Welcome to mirror list, hosted at ThFree Co, Russian Federation.

KX_ConstraintActuator.cpp « Ketsji « gameengine « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0c5e21322dfc0529098f0c06f722075dfe2cace9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*
 * Apply a constraint to a position or rotation value
 *
 *
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * Contributor(s): none yet.
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file gameengine/Ketsji/KX_ConstraintActuator.cpp
 *  \ingroup ketsji
 */


#include "SCA_IActuator.h"
#include "KX_ConstraintActuator.h"
#include "SCA_IObject.h"
#include "MT_Point3.h"
#include "MT_Matrix3x3.h"
#include "KX_GameObject.h"
#include "KX_RayCast.h"
#include "KX_PythonInit.h" // KX_GetActiveScene

#include <stdio.h>

/* ------------------------------------------------------------------------- */
/* Native functions                                                          */
/* ------------------------------------------------------------------------- */

KX_ConstraintActuator::KX_ConstraintActuator(SCA_IObject *gameobj, 
											 int posDampTime,
											 int rotDampTime,
											 float minBound,
											 float maxBound,
											 float refDir[3],
											 int locrotxyz,
											 int time,
											 int option,
											 char *property) :
	SCA_IActuator(gameobj, KX_ACT_CONSTRAINT),
	m_refDirVector(refDir),
	m_currentTime(0)
{
	m_refDirection[0] = refDir[0];
	m_refDirection[1] = refDir[1];
	m_refDirection[2] = refDir[2];
	m_posDampTime = posDampTime;
	m_rotDampTime = rotDampTime;
	m_locrot   = locrotxyz;
	m_option = option;
	m_activeTime = time;
	if (property) {
		m_property = property;
	} else {
		m_property = "";
	}
	/* The units of bounds are determined by the type of constraint. To      */
	/* make the constraint application easier and more transparent later on, */
	/* I think converting the bounds to the applicable domain makes more     */
	/* sense.                                                                */
	switch (m_locrot) {
	case KX_ACT_CONSTRAINT_ORIX:
	case KX_ACT_CONSTRAINT_ORIY:
	case KX_ACT_CONSTRAINT_ORIZ:
		{
			MT_Scalar len = m_refDirVector.length();
			if (MT_fuzzyZero(len)) {
				// missing a valid direction
				std::cout << "WARNING: Constraint actuator " << GetName() << ":  There is no valid reference direction!" << std::endl;
				m_locrot = KX_ACT_CONSTRAINT_NODEF;
			} else {
				m_refDirection[0] /= len;
				m_refDirection[1] /= len;
				m_refDirection[2] /= len;
				m_refDirVector /= len;
			}
			m_minimumBound = cos(minBound);
			m_maximumBound = cos(maxBound);
			m_minimumSine = sin(minBound);
			m_maximumSine = sin(maxBound);
		}
		break;
	default:
		m_minimumBound = minBound;
		m_maximumBound = maxBound;
		m_minimumSine = 0.f;
		m_maximumSine = 0.f;
		break;
	}

} /* End of constructor */

KX_ConstraintActuator::~KX_ConstraintActuator()
{ 
	// there's nothing to be done here, really....
} /* end of destructor */

bool KX_ConstraintActuator::RayHit(KX_ClientObjectInfo *client, KX_RayCast *result, void * const data)
{

	m_hitObject = client->m_gameobject;
	
	bool bFound = false;

	if (m_property.IsEmpty())
	{
		bFound = true;
	}
	else
	{
		if (m_option & KX_ACT_CONSTRAINT_MATERIAL)
		{
			if (client->m_auxilary_info)
			{
				bFound = !strcmp(m_property.Ptr(), ((char*)client->m_auxilary_info));
			}
		}
		else
		{
			bFound = m_hitObject->GetProperty(m_property) != NULL;
		}
	}
	// update the hit status
	result->m_hitFound = bFound;
	// stop looking
	return true;
}

/* This function is used to pre-filter the object before casting the ray on them.
 * This is useful for "X-Ray" option when we want to see "through" unwanted object.
 */
bool KX_ConstraintActuator::NeedRayCast(KX_ClientObjectInfo *client)
{
	if (client->m_type > KX_ClientObjectInfo::ACTOR)
	{
		// Unknown type of object, skip it.
		// Should not occur as the sensor objects are filtered in RayTest()
		printf("Invalid client type %d found in ray casting\n", client->m_type);
		return false;
	}
	// no X-Ray function yet
	return true;
}

bool KX_ConstraintActuator::Update(double curtime, bool frame)
{

	bool result = false;
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();

	if (!bNegativeEvent) {
		/* Constraint clamps the values to the specified range, with a sort of    */
		/* low-pass filtered time response, if the damp time is unequal to 0.     */

		/* Having to retrieve location/rotation and setting it afterwards may not */
		/* be efficient enough... Something to look at later.                     */
		KX_GameObject  *obj = (KX_GameObject*) GetParent();
		MT_Point3    position = obj->NodeGetWorldPosition();
		MT_Point3    newposition;
		MT_Vector3   normal, direction, refDirection;
		MT_Matrix3x3 rotation = obj->NodeGetWorldOrientation();
		MT_Scalar    filter, newdistance, cosangle;
		int axis, sign;

		if (m_posDampTime) {
			filter = m_posDampTime/(1.0+m_posDampTime);
		} else {
			filter = 0.0;
		}
		switch (m_locrot) {
		case KX_ACT_CONSTRAINT_ORIX:
		case KX_ACT_CONSTRAINT_ORIY:
		case KX_ACT_CONSTRAINT_ORIZ:
			switch (m_locrot) {
			case KX_ACT_CONSTRAINT_ORIX:
				direction[0] = rotation[0][0];
				direction[1] = rotation[1][0];
				direction[2] = rotation[2][0];
				axis = 0;
				break;
			case KX_ACT_CONSTRAINT_ORIY:
				direction[0] = rotation[0][1];
				direction[1] = rotation[1][1];
				direction[2] = rotation[2][1];
				axis = 1;
				break;
			default:
				direction[0] = rotation[0][2];
				direction[1] = rotation[1][2];
				direction[2] = rotation[2][2];
				axis = 2;
				break;
			}
			if ((m_maximumBound < (1.0f-FLT_EPSILON)) || (m_minimumBound < (1.0f-FLT_EPSILON))) {
				// reference direction needs to be evaluated
				// 1. get the cosine between current direction and target
				cosangle = direction.dot(m_refDirVector);
				if (cosangle >= (m_maximumBound-FLT_EPSILON) && cosangle <= (m_minimumBound+FLT_EPSILON)) {
					// no change to do
					result = true;
					goto CHECK_TIME;
				}
				// 2. define a new reference direction
				//    compute local axis with reference direction as X and
				//    Y in direction X refDirection plane
				MT_Vector3 zaxis = m_refDirVector.cross(direction);
				if (MT_fuzzyZero2(zaxis.length2())) {
					// direction and refDirection are identical,
					// choose any other direction to define plane
					if (direction[0] < 0.9999)
						zaxis = m_refDirVector.cross(MT_Vector3(1.0,0.0,0.0));
					else
						zaxis = m_refDirVector.cross(MT_Vector3(0.0,1.0,0.0));
				}
				MT_Vector3 yaxis = zaxis.cross(m_refDirVector);
				yaxis.normalize();
				if (cosangle > m_minimumBound) {
					// angle is too close to reference direction,
					// choose a new reference that is exactly at minimum angle
					refDirection = m_minimumBound * m_refDirVector + m_minimumSine * yaxis;
				} else {
					// angle is too large, choose new reference direction at maximum angle
					refDirection = m_maximumBound * m_refDirVector + m_maximumSine * yaxis;
				}
			} else {
				refDirection = m_refDirVector;
			}
			// apply damping on the direction
			direction = filter*direction + (1.0-filter)*refDirection;
			obj->AlignAxisToVect(direction, axis);
			result = true;
			goto CHECK_TIME;
		case KX_ACT_CONSTRAINT_DIRPX:
		case KX_ACT_CONSTRAINT_DIRPY:
		case KX_ACT_CONSTRAINT_DIRPZ:
		case KX_ACT_CONSTRAINT_DIRNX:
		case KX_ACT_CONSTRAINT_DIRNY:
		case KX_ACT_CONSTRAINT_DIRNZ:
			switch (m_locrot) {
			case KX_ACT_CONSTRAINT_DIRPX:
				normal[0] = rotation[0][0];
				normal[1] = rotation[1][0];
				normal[2] = rotation[2][0];
				axis = 0;		// axis according to KX_GameObject::AlignAxisToVect()
				sign = 0;		// X axis will be parrallel to direction of ray
				break;
			case KX_ACT_CONSTRAINT_DIRPY:
				normal[0] = rotation[0][1];
				normal[1] = rotation[1][1];
				normal[2] = rotation[2][1];
				axis = 1;
				sign = 0;
				break;
			case KX_ACT_CONSTRAINT_DIRPZ:
				normal[0] = rotation[0][2];
				normal[1] = rotation[1][2];
				normal[2] = rotation[2][2];
				axis = 2;
				sign = 0;
				break;
			case KX_ACT_CONSTRAINT_DIRNX:
				normal[0] = -rotation[0][0];
				normal[1] = -rotation[1][0];
				normal[2] = -rotation[2][0];
				axis = 0;
				sign = 1;
				break;
			case KX_ACT_CONSTRAINT_DIRNY:
				normal[0] = -rotation[0][1];
				normal[1] = -rotation[1][1];
				normal[2] = -rotation[2][1];
				axis = 1;
				sign = 1;
				break;
			case KX_ACT_CONSTRAINT_DIRNZ:
				normal[0] = -rotation[0][2];
				normal[1] = -rotation[1][2];
				normal[2] = -rotation[2][2];
				axis = 2;
				sign = 1;
				break;
			}
			normal.normalize();
			if (m_option & KX_ACT_CONSTRAINT_LOCAL) {
				// direction of the ray is along the local axis
				direction = normal;
			} else {
				switch (m_locrot) {
				case KX_ACT_CONSTRAINT_DIRPX:
					direction = MT_Vector3(1.0,0.0,0.0);
					break;
				case KX_ACT_CONSTRAINT_DIRPY:
					direction = MT_Vector3(0.0,1.0,0.0);
					break;
				case KX_ACT_CONSTRAINT_DIRPZ:
					direction = MT_Vector3(0.0,0.0,1.0);
					break;
				case KX_ACT_CONSTRAINT_DIRNX:
					direction = MT_Vector3(-1.0,0.0,0.0);
					break;
				case KX_ACT_CONSTRAINT_DIRNY:
					direction = MT_Vector3(0.0,-1.0,0.0);
					break;
				case KX_ACT_CONSTRAINT_DIRNZ:
					direction = MT_Vector3(0.0,0.0,-1.0);
					break;
				}
			}
			{
				MT_Point3 topoint = position + (m_maximumBound) * direction;
				PHY_IPhysicsEnvironment* pe = KX_GetActiveScene()->GetPhysicsEnvironment();
				PHY_IPhysicsController *spc = obj->GetPhysicsController();

				if (!pe) {
					std::cout << "WARNING: Constraint actuator " << GetName() << ":  There is no physics environment!" << std::endl;
					goto CHECK_TIME;
				}	 
				if (!spc) {
					// the object is not physical, we probably want to avoid hitting its own parent
					KX_GameObject *parent = obj->GetParent();
					if (parent) {
						spc = parent->GetPhysicsController();
						parent->Release();
					}
				}
				KX_RayCast::Callback<KX_ConstraintActuator> callback(this,dynamic_cast<PHY_IPhysicsController*>(spc));
				result = KX_RayCast::RayTest(pe, position, topoint, callback);
				if (result)	{
					MT_Vector3 newnormal = callback.m_hitNormal;
					// compute new position & orientation
					if ((m_option & (KX_ACT_CONSTRAINT_NORMAL|KX_ACT_CONSTRAINT_DISTANCE)) == 0) {
						// if none option is set, the actuator does nothing but detect ray 
						// (works like a sensor)
						goto CHECK_TIME;
					}
					if (m_option & KX_ACT_CONSTRAINT_NORMAL) {
						MT_Scalar rotFilter;
						// apply damping on the direction
						if (m_rotDampTime) {
							rotFilter = m_rotDampTime/(1.0+m_rotDampTime);
						} else {
							rotFilter = filter;
						}
						newnormal = rotFilter*normal - (1.0-rotFilter)*newnormal;
						obj->AlignAxisToVect((sign)?-newnormal:newnormal, axis);
						if (m_option & KX_ACT_CONSTRAINT_LOCAL) {
							direction = newnormal;
							direction.normalize();
						}
					}
					if (m_option & KX_ACT_CONSTRAINT_DISTANCE) {
						if (m_posDampTime) {
							newdistance = filter*(position-callback.m_hitPoint).length()+(1.0-filter)*m_minimumBound;
						} else {
							newdistance = m_minimumBound;
						}
						// logically we should cancel the speed along the ray direction as we set the
						// position along that axis
						spc = obj->GetPhysicsController();
						if (spc && spc->IsDynamic()) {
							MT_Vector3 linV = spc->GetLinearVelocity();
							// cancel the projection along the ray direction
							MT_Scalar fallspeed = linV.dot(direction);
							if (!MT_fuzzyZero(fallspeed))
								spc->SetLinearVelocity(linV-fallspeed*direction,false);
						}
					} else {
						newdistance = (position-callback.m_hitPoint).length();
					}
					newposition = callback.m_hitPoint-newdistance*direction;
				} else if (m_option & KX_ACT_CONSTRAINT_PERMANENT) {
					// no contact but still keep running
					result = true;
					goto CHECK_TIME;
				}
			}
			break; 
		case KX_ACT_CONSTRAINT_FHPX:
		case KX_ACT_CONSTRAINT_FHPY:
		case KX_ACT_CONSTRAINT_FHPZ:
		case KX_ACT_CONSTRAINT_FHNX:
		case KX_ACT_CONSTRAINT_FHNY:
		case KX_ACT_CONSTRAINT_FHNZ:
			switch (m_locrot) {
			case KX_ACT_CONSTRAINT_FHPX:
				normal[0] = -rotation[0][0];
				normal[1] = -rotation[1][0];
				normal[2] = -rotation[2][0];
				direction = MT_Vector3(1.0,0.0,0.0);
				break;
			case KX_ACT_CONSTRAINT_FHPY:
				normal[0] = -rotation[0][1];
				normal[1] = -rotation[1][1];
				normal[2] = -rotation[2][1];
				direction = MT_Vector3(0.0,1.0,0.0);
				break;
			case KX_ACT_CONSTRAINT_FHPZ:
				normal[0] = -rotation[0][2];
				normal[1] = -rotation[1][2];
				normal[2] = -rotation[2][2];
				direction = MT_Vector3(0.0,0.0,1.0);
				break;
			case KX_ACT_CONSTRAINT_FHNX:
				normal[0] = rotation[0][0];
				normal[1] = rotation[1][0];
				normal[2] = rotation[2][0];
				direction = MT_Vector3(-1.0,0.0,0.0);
				break;
			case KX_ACT_CONSTRAINT_FHNY:
				normal[0] = rotation[0][1];
				normal[1] = rotation[1][1];
				normal[2] = rotation[2][1];
				direction = MT_Vector3(0.0,-1.0,0.0);
				break;
			case KX_ACT_CONSTRAINT_FHNZ:
				normal[0] = rotation[0][2];
				normal[1] = rotation[1][2];
				normal[2] = rotation[2][2];
				direction = MT_Vector3(0.0,0.0,-1.0);
				break;
			}
			normal.normalize();
			{
				PHY_IPhysicsEnvironment* pe = KX_GetActiveScene()->GetPhysicsEnvironment();
				PHY_IPhysicsController *spc = obj->GetPhysicsController();

				if (!pe) {
					std::cout << "WARNING: Constraint actuator " << GetName() << ":  There is no physics environment!" << std::endl;
					goto CHECK_TIME;
				}	 
				if (!spc || !spc->IsDynamic()) {
					// the object is not dynamic, it won't support setting speed
					goto CHECK_TIME;
				}
				m_hitObject = NULL;
				// distance of Fh area is stored in m_minimum
				MT_Point3 topoint = position + (m_minimumBound+spc->GetRadius()) * direction;
				KX_RayCast::Callback<KX_ConstraintActuator> callback(this, spc);
				result = KX_RayCast::RayTest(pe, position, topoint, callback);
				// we expect a hit object
				if (!m_hitObject)
					result = false;
				if (result)
				{
					MT_Vector3 newnormal = callback.m_hitNormal;
					// compute new position & orientation
					MT_Scalar distance = (callback.m_hitPoint-position).length()-spc->GetRadius(); 
					// estimate the velocity of the hit point
					MT_Point3 relativeHitPoint;
					relativeHitPoint = (callback.m_hitPoint-m_hitObject->NodeGetWorldPosition());
					MT_Vector3 velocityHitPoint = m_hitObject->GetVelocity(relativeHitPoint);
					MT_Vector3 relativeVelocity = spc->GetLinearVelocity() - velocityHitPoint;
					MT_Scalar relativeVelocityRay = direction.dot(relativeVelocity);
					MT_Scalar springExtent = 1.0 - distance/m_minimumBound;
					// Fh force is stored in m_maximum
					MT_Scalar springForce = springExtent * m_maximumBound;
					// damping is stored in m_refDirection [0] = damping, [1] = rot damping
					MT_Scalar springDamp = relativeVelocityRay * m_refDirVector[0];
					MT_Vector3 newVelocity = spc->GetLinearVelocity()-(springForce+springDamp)*direction;
					if (m_option & KX_ACT_CONSTRAINT_NORMAL)
					{
						newVelocity+=(springForce+springDamp)*(newnormal-newnormal.dot(direction)*direction);
					}
					spc->SetLinearVelocity(newVelocity, false);
					if (m_option & KX_ACT_CONSTRAINT_DOROTFH)
					{
						MT_Vector3 angSpring = (normal.cross(newnormal))*m_maximumBound;
						MT_Vector3 angVelocity = spc->GetAngularVelocity();
						// remove component that is parallel to normal
						angVelocity -= angVelocity.dot(newnormal)*newnormal;
						MT_Vector3 angDamp = angVelocity * ((m_refDirVector[1]>MT_EPSILON)?m_refDirVector[1]:m_refDirVector[0]);
						spc->SetAngularVelocity(spc->GetAngularVelocity()+(angSpring-angDamp), false);
					}
				} else if (m_option & KX_ACT_CONSTRAINT_PERMANENT) {
					// no contact but still keep running
					result = true;
				}
				// don't set the position with this constraint
				goto CHECK_TIME;
			}
			break; 
		case KX_ACT_CONSTRAINT_LOCX:
		case KX_ACT_CONSTRAINT_LOCY:
		case KX_ACT_CONSTRAINT_LOCZ:
			newposition = position = obj->GetSGNode()->GetLocalPosition();
			switch (m_locrot) {
			case KX_ACT_CONSTRAINT_LOCX:
				Clamp(newposition[0], m_minimumBound, m_maximumBound);
				break;
			case KX_ACT_CONSTRAINT_LOCY:
				Clamp(newposition[1], m_minimumBound, m_maximumBound);
				break;
			case KX_ACT_CONSTRAINT_LOCZ:
				Clamp(newposition[2], m_minimumBound, m_maximumBound);
				break;
			}
			result = true;
			if (m_posDampTime) {
				newposition = filter*position + (1.0-filter)*newposition;
			}
			obj->NodeSetLocalPosition(newposition);
			goto CHECK_TIME;
		}
		if (result) {
			// set the new position but take into account parent if any
			obj->NodeSetWorldPosition(newposition);
		}
	CHECK_TIME:
		if (result && m_activeTime > 0 ) {
			if (++m_currentTime >= m_activeTime)
				result = false;
		}
	}
	if (!result) {
		m_currentTime = 0;
	}
	return result;
} /* end of KX_ConstraintActuator::Update(double curtime,double deltatime)   */

void KX_ConstraintActuator::Clamp(MT_Scalar &var, 
								  float min, 
								  float max) {
	if (var < min) {
		var = min;
	} else if (var > max) {
		var = max;
	}
}


bool KX_ConstraintActuator::IsValidMode(KX_ConstraintActuator::KX_CONSTRAINTTYPE m) 
{
	bool res = false;

	if ( (m > KX_ACT_CONSTRAINT_NODEF) && (m < KX_ACT_CONSTRAINT_MAX)) {
		res = true;
	}

	return res;
}

#ifdef WITH_PYTHON

/* ------------------------------------------------------------------------- */
/* Python functions                                                          */
/* ------------------------------------------------------------------------- */

/* Integration hooks ------------------------------------------------------- */
PyTypeObject KX_ConstraintActuator::Type = {
	PyVarObject_HEAD_INIT(NULL, 0)
	"KX_ConstraintActuator",
	sizeof(PyObjectPlus_Proxy),
	0,
	py_base_dealloc,
	0,
	0,
	0,
	0,
	py_base_repr,
	0,0,0,0,0,0,0,0,0,
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
	0,0,0,0,0,0,0,
	Methods,
	0,
	0,
	&SCA_IActuator::Type,
	0,0,0,0,0,0,
	py_base_new
};

PyMethodDef KX_ConstraintActuator::Methods[] = {
	{NULL,NULL} //Sentinel
};

PyAttributeDef KX_ConstraintActuator::Attributes[] = {
	KX_PYATTRIBUTE_INT_RW("damp",0,100,true,KX_ConstraintActuator,m_posDampTime),
	KX_PYATTRIBUTE_INT_RW("rotDamp",0,100,true,KX_ConstraintActuator,m_rotDampTime),
	KX_PYATTRIBUTE_FLOAT_ARRAY_RW_CHECK("direction",-FLT_MAX,FLT_MAX,KX_ConstraintActuator,m_refDirection,3,pyattr_check_direction),
	KX_PYATTRIBUTE_INT_RW("option",0,0xFFFF,false,KX_ConstraintActuator,m_option),
	KX_PYATTRIBUTE_INT_RW("time",0,1000,true,KX_ConstraintActuator,m_activeTime),
	KX_PYATTRIBUTE_STRING_RW("propName",0,MAX_PROP_NAME,true,KX_ConstraintActuator,m_property),
	KX_PYATTRIBUTE_FLOAT_RW("min",-FLT_MAX,FLT_MAX,KX_ConstraintActuator,m_minimumBound),
	KX_PYATTRIBUTE_FLOAT_RW("distance",-FLT_MAX,FLT_MAX,KX_ConstraintActuator,m_minimumBound),
	KX_PYATTRIBUTE_FLOAT_RW("max",-FLT_MAX,FLT_MAX,KX_ConstraintActuator,m_maximumBound),
	KX_PYATTRIBUTE_FLOAT_RW("rayLength",0,2000.f,KX_ConstraintActuator,m_maximumBound),
	KX_PYATTRIBUTE_INT_RW("limit",KX_ConstraintActuator::KX_ACT_CONSTRAINT_NODEF+1,KX_ConstraintActuator::KX_ACT_CONSTRAINT_MAX-1,false,KX_ConstraintActuator,m_locrot),
	{ NULL }	//Sentinel
};

int KX_ConstraintActuator::pyattr_check_direction(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef)
{
	KX_ConstraintActuator* act = static_cast<KX_ConstraintActuator*>(self);
	MT_Vector3 dir(act->m_refDirection);
	MT_Scalar len = dir.length();
	if (MT_fuzzyZero(len)) {
		PyErr_SetString(PyExc_ValueError, "actuator.direction = vec: KX_ConstraintActuator, invalid direction");
		return 1;
	}
	act->m_refDirVector = dir/len;
	return 0;
}

#endif

/* eof */