shade_intersection(shi, col_r, &isect);
	}
	else {
		shadeSkyView(col_r, co, shi->view, NULL, shi->thread);
		shadeSunView(col_r, shi->view);
	}
}


/* trilinear interpolation */
static void vol_get_precached_scattering(Render *re, ShadeInput *shi, float scatter_col[3], const float co[3])
{
	VolumePrecache *vp = shi->obi->volume_precache;
	float bbmin[3], bbmax[3], dim[3];
	float world_co[3], sample_co[3];
	
	if (!vp) return;
	
	/* find sample point in global space bounding box 0.0-1.0 */
	global_bounds_obi(re, shi->obi, bbmin, bbmax);
	sub_v3_v3v3(dim, bbmax, bbmin);
	mul_v3_m4v3(world_co, re->viewinv, co);

	/* sample_co in 0.0-1.0 */
	sample_co[0] = (world_co[0] - bbmin[0]) / dim[0];
	sample_co[1] = (world_co[1] - bbmin[1]) / dim[1];
	sample_co[2] = (world_co[2] - bbmin[2]) / dim[2];

	scatter_col[0] = BLI_voxel_sample_triquadratic(vp->data_r, vp->res, sample_co);
	scatter_col[1] = BLI_voxel_sample_triquadratic(vp->data_g, vp->res, sample_co);
	scatter_col[2] = BLI_voxel_sample_triquadratic(vp->data_b, vp->res, sample_co);
}

/* Meta object density, brute force for now 
 * (might be good enough anyway, don't need huge number of metaobs to model volumetric objects */
static float metadensity(Object *ob, const float co[3])
{
	float mat[4][4], imat[4][4], dens = 0.f;
	MetaBall *mb = (MetaBall *)ob->data;
	MetaElem *ml;
	
	/* transform co to meta-element */
	float tco[3] = {co[0], co[1], co[2]};
	mul_m4_m4m4(mat, R.viewmat, ob->obmat);
	invert_m4_m4(imat, mat);
	mul_m4_v3(imat, tco);
	
	for (ml = mb->elems.first; ml; ml = ml->next) {
		float bmat[3][3], dist2;
		
		/* element rotation transform */
		float tp[3] = {ml->x - tco[0], ml->y - tco[1], ml->z - tco[2]};
		quat_to_mat3(bmat, ml->quat);
		transpose_m3(bmat); /* rot.only, so inverse == transpose */
		mul_m3_v3(bmat, tp);

		/* MB_BALL default */
		switch (ml->type) {
			case MB_ELIPSOID:
				tp[0] /= ml->expx, tp[1] /= ml->expy, tp[2] /= ml->expz;
				break;
			case MB_CUBE:
				tp[2] = (tp[2] > ml->expz) ? (tp[2] - ml->expz) : ((tp[2] < -ml->expz) ? (tp[2] + ml->expz) : 0.f);
			/* no break, xy as plane */
			case MB_PLANE:
				tp[1] = (tp[1] > ml->expy) ? (tp[1] - ml->expy) : ((tp[1] < -ml->expy) ? (tp[1] + ml->expy) : 0.f);
			/* no break, x as tube */
			case MB_TUBE:
				tp[0] = (tp[0] > ml->expx) ? (tp[0] - ml->expx) : ((tp[0] < -ml->expx) ? (tp[0] + ml->expx) : 0.f);
		}

		/* ml->rad2 is not set */
		dist2 = 1.0f - (dot_v3v3(tp, tp) / (ml->rad * ml->rad));
		if (dist2 > 0.f)
			dens += (ml->flag & MB_NEGATIVE) ? -ml->s * dist2 * dist2 * dist2 : ml->s * dist2 * dist2 * dist2;
	}
	
	dens -= mb->thresh;
	return (dens < 0.f) ? 0.f : dens;
}

float vol_get_density(struct ShadeInput *shi, const float co[3])
{
	float density = shi->mat->vol.density;
	float density_scale = shi->mat->vol.density_scale;
		
	if (shi->mat->mapto_textured & MAP_DENSITY)
		do_volume_tex(shi, co, MAP_DENSITY, NULL, &density, &R);
	
	/* if meta-object, modulate by metadensity without increasing it */
	if (shi->obi->obr->ob->type == OB_MBALL) {
		const float md = metadensity(shi->obi->obr->ob, co);
		if (md < 1.f) density *= md;
	}
	
	return density * density_scale;
}


/* Color of light that gets scattered out by the volume */
/* Uses same physically based scattering parameter as in transmission calculations, 
 * along with artificial reflection scale/reflection color tint */
static void vol_get_reflection_color(ShadeInput *shi, float ref_col[3], const float co[3])
{
	float scatter = shi->mat->vol.scattering;
	float reflection = shi->mat->vol.reflection;
	copy_v3_v3(ref_col, shi->mat->vol.reflection_col);
	
	if (shi->mat->mapto_textured & (MAP_SCATTERING + MAP_REFLECTION_COL))
		do_volume_tex(shi, co, MAP_SCATTERING + MAP_REFLECTION_COL, ref_col, &scatter, &R);
	
	/* only one single float parameter at a time... :s */
	if (shi->mat->mapto_textured & (MAP_REFLECTION))
		do_volume_tex(shi, co, MAP_REFLECTION, NULL, &reflection, &R);
	
	ref_col[0] = reflection * ref_col[0] * scatter;
	ref_col[1] = reflection * ref_col[1] * scatter;
	ref_col[2] = reflection * ref_col[2] * scatter;
}

/* compute emission component, amount of radiance to add per segment
 * can be textured with 'emit' */
static void vol_get_emission(ShadeInput *shi, float emission_col[3], const float co[3])
{
	float emission = shi->mat->vol.emission;
	copy_v3_v3(emission_col, shi->mat->vol.emission_col);
	
	if (shi->mat->mapto_textured & (MAP_EMISSION + MAP_EMISSION_COL))
		do_volume_tex(shi, co, MAP_EMISSION + MAP_EMISSION_COL, emission_col, &emission, &R);
	
	emission_col[0] = emission_col[0] * emission;
	emission_col[1] = emission_col[1] * emission;
	emission_col[2] = emission_col[2] * emission;
}


/* A combination of scattering and absorption -> known as sigma T.
 * This can possibly use a specific scattering color, 
 * and absorption multiplier factor too, but these parameters are left out for simplicity.
 * It's easy enough to get a good wide range of results with just these two parameters. */
static void vol_get_sigma_t(ShadeInput *shi, float sigma_t[3], const float co[3])
{
	/* technically absorption, but named transmission color 
	 * since it describes the effect of the coloring *after* absorption */
	float transmission_col[3] = {shi->mat->vol.transmission_col[0], shi->mat->vol.transmission_col[1], shi->mat->vol.transmission_col[2]};
	float scattering = shi->mat->vol.scattering;
	
	if (shi->mat->mapto_textured & (MAP_SCATTERING + MAP_TRANSMISSION_COL))
		do_volume_tex(shi, co, MAP_SCATTERING + MAP_TRANSMISSION_COL, transmission_col, &scattering, &R);
	
	sigma_t[0] = (1.0f - transmission_col[0]) + scattering;
	sigma_t[1] = (1.0f - transmission_col[1]) + scattering;
	sigma_t[2] = (1.0f - transmission_col[2]) + scattering;
}

/* phase function - determines in which directions the light 
 * is scattered in the volume relative to incoming direction 
 * and view direction */
static float vol_get_phasefunc(ShadeInput *UNUSED(shi), float g, const float w[3], const float wp[3])
{
	const float normalize = 0.25f; // = 1.f/4.f = M_PI/(4.f*M_PI)
	
	/* normalization constant is 1/4 rather than 1/4pi, since
	 * Blender's shading system doesn't normalize for
	 * energy conservation - eg. multiplying by pdf ( 1/pi for a lambert brdf ).
	 * This means that lambert surfaces in Blender are pi times brighter than they 'should be'
	 * and therefore, with correct energy conservation, volumes will darker than other solid objects,
	 * for the same lighting intensity.
	 * To correct this, scale up the phase function values by pi
	 * until Blender's shading system supports this better. --matt
	 */
	
	if (g == 0.f) { /* isotropic */
		return normalize * 1.f;
	}
	else {      /* schlick */
		const float k = 1.55f * g - 0.55f * g * g * g;
		const float kcostheta = k * dot_v3v3(w, wp);
		return normalize * (1.f - k * k) / ((1.f - kcostheta) * (1.f - kcostheta));
	}
	
	/* not used, but here for reference: */
#if 0
	switch (phasefunc_type) {
		case MA_VOL_PH_MIEHAZY:
			return normalize * (0.5f + 4.5f * powf(0.5 * (1.f + costheta), 8.f));
		case MA_VOL_PH_MIEMURKY:
			return normalize * (0.5f + 16.5f * powf(0.5 * (1.f + costheta), 32.f));
		case MA_VOL_PH_RAYLEIGH:
			return normalize * 3.f / 4.f * (1 + costheta * costheta);
		case MA_VOL_PH_HG:
			return normalize * (1.f - g * g) / powf(1.f + g * g - 2.f * g * costheta, 1.5f);
		case MA_VOL_PH_SCHLICK:
		{
			const float k = 1.55f * g - 0.55f * g * g * g;
			const float kcostheta = k * costheta;
			return normalize * (1.f - k * k) / ((1.f - kcostheta) * (1.f - kcostheta));
		}
		case MA_VOL_PH_ISOTROPIC:
		default:
			return normalize * 1.f;
	}
#endif
}

/* Compute transmittance = e^(-attenuation) */
static void vol_get_transmittance_seg(ShadeInput *shi, float tr[3], float stepsize, const float co[3], float density)
{
	/* input density = density at co */
	float tau[3] = {0.f, 0.f, 0.f};
	const float stepd = density * stepsize;
	float sigma_t[3];
	
	vol_get_sigma_t(shi, sigma_t, co);
	
	/* homogeneous volume within the sampled distance */
	tau[0] += stepd * sigma_t[0];
	tau[1] += stepd * sigma_t[1];
	tau[2] += stepd * sigma_t[2];
	
	tr[0] *= expf(-tau[0]);
	tr[1] *= expf(-tau[1]);
	tr[2] *= expf(-tau[2]);
}

/* Compute transmittance = e^(-attenuation) */
static void vol_get_transmittance(ShadeInput *shi, float tr[3], const float co[3], const float endco[3])
{
	float p[3] = {co[0], co[1], co[2]};
	float step_vec[3] = {endco[0] - co[0], endco[1] - co[1], endco[2] - co[2]};
	float tau[3] = {0.f, 0.f, 0.f};

	float t0 = 0.f;
	float t1 = normalize_v3(step_vec);
	float pt0 = t0;
	
	t0 += shi->mat->vol.stepsize * ((shi->mat->vol.stepsize_type == MA_VOL_STEP_CONSTANT) ? 0.5f : BLI_thread_frand(shi->thread));
	p[0] += t0 * step_vec[0];
	p[1] += t0 * step_vec[1];
	p[2] += t0 * step_vec[2];
	mul_v3_fl(step_vec, shi->mat->vol.stepsize);

	for (; t0 < t1; pt0 = t0, t0 += shi->mat->vol.stepsize) {
		const float d = vol_get_density(shi, p);
		const float stepd = (t0 - pt0) * d;
		float sigma_t[3];
		
		vol_get_sigma_t(shi, sigma_t, p);
		
		tau[0] += stepd * sigma_t[0];
		tau[1] += stepd * sigma_t[1];
		tau[2] += stepd * sigma_t[2];
		
		add_v3_v3(p, step_vec);
	}
	
	/* return transmittance */
	tr[0] = expf(-tau[0]);
	tr[1] = expf(-tau[1]);
	tr[2] = expf(-tau[2]);
}

static void vol_shade_one_lamp(struct ShadeInput *shi, const float co[3], const float view[3], LampRen *lar, float lacol[3])
{
	float visifac, lv[3], lampdist;
	float tr[3] = {1.0, 1.0, 1.0};
	float hitco[3], *atten_co;
	float p, ref_col[3];
	
	if (lar->mode & LA_LAYER) if ((lar->lay & shi->obi->lay) == 0) return;
	if ((lar->lay & shi->lay) == 0) return;
	if (lar->energy == 0.0f) return;
	
	if ((visifac = lamp_get_visibility(lar, co, lv, &lampdist)) == 0.f) return;
	
	copy_v3_v3(lacol, &lar->r);
	
	if (lar->mode & LA_TEXTURE) {
		shi->osatex = 0;
		do_lamp_tex(lar, lv, shi, lacol, LA_TEXTURE);
	}

	mul_v3_fl(lacol, visifac);

	if (ELEM(lar->type, LA_SUN, LA_HEMI))
		copy_v3_v3(lv, lar->vec);
	negate_v3(lv);
	
	if (shi->mat->vol.shade_type == MA_VOL_SHADE_SHADOWED) {
		mul_v3_fl(lacol, vol_get_shadow(shi, lar, co));
	}
	else if (ELEM(shi->mat->vol.shade_type, MA_VOL_SHADE_SHADED, MA_VOL_SHADE_MULTIPLE, MA_VOL_SHADE_SHADEDPLUSMULTIPLE)) {
		Isect is;
		
		if (shi->mat->vol.shadeflag & MA_VOL_RECV_EXT_SHADOW) {
			mul_v3_fl(lacol, vol_get_shadow(shi, lar, co));
			if (rgb_to_luma_y(lacol) < 0.001f) return;
		}
		
		/* find minimum of volume bounds, or lamp coord */
		if (vol_get_bounds(shi, co, lv, hitco, &is, VOL_BOUNDS_SS)) {
			float dist = len_v3v3(co, hitco);
			VlakRen *vlr = (VlakRen *)is.hit.face;
			
			/* simple internal shadowing */
			if (vlr->mat->material_type == MA_TYPE_SURFACE) {
				lacol[0] = lacol[1] = lacol[2] = 0.0f;
				return;
			}

			if (ELEM(lar->type, LA_SUN, LA_HEMI))
				/* infinite lights, can never be inside volume */
				atten_co = hitco;
			else if (lampdist < dist) {
				atten_co = lar->co;
			}
			else
				atten_co = hitco;
			
			vol_get_transmittance(shi, tr, co, atten_co);
			
			mul_v3_v3v3(lacol, lacol, tr);
		}
		else {
			/* Point is on the outside edge of the volume,
			 * therefore no attenuation, full transmission.
			 * Radiance from lamp remains unchanged */
		}
	}
	
	if (rgb_to_luma_y(lacol) < 0.001f) return;
	
	normalize_v3(lv);
	p = vol_get_phasefunc(shi, shi->mat->vol.asymmetry, view, lv);
	
	/* physically based scattering with non-physically based RGB gain */
	vol_get_reflection_color(shi, ref_col, co);
	
	lacol[0] *= p * ref_col[0];
	lacol[1] *= p * ref_col[1];
	lacol[2] *= p * ref_col[2];
}

/* single scattering only for now */
void vol_get_scattering(ShadeInput *shi, float scatter_col[3], const float co[3], const float view[3])
{
	ListBase *lights;
	GroupObject *go;
	LampRen *lar;

	zero_v3(scatter_col);

	lights = get_lights(shi);
	for (go = lights->first; go; go = go->next) {
		float lacol[3] = {0.f, 0.f, 0.f};
		lar = go->lampren;
		
		if (lar) {
			vol_shade_one_lamp(shi, co, view, lar, lacol);
			add_v3_v3(scatter_col, lacol);
		}
	}
}

	
/*
 * The main volumetric integrator, using an emission/absorption/scattering model.
 *
 * Incoming radiance =
 *
 * outgoing radiance from behind surface * beam transmittance/attenuation
 * + added radiance from all points along the ray due to participating media
 *     --> radiance for each segment =
 *         (radiance added by scattering + radiance added by emission) * beam transmittance/attenuation
 */

/* For ease of use, I've also introduced a 'reflection' and 'reflection color' parameter, which isn't 
 * physically correct. This works as an RGB tint/gain on out-scattered light, but doesn't affect the light 
 * that is transmitted through the volume. While having wavelength dependent absorption/scattering is more correct,
 * it also makes it harder to control the overall look of the volume since coloring the outscattered light results
 * in the inverse color being transmitted through the rest of the volume.
 */
static void volumeintegrate(struct ShadeInput *shi, float col[4], const float co[3], const float endco[3])
{
	float radiance[3] = {0.f, 0.f, 0.f};
	float tr[3] = {1.f, 1.f, 1.f};
	float p[3] = {co[0], co[1], co[2]};
	float step_vec[3] = {endco[0] - co[0], endco[1] - co[1], endco[2] - co[2]};
	const float stepsize = shi->mat->vol.stepsize;
	
	float t0 = 0.f;
	float pt0 = t0;
	float t1 = normalize_v3(step_vec);  /* returns vector length */
	
	t0 += stepsize * ((shi->mat->vol.stepsize_type == MA_VOL_STEP_CONSTANT) ? 0.5f : BLI_thread_frand(shi->thread));
	p[0] += t0 * step_vec[0];
	p[1] += t0 * step_vec[1];
	p[2] += t0 * step_vec[2];
	mul_v3_fl(step_vec, stepsize);
	
	for (; t0 < t1; pt0 = t0, t0 += stepsize) {
		const float density = vol_get_density(shi, p);
		
		if (density > 0.00001f) {
			float scatter_col[3] = {0.f, 0.f, 0.f}, emit_col[3];
			const float stepd = (t0 - pt0) * density;
			
			/* transmittance component (alpha) */
			vol_get_transmittance_seg(shi, tr, stepsize, co, density);
			
			if (t0 > t1 * 0.25f) {
				/* only use depth cutoff after we've traced a little way into the volume */
				if (rgb_to_luma_y(tr) < shi->mat->vol.depth_cutoff) break;
			}
			
			vol_get_emission(shi, emit_col, p);
			
			if (shi->obi->volume_precache) {
				float p2[3];
				
				p2[0] = p[0] + (step_vec[0] * 0.5f);
				p2[1] = p[1] + (step_vec[1] * 0.5f);
				p2[2] = p[2] + (step_vec[2] * 0.5f);
				
				vol_get_precached_scattering(&R, shi, scatter_col, p2);
			}
			else
				vol_get_scattering(shi, scatter_col, p, shi->view);
			
			radiance[0] += stepd * tr[0] * (emit_col[0] + scatter_col[0]);
			radiance[1] += stepd * tr[1] * (emit_col[1] + scatter_col[1]);
			radiance[2] += stepd * tr[2] * (emit_col[2] + scatter_col[2]);
		}
		add_v3_v3(p, step_vec);
	}
	
	/* multiply original color (from behind volume) with transmittance over entire distance */
	mul_v3_v3v3(col, tr, col);
	add_v3_v3(col, radiance);
	
	/* alpha <-- transmission luminance */
	col[3] = 1.0f - rgb_to_luma_y(tr);
}

/* the main entry point for volume shading */
static void volume_trace(struct ShadeInput *shi, struct ShadeResult *shr, int inside_volume)
{
	float hitco[3], col[4] = {0.f, 0.f, 0.f, 0.f};
	const float *startco, *endco;
	int trace_behind = 1;
	const int ztransp = ((shi->depth == 0) && (shi->mat->mode & MA_TRANSP) && (shi->mat->mode & MA_ZTRANSP));
	Isect is;

	/* check for shading an internal face a volume object directly */
	if (inside_volume == VOL_SHADE_INSIDE)
		trace_behind = 0;
	else if (inside_volume == VOL_SHADE_OUTSIDE) {
		if (shi->flippednor)
			inside_volume = VOL_SHADE_INSIDE;
	}
	
	if (ztransp && inside_volume == VOL_SHADE_INSIDE) {
		MatInside *mi;
		int render_this = 0;
		
		/* don't render the backfaces of ztransp volume materials.
		 *
		 * volume shading renders the internal volume from between the
		 * ' view intersection of the solid volume to the
		 * intersection on the other side, as part of the shading of
		 * the front face.
		 *
		 * Because ztransp renders both front and back faces independently
		 * this will double up, so here we prevent rendering the backface as well, 
		 * which would otherwise render the volume in between the camera and the backface
		 * --matt */
		
		for (mi = R.render_volumes_inside.first; mi; mi = mi->next) {
			/* weak... */
			if (mi->ma == shi->mat) render_this = 1;
		}
		if (!render_this) return;
	}
	

	if (inside_volume == VOL_SHADE_INSIDE) {
		startco = shi->camera_co;
		endco = shi->co;
		
		if (trace_behind) {
			if (!ztransp)
				/* trace behind the volume object */
				vol_trace_behind(shi, shi->vlr, endco, col);
		}
		else {
			/* we're tracing through the volume between the camera 
			 * and a solid surface, so use that pre-shaded radiance */
			copy_v4_v4(col, shr->combined);
		}
		
		/* shade volume from 'camera' to 1st hit point */
		volumeintegrate(shi, col, startco, endco);
	}
	/* trace to find a backface, the other side bounds of the volume */
	/* (ray intersect ignores front faces here) */
	else if (vol_get_bounds(shi, shi->co, shi->view, hitco, &is, VOL_BOUNDS_DEPTH)) {
		VlakRen *vlr = (VlakRen *)is.hit.face;
		
		startco = shi->co;
		endco = hitco;
		
		if (!ztransp) {
			/* if it's another face in the same material */
			if (vlr->mat == shi->mat) {
				/* trace behind the 2nd (raytrace) hit point */
				vol_trace_behind(shi, (VlakRen *)is.hit.face, endco, col);
			}
			else {
				shade_intersection(shi, col, &is);
			}
		}
		
		/* shade volume from 1st hit point to 2nd hit point */
		volumeintegrate(shi, col, startco, endco);
	}
	
	if (ztransp)
		col[3] = col[3] > 1.f ? 1.f : col[3];
	else
		col[3] = 1.f;
	
	copy_v3_v3(shr->combined, col);
	shr->alpha = col[3];
	
	copy_v3_v3(shr->diff, shr->combined);
	copy_v3_v3(shr->diffshad, shr->diff);
}

/* Traces a shadow through the object, 
 * pretty much gets the transmission over a ray path */
void shade_volume_shadow(struct ShadeInput *shi, struct ShadeResult *shr, struct Isect *last_is)
{
	float hitco[3];
	float tr[3] = {1.0, 1.0, 1.0};
	Isect is = {{0}};
	const float *startco, *endco;

	memset(shr, 0, sizeof(ShadeResult));
	
	/* if 1st hit normal is facing away from the camera, 
	 * then we're inside the volume already. */
	if (shi->flippednor) {
		startco = last_is->start;
		endco = shi->co;
	}
	
	/* trace to find a backface, the other side bounds of the volume */
	/* (ray intersect ignores front faces here) */
	else if (vol_get_bounds(shi, shi->co, shi->view, hitco, &is, VOL_BOUNDS_DEPTH)) {
		startco = shi->co;
		endco = hitco;
	}
	else {
		shr->combined[0] = shr->combined[1] = shr->combined[2] = 0.f;
		shr->alpha = shr->combined[3] = 1.f;
		return;
	}

	vol_get_transmittance(shi, tr, startco, endco);

	
	/* if we hit another face in the same volume bounds */
	/* shift raytrace coordinates to the hit point, to avoid shading volume twice */
	/* due to idiosyncracy in ray_trace_shadow_tra() */
	if (is.hit.ob == shi->obi) {
		copy_v3_v3(shi->co, hitco);
		last_is->dist += is.dist;
		shi->vlr = (VlakRen *)is.hit.face;
	}

	
	copy_v3_v3(shr->combined, tr);
	shr->combined[3] = 1.0f - rgb_to_luma_y(tr);
	shr->alpha = shr->combined[3];
}


/* delivers a fully filled in ShadeResult, for all passes */
void shade_volume_outside(ShadeInput *shi, ShadeResult *shr)
{
	memset(shr, 0, sizeof(ShadeResult));
	volume_trace(shi, shr, VOL_SHADE_OUTSIDE);
}


void shade_volume_inside(ShadeInput *shi, ShadeResult *shr)
{
	MatInside *m;
	Material *mat_backup;
	ObjectInstanceRen *obi_backup;
	float prev_alpha = shr->alpha;

	/* XXX: extend to multiple volumes perhaps later */
	mat_backup = shi->mat;
	obi_backup = shi->obi;
	
	m = R.render_volumes_inside.first;
	shi->mat = m->ma;
	shi->obi = m->obi;
	shi->obr = m->obi->obr;
	
	volume_trace(shi, shr, VOL_SHADE_INSIDE);
	
	shr->alpha = shr->alpha + prev_alpha;
	CLAMP(shr->alpha, 0.0f, 1.0f);

	shi->mat = mat_backup;
	shi->obi = obi_backup;
	shi->obr = obi_backup->obr;
}