Welcome to mirror list, hosted at ThFree Co, Russian Federation.

implicit_eigen.cpp « intern « simulation « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 75e915413bb48fadc49ab3ee73e76f6ac418ebeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright Blender Foundation. All rights reserved. */

/** \file
 * \ingroup sim
 */

#include "implicit.h"

#ifdef IMPLICIT_SOLVER_EIGEN

//#define USE_EIGEN_CORE
#  define USE_EIGEN_CONSTRAINED_CG

#  ifdef __GNUC__
#    pragma GCC diagnostic push
/* XXX suppress verbose warnings in eigen */
//#  pragma GCC diagnostic ignored "-Wlogical-op"
#  endif

#  ifndef IMPLICIT_ENABLE_EIGEN_DEBUG
#    ifdef NDEBUG
#      define IMPLICIT_NDEBUG
#    endif
#    define NDEBUG
#  endif

#  include <Eigen/Sparse>
#  include <Eigen/src/Core/util/DisableStupidWarnings.h>

#  ifdef USE_EIGEN_CONSTRAINED_CG
#    include <intern/ConstrainedConjugateGradient.h>
#  endif

#  ifndef IMPLICIT_ENABLE_EIGEN_DEBUG
#    ifndef IMPLICIT_NDEBUG
#      undef NDEBUG
#    else
#      undef IMPLICIT_NDEBUG
#    endif
#  endif

#  ifdef __GNUC__
#    pragma GCC diagnostic pop
#  endif

#  include "MEM_guardedalloc.h"

extern "C" {
#  include "DNA_meshdata_types.h"
#  include "DNA_object_force_types.h"
#  include "DNA_object_types.h"
#  include "DNA_scene_types.h"
#  include "DNA_texture_types.h"

#  include "BLI_linklist.h"
#  include "BLI_math.h"
#  include "BLI_utildefines.h"

#  include "BKE_cloth.h"
#  include "BKE_collision.h"
#  include "BKE_effect.h"
#  include "BKE_global.h"

#  include "SIM_mass_spring.h"
}

typedef float Scalar;

static float I[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};

/* slightly extended Eigen vector class
 * with conversion to/from plain C float array
 */
class fVector : public Eigen::Vector3f {
 public:
  typedef float *ctype;

  fVector()
  {
  }

  fVector(const ctype &v)
  {
    for (int k = 0; k < 3; k++) {
      coeffRef(k) = v[k];
    }
  }

  fVector &operator=(const ctype &v)
  {
    for (int k = 0; k < 3; k++) {
      coeffRef(k) = v[k];
    }
    return *this;
  }

  operator ctype()
  {
    return data();
  }
};

/* slightly extended Eigen matrix class
 * with conversion to/from plain C float array
 */
class fMatrix : public Eigen::Matrix3f {
 public:
  typedef float (*ctype)[3];

  fMatrix()
  {
  }

  fMatrix(const ctype &v)
  {
    for (int k = 0; k < 3; k++) {
      for (int l = 0; l < 3; l++) {
        coeffRef(l, k) = v[k][l];
      }
    }
  }

  fMatrix &operator=(const ctype &v)
  {
    for (int k = 0; k < 3; k++) {
      for (int l = 0; l < 3; l++) {
        coeffRef(l, k) = v[k][l];
      }
    }
    return *this;
  }

  operator ctype()
  {
    return (ctype)data();
  }
};

/* Extension of dense Eigen vectors,
 * providing 3-float block access for blenlib math functions
 */
class lVector : public Eigen::VectorXf {
 public:
  typedef Eigen::VectorXf base_t;

  lVector()
  {
  }

  template<typename T> lVector &operator=(T rhs)
  {
    base_t::operator=(rhs);
    return *this;
  }

  float *v3(int vertex)
  {
    return &coeffRef(3 * vertex);
  }

  const float *v3(int vertex) const
  {
    return &coeffRef(3 * vertex);
  }
};

typedef Eigen::Triplet<Scalar> Triplet;
typedef std::vector<Triplet> TripletList;

typedef Eigen::SparseMatrix<Scalar> lMatrix;

/* Constructor type that provides more convenient handling of Eigen triplets
 * for efficient construction of sparse 3x3 block matrices.
 * This should be used for building lMatrix instead of writing to such lMatrix directly (which is
 * very inefficient). After all elements have been defined using the set() method, the actual
 * matrix can be filled using construct().
 */
struct lMatrixCtor {
  lMatrixCtor()
  {
  }

  void reset()
  {
    m_trips.clear();
  }

  void reserve(int numverts)
  {
    /* reserve for diagonal entries */
    m_trips.reserve(numverts * 9);
  }

  void add(int i, int j, const fMatrix &m)
  {
    i *= 3;
    j *= 3;
    for (int k = 0; k < 3; k++) {
      for (int l = 0; l < 3; l++) {
        m_trips.push_back(Triplet(i + k, j + l, m.coeff(l, k)));
      }
    }
  }

  void sub(int i, int j, const fMatrix &m)
  {
    i *= 3;
    j *= 3;
    for (int k = 0; k < 3; k++) {
      for (int l = 0; l < 3; l++) {
        m_trips.push_back(Triplet(i + k, j + l, -m.coeff(l, k)));
      }
    }
  }

  inline void construct(lMatrix &m)
  {
    m.setFromTriplets(m_trips.begin(), m_trips.end());
    m_trips.clear();
  }

 private:
  TripletList m_trips;
};

#  ifdef USE_EIGEN_CORE
typedef Eigen::ConjugateGradient<lMatrix, Eigen::Lower, Eigen::DiagonalPreconditioner<Scalar>>
    ConjugateGradient;
#  endif
#  ifdef USE_EIGEN_CONSTRAINED_CG
typedef Eigen::ConstrainedConjugateGradient<lMatrix,
                                            Eigen::Lower,
                                            lMatrix,
                                            Eigen::DiagonalPreconditioner<Scalar>>
    ConstraintConjGrad;
#  endif
using Eigen::ComputationInfo;

static void print_lvector(const lVector &v)
{
  for (int i = 0; i < v.rows(); i++) {
    if (i > 0 && i % 3 == 0) {
      printf("\n");
    }

    printf("%f,\n", v[i]);
  }
}

static void print_lmatrix(const lMatrix &m)
{
  for (int j = 0; j < m.rows(); j++) {
    if (j > 0 && j % 3 == 0) {
      printf("\n");
    }

    for (int i = 0; i < m.cols(); i++) {
      if (i > 0 && i % 3 == 0) {
        printf("  ");
      }

      implicit_print_matrix_elem(m.coeff(j, i));
    }
    printf("\n");
  }
}

BLI_INLINE void lMatrix_reserve_elems(lMatrix &m, int num)
{
  m.reserve(Eigen::VectorXi::Constant(m.cols(), num));
}

BLI_INLINE float *lVector_v3(lVector &v, int vertex)
{
  return v.data() + 3 * vertex;
}

BLI_INLINE const float *lVector_v3(const lVector &v, int vertex)
{
  return v.data() + 3 * vertex;
}

#  if 0
BLI_INLINE void triplets_m3(TripletList &tlist, float m[3][3], int i, int j)
{
  i *= 3;
  j *= 3;
  for (int l = 0; l < 3; l++) {
    for (int k = 0; k < 3; k++) {
      tlist.push_back(Triplet(i + k, j + l, m[k][l]));
    }
  }
}

BLI_INLINE void triplets_m3fl(TripletList &tlist, float m[3][3], int i, int j, float factor)
{
  i *= 3;
  j *= 3;
  for (int l = 0; l < 3; l++) {
    for (int k = 0; k < 3; k++) {
      tlist.push_back(Triplet(i + k, j + l, m[k][l] * factor));
    }
  }
}

BLI_INLINE void lMatrix_add_triplets(lMatrix &r, const TripletList &tlist)
{
  lMatrix t(r.rows(), r.cols());
  t.setFromTriplets(tlist.begin(), tlist.end());
  r += t;
}

BLI_INLINE void lMatrix_madd_triplets(lMatrix &r, const TripletList &tlist, float f)
{
  lMatrix t(r.rows(), r.cols());
  t.setFromTriplets(tlist.begin(), tlist.end());
  r += f * t;
}

BLI_INLINE void lMatrix_sub_triplets(lMatrix &r, const TripletList &tlist)
{
  lMatrix t(r.rows(), r.cols());
  t.setFromTriplets(tlist.begin(), tlist.end());
  r -= t;
}
#  endif

BLI_INLINE void outerproduct(float r[3][3], const float a[3], const float b[3])
{
  mul_v3_v3fl(r[0], a, b[0]);
  mul_v3_v3fl(r[1], a, b[1]);
  mul_v3_v3fl(r[2], a, b[2]);
}

BLI_INLINE void cross_m3_v3m3(float r[3][3], const float v[3], float m[3][3])
{
  cross_v3_v3v3(r[0], v, m[0]);
  cross_v3_v3v3(r[1], v, m[1]);
  cross_v3_v3v3(r[2], v, m[2]);
}

BLI_INLINE void cross_v3_identity(float r[3][3], const float v[3])
{
  r[0][0] = 0.0f;
  r[1][0] = v[2];
  r[2][0] = -v[1];
  r[0][1] = -v[2];
  r[1][1] = 0.0f;
  r[2][1] = v[0];
  r[0][2] = v[1];
  r[1][2] = -v[0];
  r[2][2] = 0.0f;
}

BLI_INLINE void madd_m3_m3fl(float r[3][3], float m[3][3], float f)
{
  r[0][0] += m[0][0] * f;
  r[0][1] += m[0][1] * f;
  r[0][2] += m[0][2] * f;
  r[1][0] += m[1][0] * f;
  r[1][1] += m[1][1] * f;
  r[1][2] += m[1][2] * f;
  r[2][0] += m[2][0] * f;
  r[2][1] += m[2][1] * f;
  r[2][2] += m[2][2] * f;
}

BLI_INLINE void madd_m3_m3m3fl(float r[3][3], float a[3][3], float b[3][3], float f)
{
  r[0][0] = a[0][0] + b[0][0] * f;
  r[0][1] = a[0][1] + b[0][1] * f;
  r[0][2] = a[0][2] + b[0][2] * f;
  r[1][0] = a[1][0] + b[1][0] * f;
  r[1][1] = a[1][1] + b[1][1] * f;
  r[1][2] = a[1][2] + b[1][2] * f;
  r[2][0] = a[2][0] + b[2][0] * f;
  r[2][1] = a[2][1] + b[2][1] * f;
  r[2][2] = a[2][2] + b[2][2] * f;
}

struct Implicit_Data {
  typedef std::vector<fMatrix> fMatrixVector;

  Implicit_Data(int numverts)
  {
    resize(numverts);
  }

  void resize(int numverts)
  {
    this->numverts = numverts;
    int tot = 3 * numverts;

    M.resize(tot, tot);
    F.resize(tot);
    dFdX.resize(tot, tot);
    dFdV.resize(tot, tot);

    tfm.resize(numverts, I);

    X.resize(tot);
    Xnew.resize(tot);
    V.resize(tot);
    Vnew.resize(tot);

    A.resize(tot, tot);
    B.resize(tot);

    dV.resize(tot);
    z.resize(tot);
    S.resize(tot, tot);

    iM.reserve(numverts);
    idFdX.reserve(numverts);
    idFdV.reserve(numverts);
    iS.reserve(numverts);
  }

  int numverts;

  /* inputs */
  lMatrix M;          /* masses */
  lVector F;          /* forces */
  lMatrix dFdX, dFdV; /* force jacobians */

  fMatrixVector tfm; /* local coordinate transform */

  /* motion state data */
  lVector X, Xnew; /* positions */
  lVector V, Vnew; /* velocities */

  /* internal solver data */
  lVector B; /* B for A*dV = B */
  lMatrix A; /* A for A*dV = B */

  lVector dV; /* velocity change (solution of A*dV = B) */
  lVector z;  /* target velocity in constrained directions */
  lMatrix S;  /* filtering matrix for constraints */

  /* temporary constructors */
  lMatrixCtor iM;           /* masses */
  lMatrixCtor idFdX, idFdV; /* force jacobians */
  lMatrixCtor iS;           /* filtering matrix for constraints */
};

Implicit_Data *SIM_mass_spring_solver_create(int numverts, int numsprings)
{
  Implicit_Data *id = new Implicit_Data(numverts);
  return id;
}

void SIM_mass_spring_solver_free(Implicit_Data *id)
{
  if (id) {
    delete id;
  }
}

int SIM_mass_spring_solver_numvert(Implicit_Data *id)
{
  if (id) {
    return id->numverts;
  }
  else {
    return 0;
  }
}

/* ==== Transformation from/to root reference frames ==== */

BLI_INLINE void world_to_root_v3(Implicit_Data *data, int index, float r[3], const float v[3])
{
  copy_v3_v3(r, v);
  mul_transposed_m3_v3(data->tfm[index], r);
}

BLI_INLINE void root_to_world_v3(Implicit_Data *data, int index, float r[3], const float v[3])
{
  mul_v3_m3v3(r, data->tfm[index], v);
}

BLI_INLINE void world_to_root_m3(Implicit_Data *data, int index, float r[3][3], float m[3][3])
{
  float trot[3][3];
  copy_m3_m3(trot, data->tfm[index]);
  transpose_m3(trot);
  mul_m3_m3m3(r, trot, m);
}

BLI_INLINE void root_to_world_m3(Implicit_Data *data, int index, float r[3][3], float m[3][3])
{
  mul_m3_m3m3(r, data->tfm[index], m);
}

/* ================================ */

bool SIM_mass_spring_solve_velocities(Implicit_Data *data, float dt, ImplicitSolverResult *result)
{
#  ifdef USE_EIGEN_CORE
  typedef ConjugateGradient solver_t;
#  endif
#  ifdef USE_EIGEN_CONSTRAINED_CG
  typedef ConstraintConjGrad solver_t;
#  endif

  data->iM.construct(data->M);
  data->idFdX.construct(data->dFdX);
  data->idFdV.construct(data->dFdV);
  data->iS.construct(data->S);

  solver_t cg;
  cg.setMaxIterations(100);
  cg.setTolerance(0.01f);

#  ifdef USE_EIGEN_CONSTRAINED_CG
  cg.filter() = data->S;
#  endif

  data->A = data->M - dt * data->dFdV - dt * dt * data->dFdX;
  cg.compute(data->A);

  data->B = dt * data->F + dt * dt * data->dFdX * data->V;

#  ifdef IMPLICIT_PRINT_SOLVER_INPUT_OUTPUT
  printf("==== A ====\n");
  print_lmatrix(id->A);
  printf("==== z ====\n");
  print_lvector(id->z);
  printf("==== B ====\n");
  print_lvector(id->B);
  printf("==== S ====\n");
  print_lmatrix(id->S);
#  endif

#  ifdef USE_EIGEN_CORE
  data->dV = cg.solve(data->B);
#  endif
#  ifdef USE_EIGEN_CONSTRAINED_CG
  data->dV = cg.solveWithGuess(data->B, data->z);
#  endif

#  ifdef IMPLICIT_PRINT_SOLVER_INPUT_OUTPUT
  printf("==== dV ====\n");
  print_lvector(id->dV);
  printf("========\n");
#  endif

  data->Vnew = data->V + data->dV;

  switch (cg.info()) {
    case Eigen::Success:
      result->status = SIM_SOLVER_SUCCESS;
      break;
    case Eigen::NoConvergence:
      result->status = SIM_SOLVER_NO_CONVERGENCE;
      break;
    case Eigen::InvalidInput:
      result->status = SIM_SOLVER_INVALID_INPUT;
      break;
    case Eigen::NumericalIssue:
      result->status = SIM_SOLVER_NUMERICAL_ISSUE;
      break;
  }

  result->iterations = cg.iterations();
  result->error = cg.error();

  return cg.info() == Eigen::Success;
}

bool SIM_mass_spring_solve_positions(Implicit_Data *data, float dt)
{
  data->Xnew = data->X + data->Vnew * dt;
  return true;
}

/* ================================ */

void SIM_mass_spring_apply_result(Implicit_Data *data)
{
  data->X = data->Xnew;
  data->V = data->Vnew;
}

void SIM_mass_spring_set_vertex_mass(Implicit_Data *data, int index, float mass)
{
  float m[3][3];
  copy_m3_m3(m, I);
  mul_m3_fl(m, mass);
  data->iM.add(index, index, m);
}

void SIM_mass_spring_set_rest_transform(Implicit_Data *data, int index, float tfm[3][3])
{
#  ifdef CLOTH_ROOT_FRAME
  copy_m3_m3(data->tfm[index], tfm);
#  else
  unit_m3(data->tfm[index]);
  (void)tfm;
#  endif
}

void SIM_mass_spring_set_motion_state(Implicit_Data *data,
                                      int index,
                                      const float x[3],
                                      const float v[3])
{
  world_to_root_v3(data, index, data->X.v3(index), x);
  world_to_root_v3(data, index, data->V.v3(index), v);
}

void SIM_mass_spring_set_position(Implicit_Data *data, int index, const float x[3])
{
  world_to_root_v3(data, index, data->X.v3(index), x);
}

void SIM_mass_spring_set_velocity(Implicit_Data *data, int index, const float v[3])
{
  world_to_root_v3(data, index, data->V.v3(index), v);
}

void SIM_mass_spring_get_motion_state(struct Implicit_Data *data,
                                      int index,
                                      float x[3],
                                      float v[3])
{
  if (x) {
    root_to_world_v3(data, index, x, data->X.v3(index));
  }
  if (v) {
    root_to_world_v3(data, index, v, data->V.v3(index));
  }
}

void SIM_mass_spring_get_position(struct Implicit_Data *data, int index, float x[3])
{
  root_to_world_v3(data, index, x, data->X.v3(index));
}

void SIM_mass_spring_get_new_velocity(Implicit_Data *data, int index, float v[3])
{
  root_to_world_v3(data, index, v, data->V.v3(index));
}

void SIM_mass_spring_set_new_velocity(Implicit_Data *data, int index, const float v[3])
{
  world_to_root_v3(data, index, data->V.v3(index), v);
}

void SIM_mass_spring_clear_constraints(Implicit_Data *data)
{
  int numverts = data->numverts;
  for (int i = 0; i < numverts; i++) {
    data->iS.add(i, i, I);
    zero_v3(data->z.v3(i));
  }
}

void SIM_mass_spring_add_constraint_ndof0(Implicit_Data *data, int index, const float dV[3])
{
  data->iS.sub(index, index, I);

  world_to_root_v3(data, index, data->z.v3(index), dV);
}

void SIM_mass_spring_add_constraint_ndof1(
    Implicit_Data *data, int index, const float c1[3], const float c2[3], const float dV[3])
{
  float m[3][3], p[3], q[3], u[3], cmat[3][3];

  world_to_root_v3(data, index, p, c1);
  outerproduct(cmat, p, p);
  copy_m3_m3(m, cmat);

  world_to_root_v3(data, index, q, c2);
  outerproduct(cmat, q, q);
  add_m3_m3m3(m, m, cmat);

  /* XXX not sure but multiplication should work here */
  data->iS.sub(index, index, m);
  //  mul_m3_m3m3(data->S[index].m, data->S[index].m, m);

  world_to_root_v3(data, index, u, dV);
  add_v3_v3(data->z.v3(index), u);
}

void SIM_mass_spring_add_constraint_ndof2(Implicit_Data *data,
                                          int index,
                                          const float c1[3],
                                          const float dV[3])
{
  float m[3][3], p[3], u[3], cmat[3][3];

  world_to_root_v3(data, index, p, c1);
  outerproduct(cmat, p, p);
  copy_m3_m3(m, cmat);

  data->iS.sub(index, index, m);
  //  mul_m3_m3m3(data->S[index].m, data->S[index].m, m);

  world_to_root_v3(data, index, u, dV);
  add_v3_v3(data->z.v3(index), u);
}

void SIM_mass_spring_clear_forces(Implicit_Data *data)
{
  data->F.setZero();
  data->dFdX.setZero();
  data->dFdV.setZero();
}

void SIM_mass_spring_force_reference_frame(Implicit_Data *data,
                                           int index,
                                           const float acceleration[3],
                                           const float omega[3],
                                           const float domega_dt[3],
                                           float mass)
{
#  ifdef CLOTH_ROOT_FRAME
  float acc[3], w[3], dwdt[3];
  float f[3], dfdx[3][3], dfdv[3][3];
  float euler[3], coriolis[3], centrifugal[3], rotvel[3];
  float deuler[3][3], dcoriolis[3][3], dcentrifugal[3][3], drotvel[3][3];

  world_to_root_v3(data, index, acc, acceleration);
  world_to_root_v3(data, index, w, omega);
  world_to_root_v3(data, index, dwdt, domega_dt);

  cross_v3_v3v3(euler, dwdt, data->X.v3(index));
  cross_v3_v3v3(coriolis, w, data->V.v3(index));
  mul_v3_fl(coriolis, 2.0f);
  cross_v3_v3v3(rotvel, w, data->X.v3(index));
  cross_v3_v3v3(centrifugal, w, rotvel);

  sub_v3_v3v3(f, acc, euler);
  sub_v3_v3(f, coriolis);
  sub_v3_v3(f, centrifugal);

  mul_v3_fl(f, mass); /* F = m * a */

  cross_v3_identity(deuler, dwdt);
  cross_v3_identity(dcoriolis, w);
  mul_m3_fl(dcoriolis, 2.0f);
  cross_v3_identity(drotvel, w);
  cross_m3_v3m3(dcentrifugal, w, drotvel);

  add_m3_m3m3(dfdx, deuler, dcentrifugal);
  negate_m3(dfdx);
  mul_m3_fl(dfdx, mass);

  copy_m3_m3(dfdv, dcoriolis);
  negate_m3(dfdv);
  mul_m3_fl(dfdv, mass);

  add_v3_v3(data->F.v3(index), f);
  data->idFdX.add(index, index, dfdx);
  data->idFdV.add(index, index, dfdv);
#  else
  (void)data;
  (void)index;
  (void)acceleration;
  (void)omega;
  (void)domega_dt;
#  endif
}

void SIM_mass_spring_force_gravity(Implicit_Data *data, int index, float mass, const float g[3])
{
  /* force = mass * acceleration (in this case: gravity) */
  float f[3];
  world_to_root_v3(data, index, f, g);
  mul_v3_fl(f, mass);

  add_v3_v3(data->F.v3(index), f);
}

void SIM_mass_spring_force_drag(Implicit_Data *data, float drag)
{
  int numverts = data->numverts;
  for (int i = 0; i < numverts; i++) {
    float tmp[3][3];

    /* NOTE: Uses root space velocity, no need to transform. */
    madd_v3_v3fl(data->F.v3(i), data->V.v3(i), -drag);

    copy_m3_m3(tmp, I);
    mul_m3_fl(tmp, -drag);
    data->idFdV.add(i, i, tmp);
  }
}

void SIM_mass_spring_force_extern(
    struct Implicit_Data *data, int i, const float f[3], float dfdx[3][3], float dfdv[3][3])
{
  float tf[3], tdfdx[3][3], tdfdv[3][3];
  world_to_root_v3(data, i, tf, f);
  world_to_root_m3(data, i, tdfdx, dfdx);
  world_to_root_m3(data, i, tdfdv, dfdv);

  add_v3_v3(data->F.v3(i), tf);
  data->idFdX.add(i, i, tdfdx);
  data->idFdV.add(i, i, tdfdv);
}

static float calc_nor_area_tri(float nor[3],
                               const float v1[3],
                               const float v2[3],
                               const float v3[3])
{
  float n1[3], n2[3];

  sub_v3_v3v3(n1, v1, v2);
  sub_v3_v3v3(n2, v2, v3);

  cross_v3_v3v3(nor, n1, n2);
  return normalize_v3(nor) / 2.0f;
}

/* XXX does not support force jacobians yet,
 * since the effector system does not provide them either. */
void SIM_mass_spring_force_face_wind(
    Implicit_Data *data, int v1, int v2, int v3, const float (*winvec)[3])
{
  const float effector_scale = 0.02f;
  float win[3], nor[3], area;
  float factor;

  /* calculate face normal and area */
  area = calc_nor_area_tri(nor, data->X.v3(v1), data->X.v3(v2), data->X.v3(v3));
  factor = effector_scale * area / 3.0f;

  world_to_root_v3(data, v1, win, winvec[v1]);
  madd_v3_v3fl(data->F.v3(v1), nor, factor * dot_v3v3(win, nor));

  world_to_root_v3(data, v2, win, winvec[v2]);
  madd_v3_v3fl(data->F.v3(v2), nor, factor * dot_v3v3(win, nor));

  world_to_root_v3(data, v3, win, winvec[v3]);
  madd_v3_v3fl(data->F.v3(v3), nor, factor * dot_v3v3(win, nor));
}

void SIM_mass_spring_force_edge_wind(Implicit_Data *data, int v1, int v2, const float (*winvec)[3])
{
  const float effector_scale = 0.01;
  float win[3], dir[3], nor[3], length;

  sub_v3_v3v3(dir, data->X.v3(v1), data->X.v3(v2));
  length = normalize_v3(dir);

  world_to_root_v3(data, v1, win, winvec[v1]);
  madd_v3_v3v3fl(nor, win, dir, -dot_v3v3(win, dir));
  madd_v3_v3fl(data->F.v3(v1), nor, effector_scale * length);

  world_to_root_v3(data, v2, win, winvec[v2]);
  madd_v3_v3v3fl(nor, win, dir, -dot_v3v3(win, dir));
  madd_v3_v3fl(data->F.v3(v2), nor, effector_scale * length);
}

BLI_INLINE void dfdx_spring(float to[3][3], const float dir[3], float length, float L, float k)
{
  /* dir is unit length direction, rest is spring's restlength, k is spring constant. */
  // return ((I - outerprod(dir, dir)) * Min(1.0f, rest / length) - I) * -k;
  outerproduct(to, dir, dir);
  sub_m3_m3m3(to, I, to);

  mul_m3_fl(to, (L / length));
  sub_m3_m3m3(to, to, I);
  mul_m3_fl(to, k);
}

/* unused */
#  if 0
BLI_INLINE void dfdx_damp(float to[3][3],
                          const float dir[3],
                          float length,
                          const float vel[3],
                          float rest,
                          float damping)
{
  /* Inner spring damping vel is the relative velocity of the endpoints. */
  // return (I - outerprod(dir, dir)) * (-damping * -(dot(dir, vel) / Max(length, rest)));
  mul_fvectorT_fvector(to, dir, dir);
  sub_fmatrix_fmatrix(to, I, to);
  mul_fmatrix_S(to, (-damping * -(dot_v3v3(dir, vel) / MAX2(length, rest))));
}
#  endif

BLI_INLINE void dfdv_damp(float to[3][3], const float dir[3], float damping)
{
  /* Derivative of force with regards to velocity. */
  outerproduct(to, dir, dir);
  mul_m3_fl(to, -damping);
}

BLI_INLINE float fb(float length, float L)
{
  float x = length / L;
  return (-11.541f * powf(x, 4) + 34.193f * powf(x, 3) - 39.083f * powf(x, 2) + 23.116f * x -
          9.713f);
}

BLI_INLINE float fbderiv(float length, float L)
{
  float x = length / L;

  return (-46.164f * powf(x, 3) + 102.579f * powf(x, 2) - 78.166f * x + 23.116f);
}

BLI_INLINE float fbstar(float length, float L, float kb, float cb)
{
  float tempfb_fl = kb * fb(length, L);
  float fbstar_fl = cb * (length - L);

  if (tempfb_fl < fbstar_fl) {
    return fbstar_fl;
  }
  else {
    return tempfb_fl;
  }
}

/* Function to calculate bending spring force (taken from Choi & Co). */
BLI_INLINE float fbstar_jacobi(float length, float L, float kb, float cb)
{
  float tempfb_fl = kb * fb(length, L);
  float fbstar_fl = cb * (length - L);

  if (tempfb_fl < fbstar_fl) {
    return -cb;
  }
  else {
    return -kb * fbderiv(length, L);
  }
}

/* calculate elongation */
BLI_INLINE bool spring_length(Implicit_Data *data,
                              int i,
                              int j,
                              float r_extent[3],
                              float r_dir[3],
                              float *r_length,
                              float r_vel[3])
{
  sub_v3_v3v3(r_extent, data->X.v3(j), data->X.v3(i));
  sub_v3_v3v3(r_vel, data->V.v3(j), data->V.v3(i));
  *r_length = len_v3(r_extent);

  if (*r_length > ALMOST_ZERO) {
#  if 0
    if (length > L) {
      if ((clmd->sim_parms->flags & CSIMSETT_FLAG_TEARING_ENABLED) &&
          (((length - L) * 100.0f / L) > clmd->sim_parms->maxspringlen)) {
        /* cut spring! */
        s->flags |= CSPRING_FLAG_DEACTIVATE;
        return false;
      }
    }
#  endif
    mul_v3_v3fl(r_dir, r_extent, 1.0f / (*r_length));
  }
  else {
    zero_v3(r_dir);
  }

  return true;
}

BLI_INLINE void apply_spring(
    Implicit_Data *data, int i, int j, const float f[3], float dfdx[3][3], float dfdv[3][3])
{
  add_v3_v3(data->F.v3(i), f);
  sub_v3_v3(data->F.v3(j), f);

  data->idFdX.add(i, i, dfdx);
  data->idFdX.add(j, j, dfdx);
  data->idFdX.sub(i, j, dfdx);
  data->idFdX.sub(j, i, dfdx);

  data->idFdV.add(i, i, dfdv);
  data->idFdV.add(j, j, dfdv);
  data->idFdV.sub(i, j, dfdv);
  data->idFdV.sub(j, i, dfdv);
}

bool SIM_mass_spring_force_spring_linear(Implicit_Data *data,
                                         int i,
                                         int j,
                                         float restlen,
                                         float stiffness,
                                         float damping,
                                         bool no_compress,
                                         float clamp_force,
                                         float r_f[3],
                                         float r_dfdx[3][3],
                                         float r_dfdv[3][3])
{
  float extent[3], length, dir[3], vel[3];

  /* calculate elongation */
  spring_length(data, i, j, extent, dir, &length, vel);

  if (length > restlen || no_compress) {
    float stretch_force, f[3], dfdx[3][3], dfdv[3][3];

    stretch_force = stiffness * (length - restlen);
    if (clamp_force > 0.0f && stretch_force > clamp_force) {
      stretch_force = clamp_force;
    }
    mul_v3_v3fl(f, dir, stretch_force);

    /* Ascher & Boxman, p.21: Damping only during elongation
     * something wrong with it... */
    madd_v3_v3fl(f, dir, damping * dot_v3v3(vel, dir));

    dfdx_spring(dfdx, dir, length, restlen, stiffness);
    dfdv_damp(dfdv, dir, damping);

    apply_spring(data, i, j, f, dfdx, dfdv);

    if (r_f) {
      copy_v3_v3(r_f, f);
    }
    if (r_dfdx) {
      copy_m3_m3(r_dfdx, dfdx);
    }
    if (r_dfdv) {
      copy_m3_m3(r_dfdv, dfdv);
    }

    return true;
  }
  else {
    if (r_f) {
      zero_v3(r_f);
    }
    if (r_dfdx) {
      zero_m3(r_dfdx);
    }
    if (r_dfdv) {
      zero_m3(r_dfdv);
    }

    return false;
  }
}

/* See "Stable but Responsive Cloth" (Choi, Ko 2005) */
bool SIM_mass_spring_force_spring_bending(Implicit_Data *data,
                                          int i,
                                          int j,
                                          float restlen,
                                          float kb,
                                          float cb,
                                          float r_f[3],
                                          float r_dfdx[3][3],
                                          float r_dfdv[3][3])
{
  float extent[3], length, dir[3], vel[3];

  /* calculate elongation */
  spring_length(data, i, j, extent, dir, &length, vel);

  if (length < restlen) {
    float f[3], dfdx[3][3], dfdv[3][3];

    mul_v3_v3fl(f, dir, fbstar(length, restlen, kb, cb));

    outerproduct(dfdx, dir, dir);
    mul_m3_fl(dfdx, fbstar_jacobi(length, restlen, kb, cb));

    /* XXX damping not supported */
    zero_m3(dfdv);

    apply_spring(data, i, j, f, dfdx, dfdv);

    if (r_f) {
      copy_v3_v3(r_f, f);
    }
    if (r_dfdx) {
      copy_m3_m3(r_dfdx, dfdx);
    }
    if (r_dfdv) {
      copy_m3_m3(r_dfdv, dfdv);
    }

    return true;
  }
  else {
    if (r_f) {
      zero_v3(r_f);
    }
    if (r_dfdx) {
      zero_m3(r_dfdx);
    }
    if (r_dfdv) {
      zero_m3(r_dfdv);
    }

    return false;
  }
}

/* Jacobian of a direction vector.
 * Basically the part of the differential orthogonal to the direction,
 * inversely proportional to the length of the edge.
 *
 * dD_ij/dx_i = -dD_ij/dx_j = (D_ij * D_ij^T - I) / len_ij
 */
BLI_INLINE void spring_grad_dir(
    Implicit_Data *data, int i, int j, float edge[3], float dir[3], float grad_dir[3][3])
{
  float length;

  sub_v3_v3v3(edge, data->X.v3(j), data->X.v3(i));
  length = normalize_v3_v3(dir, edge);

  if (length > ALMOST_ZERO) {
    outerproduct(grad_dir, dir, dir);
    sub_m3_m3m3(grad_dir, I, grad_dir);
    mul_m3_fl(grad_dir, 1.0f / length);
  }
  else {
    zero_m3(grad_dir);
  }
}

BLI_INLINE void spring_angbend_forces(Implicit_Data *data,
                                      int i,
                                      int j,
                                      int k,
                                      const float goal[3],
                                      float stiffness,
                                      float damping,
                                      int q,
                                      const float dx[3],
                                      const float dv[3],
                                      float r_f[3])
{
  float edge_ij[3], dir_ij[3];
  float edge_jk[3], dir_jk[3];
  float vel_ij[3], vel_jk[3], vel_ortho[3];
  float f_bend[3], f_damp[3];
  float fk[3];
  float dist[3];

  zero_v3(fk);

  sub_v3_v3v3(edge_ij, data->X.v3(j), data->X.v3(i));
  if (q == i) {
    sub_v3_v3(edge_ij, dx);
  }
  if (q == j) {
    add_v3_v3(edge_ij, dx);
  }
  normalize_v3_v3(dir_ij, edge_ij);

  sub_v3_v3v3(edge_jk, data->X.v3(k), data->X.v3(j));
  if (q == j) {
    sub_v3_v3(edge_jk, dx);
  }
  if (q == k) {
    add_v3_v3(edge_jk, dx);
  }
  normalize_v3_v3(dir_jk, edge_jk);

  sub_v3_v3v3(vel_ij, data->V.v3(j), data->V.v3(i));
  if (q == i) {
    sub_v3_v3(vel_ij, dv);
  }
  if (q == j) {
    add_v3_v3(vel_ij, dv);
  }

  sub_v3_v3v3(vel_jk, data->V.v3(k), data->V.v3(j));
  if (q == j) {
    sub_v3_v3(vel_jk, dv);
  }
  if (q == k) {
    add_v3_v3(vel_jk, dv);
  }

  /* bending force */
  sub_v3_v3v3(dist, goal, edge_jk);
  mul_v3_v3fl(f_bend, dist, stiffness);

  add_v3_v3(fk, f_bend);

  /* damping force */
  madd_v3_v3v3fl(vel_ortho, vel_jk, dir_jk, -dot_v3v3(vel_jk, dir_jk));
  mul_v3_v3fl(f_damp, vel_ortho, damping);

  sub_v3_v3(fk, f_damp);

  copy_v3_v3(r_f, fk);
}

/* Finite Differences method for estimating the jacobian of the force */
BLI_INLINE void spring_angbend_estimate_dfdx(Implicit_Data *data,
                                             int i,
                                             int j,
                                             int k,
                                             const float goal[3],
                                             float stiffness,
                                             float damping,
                                             int q,
                                             float dfdx[3][3])
{
  const float delta = 0.00001f; /* TODO: find a good heuristic for this. */
  float dvec_null[3][3], dvec_pos[3][3], dvec_neg[3][3];
  float f[3];
  int a, b;

  zero_m3(dvec_null);
  unit_m3(dvec_pos);
  mul_m3_fl(dvec_pos, delta * 0.5f);
  copy_m3_m3(dvec_neg, dvec_pos);
  negate_m3(dvec_neg);

  /* XXX TODO: offset targets to account for position dependency. */

  for (a = 0; a < 3; a++) {
    spring_angbend_forces(
        data, i, j, k, goal, stiffness, damping, q, dvec_pos[a], dvec_null[a], f);
    copy_v3_v3(dfdx[a], f);

    spring_angbend_forces(
        data, i, j, k, goal, stiffness, damping, q, dvec_neg[a], dvec_null[a], f);
    sub_v3_v3(dfdx[a], f);

    for (b = 0; b < 3; b++) {
      dfdx[a][b] /= delta;
    }
  }
}

/* Finite Differences method for estimating the jacobian of the force */
BLI_INLINE void spring_angbend_estimate_dfdv(Implicit_Data *data,
                                             int i,
                                             int j,
                                             int k,
                                             const float goal[3],
                                             float stiffness,
                                             float damping,
                                             int q,
                                             float dfdv[3][3])
{
  const float delta = 0.00001f; /* TODO: find a good heuristic for this. */
  float dvec_null[3][3], dvec_pos[3][3], dvec_neg[3][3];
  float f[3];
  int a, b;

  zero_m3(dvec_null);
  unit_m3(dvec_pos);
  mul_m3_fl(dvec_pos, delta * 0.5f);
  copy_m3_m3(dvec_neg, dvec_pos);
  negate_m3(dvec_neg);

  /* XXX TODO: offset targets to account for position dependency. */

  for (a = 0; a < 3; a++) {
    spring_angbend_forces(
        data, i, j, k, goal, stiffness, damping, q, dvec_null[a], dvec_pos[a], f);
    copy_v3_v3(dfdv[a], f);

    spring_angbend_forces(
        data, i, j, k, goal, stiffness, damping, q, dvec_null[a], dvec_neg[a], f);
    sub_v3_v3(dfdv[a], f);

    for (b = 0; b < 3; b++) {
      dfdv[a][b] /= delta;
    }
  }
}

/* Angular spring that pulls the vertex toward the local target
 * See "Artistic Simulation of Curly Hair" (Pixar technical memo #12-03a)
 */
bool SIM_mass_spring_force_spring_bending_angular(Implicit_Data *data,
                                                  int i,
                                                  int j,
                                                  int k,
                                                  const float target[3],
                                                  float stiffness,
                                                  float damping)
{
  float goal[3];
  float fj[3], fk[3];
  float dfj_dxi[3][3], dfj_dxj[3][3], dfk_dxi[3][3], dfk_dxj[3][3], dfk_dxk[3][3];
  float dfj_dvi[3][3], dfj_dvj[3][3], dfk_dvi[3][3], dfk_dvj[3][3], dfk_dvk[3][3];

  const float vecnull[3] = {0.0f, 0.0f, 0.0f};

  world_to_root_v3(data, j, goal, target);

  spring_angbend_forces(data, i, j, k, goal, stiffness, damping, k, vecnull, vecnull, fk);
  negate_v3_v3(fj, fk); /* counterforce */

  spring_angbend_estimate_dfdx(data, i, j, k, goal, stiffness, damping, i, dfk_dxi);
  spring_angbend_estimate_dfdx(data, i, j, k, goal, stiffness, damping, j, dfk_dxj);
  spring_angbend_estimate_dfdx(data, i, j, k, goal, stiffness, damping, k, dfk_dxk);
  copy_m3_m3(dfj_dxi, dfk_dxi);
  negate_m3(dfj_dxi);
  copy_m3_m3(dfj_dxj, dfk_dxj);
  negate_m3(dfj_dxj);

  spring_angbend_estimate_dfdv(data, i, j, k, goal, stiffness, damping, i, dfk_dvi);
  spring_angbend_estimate_dfdv(data, i, j, k, goal, stiffness, damping, j, dfk_dvj);
  spring_angbend_estimate_dfdv(data, i, j, k, goal, stiffness, damping, k, dfk_dvk);
  copy_m3_m3(dfj_dvi, dfk_dvi);
  negate_m3(dfj_dvi);
  copy_m3_m3(dfj_dvj, dfk_dvj);
  negate_m3(dfj_dvj);

  /* add forces and jacobians to the solver data */

  add_v3_v3(data->F.v3(j), fj);
  add_v3_v3(data->F.v3(k), fk);

  data->idFdX.add(j, j, dfj_dxj);
  data->idFdX.add(k, k, dfk_dxk);

  data->idFdX.add(i, j, dfj_dxi);
  data->idFdX.add(j, i, dfj_dxi);
  data->idFdX.add(j, k, dfk_dxj);
  data->idFdX.add(k, j, dfk_dxj);
  data->idFdX.add(i, k, dfk_dxi);
  data->idFdX.add(k, i, dfk_dxi);

  data->idFdV.add(j, j, dfj_dvj);
  data->idFdV.add(k, k, dfk_dvk);

  data->idFdV.add(i, j, dfj_dvi);
  data->idFdV.add(j, i, dfj_dvi);
  data->idFdV.add(j, k, dfk_dvj);
  data->idFdV.add(k, j, dfk_dvj);
  data->idFdV.add(i, k, dfk_dvi);
  data->idFdV.add(k, i, dfk_dvi);

  /* XXX analytical calculation of derivatives below is incorrect.
   * This proved to be difficult, but for now just using the finite difference method for
   * estimating the jacobians should be sufficient.
   */
#  if 0
  float edge_ij[3], dir_ij[3], grad_dir_ij[3][3];
  float edge_jk[3], dir_jk[3], grad_dir_jk[3][3];
  float dist[3], vel_jk[3], vel_jk_ortho[3], projvel[3];
  float target[3];
  float tmp[3][3];
  float fi[3], fj[3], fk[3];
  float dfi_dxi[3][3], dfj_dxi[3][3], dfj_dxj[3][3], dfk_dxi[3][3], dfk_dxj[3][3], dfk_dxk[3][3];
  float dfdvi[3][3];

  /* TESTING */
  damping = 0.0f;

  zero_v3(fi);
  zero_v3(fj);
  zero_v3(fk);
  zero_m3(dfi_dxi);
  zero_m3(dfj_dxi);
  zero_m3(dfk_dxi);
  zero_m3(dfk_dxj);
  zero_m3(dfk_dxk);

  /* jacobian of direction vectors */
  spring_grad_dir(data, i, j, edge_ij, dir_ij, grad_dir_ij);
  spring_grad_dir(data, j, k, edge_jk, dir_jk, grad_dir_jk);

  sub_v3_v3v3(vel_jk, data->V[k], data->V[j]);

  /* bending force */
  mul_v3_v3fl(target, dir_ij, restlen);
  sub_v3_v3v3(dist, target, edge_jk);
  mul_v3_v3fl(fk, dist, stiffness);

  /* damping force */
  madd_v3_v3v3fl(vel_jk_ortho, vel_jk, dir_jk, -dot_v3v3(vel_jk, dir_jk));
  madd_v3_v3fl(fk, vel_jk_ortho, damping);

  /* XXX this only holds true as long as we assume straight rest shape!
   * eventually will become a bit more involved since the opposite segment
   * gets its own target, under condition of having equal torque on both sides.
   */
  copy_v3_v3(fi, fk);

  /* counterforce on the middle point */
  sub_v3_v3(fj, fi);
  sub_v3_v3(fj, fk);

  /* === derivatives === */

  madd_m3_m3fl(dfk_dxi, grad_dir_ij, stiffness * restlen);

  madd_m3_m3fl(dfk_dxj, grad_dir_ij, -stiffness * restlen);
  madd_m3_m3fl(dfk_dxj, I, stiffness);

  madd_m3_m3fl(dfk_dxk, I, -stiffness);

  copy_m3_m3(dfi_dxi, dfk_dxk);
  negate_m3(dfi_dxi);

  /* dfj_dfi == dfi_dfj due to symmetry,
   * dfi_dfj == dfk_dfj due to fi == fk
   * XXX see comment above on future bent rest shapes
   */
  copy_m3_m3(dfj_dxi, dfk_dxj);

  /* dfj_dxj == -(dfi_dxj + dfk_dxj) due to fj == -(fi + fk) */
  sub_m3_m3m3(dfj_dxj, dfj_dxj, dfj_dxi);
  sub_m3_m3m3(dfj_dxj, dfj_dxj, dfk_dxj);

  /* add forces and jacobians to the solver data */
  add_v3_v3(data->F[i], fi);
  add_v3_v3(data->F[j], fj);
  add_v3_v3(data->F[k], fk);

  add_m3_m3m3(data->dFdX[i].m, data->dFdX[i].m, dfi_dxi);
  add_m3_m3m3(data->dFdX[j].m, data->dFdX[j].m, dfj_dxj);
  add_m3_m3m3(data->dFdX[k].m, data->dFdX[k].m, dfk_dxk);

  add_m3_m3m3(data->dFdX[block_ij].m, data->dFdX[block_ij].m, dfj_dxi);
  add_m3_m3m3(data->dFdX[block_jk].m, data->dFdX[block_jk].m, dfk_dxj);
  add_m3_m3m3(data->dFdX[block_ik].m, data->dFdX[block_ik].m, dfk_dxi);
#  endif

  return true;
}

bool SIM_mass_spring_force_spring_goal(Implicit_Data *data,
                                       int i,
                                       const float goal_x[3],
                                       const float goal_v[3],
                                       float stiffness,
                                       float damping,
                                       float r_f[3],
                                       float r_dfdx[3][3],
                                       float r_dfdv[3][3])
{
  float root_goal_x[3], root_goal_v[3], extent[3], length, dir[3], vel[3];
  float f[3], dfdx[3][3], dfdv[3][3];

  /* goal is in world space */
  world_to_root_v3(data, i, root_goal_x, goal_x);
  world_to_root_v3(data, i, root_goal_v, goal_v);

  sub_v3_v3v3(extent, root_goal_x, data->X.v3(i));
  sub_v3_v3v3(vel, root_goal_v, data->V.v3(i));
  length = normalize_v3_v3(dir, extent);

  if (length > ALMOST_ZERO) {
    mul_v3_v3fl(f, dir, stiffness * length);

    /* Ascher & Boxman, p.21: Damping only during elongation
     * something wrong with it... */
    madd_v3_v3fl(f, dir, damping * dot_v3v3(vel, dir));

    dfdx_spring(dfdx, dir, length, 0.0f, stiffness);
    dfdv_damp(dfdv, dir, damping);

    add_v3_v3(data->F.v3(i), f);
    data->idFdX.add(i, i, dfdx);
    data->idFdV.add(i, i, dfdv);

    if (r_f) {
      copy_v3_v3(r_f, f);
    }
    if (r_dfdx) {
      copy_m3_m3(r_dfdx, dfdx);
    }
    if (r_dfdv) {
      copy_m3_m3(r_dfdv, dfdv);
    }

    return true;
  }
  else {
    if (r_f) {
      zero_v3(r_f);
    }
    if (r_dfdx) {
      zero_m3(r_dfdx);
    }
    if (r_dfdv) {
      zero_m3(r_dfdv);
    }

    return false;
  }
}

#endif /* IMPLICIT_SOLVER_EIGEN */