Welcome to mirror list, hosted at ThFree Co, Russian Federation.

CcdPhysicsController.cpp « Bullet « Physics « gameengine « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a49814e86b6cd504c684a49f4de172d24a4d5d0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "CcdPhysicsController.h"
#include "btBulletDynamicsCommon.h"

#include "PHY_IMotionState.h"
#include "CcdPhysicsEnvironment.h"
#include "RAS_MeshObject.h"


class BP_Proxy;

///todo: fill all the empty CcdPhysicsController methods, hook them up to the btRigidBody class

//'temporarily' global variables
//float	gDeactivationTime = 2.f;
//bool	gDisableDeactivation = false;
extern float gDeactivationTime;
extern bool gDisableDeactivation;


float gLinearSleepingTreshold = 0.8f;
float gAngularSleepingTreshold = 1.0f;


btVector3 startVel(0,0,0);//-10000);

CcdPhysicsController::CcdPhysicsController (const CcdConstructionInfo& ci)
:m_cci(ci)
{
	m_collisionDelay = 0;
	m_newClientInfo = 0;
	m_registerCount = 0;
		
	// copy pointers locally to allow smart release
	m_MotionState = ci.m_MotionState;
	m_collisionShape = ci.m_collisionShape;
	// apply scaling before creating rigid body
	m_collisionShape->setLocalScaling(m_cci.m_scaling);
	if (m_cci.m_mass)
		m_collisionShape->calculateLocalInertia(m_cci.m_mass, m_cci.m_localInertiaTensor);
	// shape info is shared, increment ref count
	m_shapeInfo = ci.m_shapeInfo;
	if (m_shapeInfo)
		m_shapeInfo->AddRef();
	
	m_bulletMotionState = 0;
	
	
	CreateRigidbody();
	

	
	#ifdef WIN32
	if (m_body->getInvMass())
		m_body->setLinearVelocity(startVel);
	#endif

}

btTransform	CcdPhysicsController::GetTransformFromMotionState(PHY_IMotionState* motionState)
{
	btTransform trans;
	float tmp[3];
	motionState->getWorldPosition(tmp[0],tmp[1],tmp[2]);
	trans.setOrigin(btVector3(tmp[0],tmp[1],tmp[2]));

	btQuaternion orn;
	motionState->getWorldOrientation(orn[0],orn[1],orn[2],orn[3]);
	trans.setRotation(orn);
	return trans;

}

class	BlenderBulletMotionState : public btMotionState
{
	PHY_IMotionState*	m_blenderMotionState;

public:

	BlenderBulletMotionState(PHY_IMotionState* bms)
		:m_blenderMotionState(bms)
	{

	}

	virtual void	getWorldTransform(btTransform& worldTrans ) const
	{
		float pos[3];
		float quatOrn[4];

		m_blenderMotionState->getWorldPosition(pos[0],pos[1],pos[2]);
		m_blenderMotionState->getWorldOrientation(quatOrn[0],quatOrn[1],quatOrn[2],quatOrn[3]);
		worldTrans.setOrigin(btVector3(pos[0],pos[1],pos[2]));
		worldTrans.setBasis(btMatrix3x3(btQuaternion(quatOrn[0],quatOrn[1],quatOrn[2],quatOrn[3])));
	}

	virtual void	setWorldTransform(const btTransform& worldTrans)
	{
		m_blenderMotionState->setWorldPosition(worldTrans.getOrigin().getX(),worldTrans.getOrigin().getY(),worldTrans.getOrigin().getZ());
		btQuaternion rotQuat = worldTrans.getRotation();
		m_blenderMotionState->setWorldOrientation(rotQuat[0],rotQuat[1],rotQuat[2],rotQuat[3]);
		m_blenderMotionState->calculateWorldTransformations();
	}

};


void CcdPhysicsController::CreateRigidbody()
{

	btTransform trans = GetTransformFromMotionState(m_MotionState);

	m_bulletMotionState = new BlenderBulletMotionState(m_MotionState);

	m_body = new btRigidBody(m_cci.m_mass,
		m_bulletMotionState,
		m_collisionShape,
		m_cci.m_localInertiaTensor * m_cci.m_inertiaFactor,
		m_cci.m_linearDamping,m_cci.m_angularDamping,
		m_cci.m_friction,m_cci.m_restitution);

	//
	// init the rigidbody properly
	//
	
	//setMassProps this also sets collisionFlags
	//convert collision flags!
	//special case: a near/radar sensor controller should not be defined static or it will
	//generate loads of static-static collision messages on the console
	if ((m_cci.m_collisionFilterGroup & CcdConstructionInfo::SensorFilter) != 0)
	{
		// reset the flags that have been set so far
		m_body->setCollisionFlags(0);
	}
	m_body->setCollisionFlags(m_body->getCollisionFlags() | m_cci.m_collisionFlags);
	m_body->setGravity( m_cci.m_gravity);
	m_body->setDamping(m_cci.m_linearDamping, m_cci.m_angularDamping);

	if (!m_cci.m_bRigid)
	{
		m_body->setAngularFactor(0.f);
	}
}

static void DeleteBulletShape(btCollisionShape* shape)
{
	if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
	{
		// shapes based on meshes use an interface that contains the vertices.
		btTriangleMeshShape* meshShape = static_cast<btTriangleMeshShape*>(shape);
		btStridingMeshInterface* meshInterface = meshShape->getMeshInterface();
		if (meshInterface)
			delete meshInterface;
	}
	delete shape;
}

CcdPhysicsController::~CcdPhysicsController()
{
	//will be reference counted, due to sharing
	if (m_cci.m_physicsEnv)
		m_cci.m_physicsEnv->removeCcdPhysicsController(this);

	if (m_MotionState)
		delete m_MotionState;
	if (m_bulletMotionState)
		delete m_bulletMotionState;
	delete m_body;

	if (m_collisionShape)
	{
		// collision shape is always unique to the controller, can delete it here
		if (m_collisionShape->isCompound())
		{
			// bullet does not delete the child shape, must do it here
			btCompoundShape* compoundShape = (btCompoundShape*)m_collisionShape;
			int numChild = compoundShape->getNumChildShapes();
			for (int i=numChild-1 ; i >= 0; i--)
			{
				btCollisionShape* childShape = compoundShape->getChildShape(i);
				DeleteBulletShape(childShape);
			}
		}
		DeleteBulletShape(m_collisionShape);
	}
	if (m_shapeInfo)
	{
		m_shapeInfo->Release();
	}
}


		/**
			SynchronizeMotionStates ynchronizes dynas, kinematic and deformable entities (and do 'late binding')
		*/
bool		CcdPhysicsController::SynchronizeMotionStates(float time)
{
	//sync non-static to motionstate, and static from motionstate (todo: add kinematic etc.)

	if (!m_body->isStaticObject())
	{
		const btVector3& worldPos = m_body->getCenterOfMassPosition();
		m_MotionState->setWorldPosition(worldPos[0],worldPos[1],worldPos[2]);
		
		const btQuaternion& worldquat = m_body->getOrientation();
		m_MotionState->setWorldOrientation(worldquat[0],worldquat[1],worldquat[2],worldquat[3]);

		m_MotionState->calculateWorldTransformations();

		float scale[3];
		m_MotionState->getWorldScaling(scale[0],scale[1],scale[2]);
		btVector3 scaling(scale[0],scale[1],scale[2]);
		GetCollisionShape()->setLocalScaling(scaling);
	} else
	{
		btVector3 worldPos;
		btQuaternion worldquat;

/*		m_MotionState->getWorldPosition(worldPos[0],worldPos[1],worldPos[2]);
		m_MotionState->getWorldOrientation(worldquat[0],worldquat[1],worldquat[2],worldquat[3]);
		btTransform oldTrans = m_body->getCenterOfMassTransform();
		btTransform newTrans(worldquat,worldPos);
				
		m_body->setCenterOfMassTransform(newTrans);
		//need to keep track of previous position for friction effects...
		
		m_MotionState->calculateWorldTransformations();
*/
		float scale[3];
		m_MotionState->getWorldScaling(scale[0],scale[1],scale[2]);
		btVector3 scaling(scale[0],scale[1],scale[2]);
		GetCollisionShape()->setLocalScaling(scaling);
	}
	return true;

}

		/**
			WriteMotionStateToDynamics synchronizes dynas, kinematic and deformable entities (and do 'late binding')
		*/
		
void		CcdPhysicsController::WriteMotionStateToDynamics(bool nondynaonly)
{

}
void		CcdPhysicsController::WriteDynamicsToMotionState()
{
}
		// controller replication
void		CcdPhysicsController::PostProcessReplica(class PHY_IMotionState* motionstate,class PHY_IPhysicsController* parentctrl)
{
	m_MotionState = motionstate;
	m_registerCount = 0;
	m_collisionShape = NULL;

	// always create a new shape to avoid scaling bug
	if (m_shapeInfo)
	{
		m_shapeInfo->AddRef();
		m_collisionShape = m_shapeInfo->CreateBulletShape();

		if (m_collisionShape)
		{
			// new shape has no scaling, apply initial scaling
			m_collisionShape->setLocalScaling(m_cci.m_scaling);
			if (m_cci.m_mass)
				m_collisionShape->calculateLocalInertia(m_cci.m_mass, m_cci.m_localInertiaTensor);
		}
	}

	m_body = 0;
	CreateRigidbody();

	if (m_body)
	{
		if (m_cci.m_mass)
		{
			m_body->setMassProps(m_cci.m_mass, m_cci.m_localInertiaTensor * m_cci.m_inertiaFactor);
		} 
	}			
	m_cci.m_physicsEnv->addCcdPhysicsController(this);


/*	SM_Object* dynaparent=0;
	SumoPhysicsController* sumoparentctrl = (SumoPhysicsController* )parentctrl;
	
	if (sumoparentctrl)
	{
		dynaparent = sumoparentctrl->GetSumoObject();
	}
	
	SM_Object* orgsumoobject = m_sumoObj;
	
	
	m_sumoObj	=	new SM_Object(
		orgsumoobject->getShapeHandle(), 
		orgsumoobject->getMaterialProps(),			
		orgsumoobject->getShapeProps(),
		dynaparent);
	
	m_sumoObj->setRigidBody(orgsumoobject->isRigidBody());
	
	m_sumoObj->setMargin(orgsumoobject->getMargin());
	m_sumoObj->setPosition(orgsumoobject->getPosition());
	m_sumoObj->setOrientation(orgsumoobject->getOrientation());
	//if it is a dyna, register for a callback
	m_sumoObj->registerCallback(*this);
	
	m_sumoScene->add(* (m_sumoObj));
	*/



}

		// kinematic methods
void		CcdPhysicsController::RelativeTranslate(float dlocX,float dlocY,float dlocZ,bool local)
{
	if (m_body)
	{
		m_body->activate(true);
		if (m_body->isStaticObject())
		{
			m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
		}


		btVector3 dloc(dlocX,dlocY,dlocZ);
		btTransform xform = m_body->getCenterOfMassTransform();

		if (local)
		{
			dloc = xform.getBasis()*dloc;
		}

		xform.setOrigin(xform.getOrigin() + dloc);
		m_body->setCenterOfMassTransform(xform);
	}

}

void		CcdPhysicsController::RelativeRotate(const float rotval[9],bool local)
{
	if (m_body)
	{
		m_body->activate(true);
		if (m_body->isStaticObject())
		{
			m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
		}

		btMatrix3x3 drotmat(	rotval[0],rotval[4],rotval[8],
								rotval[1],rotval[5],rotval[9],
								rotval[2],rotval[6],rotval[10]);


		btMatrix3x3 currentOrn;
		GetWorldOrientation(currentOrn);

		btTransform xform = m_body->getCenterOfMassTransform();

		xform.setBasis(xform.getBasis()*(local ? 
		drotmat : (currentOrn.inverse() * drotmat * currentOrn)));

		m_body->setCenterOfMassTransform(xform);
	}

}

void CcdPhysicsController::GetWorldOrientation(btMatrix3x3& mat)
{
	float orn[4];
	m_MotionState->getWorldOrientation(orn[0],orn[1],orn[2],orn[3]);
	btQuaternion quat(orn[0],orn[1],orn[2],orn[3]);
	mat.setRotation(quat);
}

void		CcdPhysicsController::getOrientation(float &quatImag0,float &quatImag1,float &quatImag2,float &quatReal)
{
	btQuaternion q = m_body->getCenterOfMassTransform().getRotation();
	quatImag0 = q[0];
	quatImag1 = q[1];
	quatImag2 = q[2];
	quatReal = q[3];
}
void		CcdPhysicsController::setOrientation(float quatImag0,float quatImag1,float quatImag2,float quatReal)
{
	if (m_body)
	{
		m_body->activate(true);
		if (m_body->isStaticObject())
		{
			m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
		}
		// not required
		//m_MotionState->setWorldOrientation(quatImag0,quatImag1,quatImag2,quatReal);
		btTransform xform  = m_body->getCenterOfMassTransform();
		xform.setRotation(btQuaternion(quatImag0,quatImag1,quatImag2,quatReal));
		m_body->setCenterOfMassTransform(xform);
		// not required
		//m_bulletMotionState->setWorldTransform(xform);
	}

}

void CcdPhysicsController::setWorldOrientation(const btMatrix3x3& orn)
{
	if (m_body)
	{
		m_body->activate(true);
		if (m_body->isStaticObject())
		{
			m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
		}
		// not required
		//m_MotionState->setWorldOrientation(quatImag0,quatImag1,quatImag2,quatReal);
		btTransform xform  = m_body->getCenterOfMassTransform();
		xform.setBasis(orn);
		m_body->setCenterOfMassTransform(xform);
		// not required
		//m_bulletMotionState->setWorldTransform(xform);
	}

}

void		CcdPhysicsController::setPosition(float posX,float posY,float posZ)
{
	if (m_body)
	{
		m_body->activate(true);
		if (m_body->isStaticObject())
		{
			m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
		}
		// not required, this function is only used to update the physic controller
		//m_MotionState->setWorldPosition(posX,posY,posZ);
		btTransform xform  = m_body->getCenterOfMassTransform();
		xform.setOrigin(btVector3(posX,posY,posZ));
		m_body->setCenterOfMassTransform(xform);
		// not required
		//m_bulletMotionState->setWorldTransform(xform);
	}


}
void		CcdPhysicsController::resolveCombinedVelocities(float linvelX,float linvelY,float linvelZ,float angVelX,float angVelY,float angVelZ)
{
}

void 		CcdPhysicsController::getPosition(PHY__Vector3&	pos) const
{
	const btTransform& xform = m_body->getCenterOfMassTransform();
	pos[0] = xform.getOrigin().x();
	pos[1] = xform.getOrigin().y();
	pos[2] = xform.getOrigin().z();
}

void		CcdPhysicsController::setScaling(float scaleX,float scaleY,float scaleZ)
{
	if (!btFuzzyZero(m_cci.m_scaling.x()-scaleX) ||
		!btFuzzyZero(m_cci.m_scaling.y()-scaleY) ||
		!btFuzzyZero(m_cci.m_scaling.z()-scaleZ))
	{
		m_cci.m_scaling = btVector3(scaleX,scaleY,scaleZ);

		if (m_body && m_body->getCollisionShape())
		{
			m_body->getCollisionShape()->setLocalScaling(m_cci.m_scaling);
			
			//printf("no inertia recalc for fixed objects with mass=0\n");
			if (m_cci.m_mass)
			{
				m_body->getCollisionShape()->calculateLocalInertia(m_cci.m_mass, m_cci.m_localInertiaTensor);
				m_body->setMassProps(m_cci.m_mass, m_cci.m_localInertiaTensor * m_cci.m_inertiaFactor);
			} 
			
		}
	}
}
		
		// physics methods
void		CcdPhysicsController::ApplyTorque(float torqueX,float torqueY,float torqueZ,bool local)
{
	btVector3 torque(torqueX,torqueY,torqueZ);
	btTransform xform = m_body->getCenterOfMassTransform();
	if (m_body && torque.length2() > (SIMD_EPSILON*SIMD_EPSILON))
	{
		m_body->activate();
		if (m_body->isStaticObject())
		{
			m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
		}
		if (local)
		{
			torque	= xform.getBasis()*torque;
		}
		m_body->applyTorque(torque);
	}
}

void		CcdPhysicsController::ApplyForce(float forceX,float forceY,float forceZ,bool local)
{
	btVector3 force(forceX,forceY,forceZ);
	
	if (m_body && force.length2() > (SIMD_EPSILON*SIMD_EPSILON))
	{
		m_body->activate();
		if (m_body->isStaticObject())
		{
			m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
		}
		{
			btTransform xform = m_body->getCenterOfMassTransform();
			if (local)
			{	
				force	= xform.getBasis()*force;
			}
		}
		m_body->applyCentralForce(force);
	}
}
void		CcdPhysicsController::SetAngularVelocity(float ang_velX,float ang_velY,float ang_velZ,bool local)
{
	btVector3 angvel(ang_velX,ang_velY,ang_velZ);
	if (m_body && angvel.length2() > (SIMD_EPSILON*SIMD_EPSILON))
	{
		m_body->activate(true);
		if (m_body->isStaticObject())
		{
			m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
		}
		{
			btTransform xform = m_body->getCenterOfMassTransform();
			if (local)
			{
				angvel	= xform.getBasis()*angvel;
			}
		}
		m_body->setAngularVelocity(angvel);
	}

}
void		CcdPhysicsController::SetLinearVelocity(float lin_velX,float lin_velY,float lin_velZ,bool local)
{

	btVector3 linVel(lin_velX,lin_velY,lin_velZ);
	if (m_body && linVel.length2() > (SIMD_EPSILON*SIMD_EPSILON))
	{
		m_body->activate(true);
		if (m_body->isStaticObject())
		{
			m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
		}

		{
			btTransform xform = m_body->getCenterOfMassTransform();
			if (local)
			{
				linVel	= xform.getBasis()*linVel;
			}
		}
		m_body->setLinearVelocity(linVel);
	}
}
void		CcdPhysicsController::applyImpulse(float attachX,float attachY,float attachZ, float impulseX,float impulseY,float impulseZ)
{
	btVector3 impulse(impulseX,impulseY,impulseZ);

	if (m_body && impulse.length2() > (SIMD_EPSILON*SIMD_EPSILON))
	{
		m_body->activate();
		if (m_body->isStaticObject())
		{
			m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
		}
		
		btVector3 pos(attachX,attachY,attachZ);

		m_body->applyImpulse(impulse,pos);
	}

}
void		CcdPhysicsController::SetActive(bool active)
{
}
		// reading out information from physics
void		CcdPhysicsController::GetLinearVelocity(float& linvX,float& linvY,float& linvZ)
{
	const btVector3& linvel = this->m_body->getLinearVelocity();
	linvX = linvel.x();
	linvY = linvel.y();
	linvZ = linvel.z();

}

void		CcdPhysicsController::GetAngularVelocity(float& angVelX,float& angVelY,float& angVelZ)
{
	const btVector3& angvel= m_body->getAngularVelocity();
	angVelX = angvel.x();
	angVelY = angvel.y();
	angVelZ = angvel.z();
}

void		CcdPhysicsController::GetVelocity(const float posX,const float posY,const float posZ,float& linvX,float& linvY,float& linvZ)
{
	btVector3 pos(posX,posY,posZ);
	btVector3 rel_pos = pos-m_body->getCenterOfMassPosition();
	btVector3 linvel = m_body->getVelocityInLocalPoint(rel_pos);
	linvX = linvel.x();
	linvY = linvel.y();
	linvZ = linvel.z();
}
void		CcdPhysicsController::getReactionForce(float& forceX,float& forceY,float& forceZ)
{
}

		// dyna's that are rigidbody are free in orientation, dyna's with non-rigidbody are restricted 
void		CcdPhysicsController::setRigidBody(bool rigid)
{
	if (!rigid)
	{
		//fake it for now
		btVector3 inertia = m_body->getInvInertiaDiagLocal();
		inertia[1] = 0.f;
		m_body->setInvInertiaDiagLocal(inertia);
		m_body->updateInertiaTensor();
	}
}

		// clientinfo for raycasts for example
void*		CcdPhysicsController::getNewClientInfo()
{
	return m_newClientInfo;
}
void		CcdPhysicsController::setNewClientInfo(void* clientinfo)
{
	m_newClientInfo = clientinfo;
}


void	CcdPhysicsController::UpdateDeactivation(float timeStep)
{
	m_body->updateDeactivation( timeStep);
}

bool CcdPhysicsController::wantsSleeping()
{

	return m_body->wantsSleeping();
}

PHY_IPhysicsController*	CcdPhysicsController::GetReplica()
{
	// This is used only to replicate Near and Radar sensor controllers
	// The replication of object physics controller is done in KX_BulletPhysicsController::GetReplica()
	CcdConstructionInfo cinfo = m_cci;
	if (m_shapeInfo)
	{
		// This situation does not normally happen
		cinfo.m_collisionShape = m_shapeInfo->CreateBulletShape();
	} 
	else if (m_collisionShape)
	{
		switch (m_collisionShape->getShapeType())
		{
		case SPHERE_SHAPE_PROXYTYPE:
			{
				btSphereShape* orgShape = (btSphereShape*)m_collisionShape;
				cinfo.m_collisionShape = new btSphereShape(*orgShape);
				break;
			}

		case CONE_SHAPE_PROXYTYPE:
			{
				btConeShape* orgShape = (btConeShape*)m_collisionShape;
				cinfo.m_collisionShape = new btConeShape(*orgShape);
				break;
			}

		default:
			{
				return 0;
			}
		}
	}

	cinfo.m_MotionState = new DefaultMotionState();
	cinfo.m_shapeInfo = m_shapeInfo;

	CcdPhysicsController* replica = new CcdPhysicsController(cinfo);
	return replica;
}

///////////////////////////////////////////////////////////
///A small utility class, DefaultMotionState
///
///////////////////////////////////////////////////////////

DefaultMotionState::DefaultMotionState()
{
	m_worldTransform.setIdentity();
	m_localScaling.setValue(1.f,1.f,1.f);
}


DefaultMotionState::~DefaultMotionState()
{

}

void	DefaultMotionState::getWorldPosition(float& posX,float& posY,float& posZ)
{
	posX = m_worldTransform.getOrigin().x();
	posY = m_worldTransform.getOrigin().y();
	posZ = m_worldTransform.getOrigin().z();
}

void	DefaultMotionState::getWorldScaling(float& scaleX,float& scaleY,float& scaleZ)
{
	scaleX = m_localScaling.getX();
	scaleY = m_localScaling.getY();
	scaleZ = m_localScaling.getZ();
}

void	DefaultMotionState::getWorldOrientation(float& quatIma0,float& quatIma1,float& quatIma2,float& quatReal)
{
	quatIma0 = m_worldTransform.getRotation().x();
	quatIma1 = m_worldTransform.getRotation().y();
	quatIma2 = m_worldTransform.getRotation().z();
	quatReal = m_worldTransform.getRotation()[3];
}
		
void	DefaultMotionState::setWorldPosition(float posX,float posY,float posZ)
{
	btPoint3 pos(posX,posY,posZ);
	m_worldTransform.setOrigin( pos );
}

void	DefaultMotionState::setWorldOrientation(float quatIma0,float quatIma1,float quatIma2,float quatReal)
{
	btQuaternion orn(quatIma0,quatIma1,quatIma2,quatReal);
	m_worldTransform.setRotation( orn );
}
		
void	DefaultMotionState::calculateWorldTransformations()
{

}

// Shape constructor
bool CcdShapeConstructionInfo::SetMesh(RAS_MeshObject* meshobj, bool polytope)
{
	// assume no shape information
	m_shapeType = PHY_SHAPE_NONE;
	m_vertexArray.clear();

	if (!meshobj)
		return false;

	// Mesh has no polygons!
	int numpolys = meshobj->NumPolygons();
	if (!numpolys)
	{
		return false;
	}

	// check that we have at least one colliding polygon
	int numvalidpolys = 0;

	for (int p=0; p<numpolys; p++)
	{
		RAS_Polygon* poly = meshobj->GetPolygon(p);

		// only add polygons that have the collisionflag set
		if (poly->IsCollider())
		{
			numvalidpolys++;
			break;
		}
	}

	// No collision polygons
	if (numvalidpolys < 1)
		return false;

	m_shapeType = (polytope) ? PHY_SHAPE_POLYTOPE : PHY_SHAPE_MESH;

	numvalidpolys = 0;

	for (int p2=0; p2<numpolys; p2++)
	{
		RAS_Polygon* poly = meshobj->GetPolygon(p2);

		// only add polygons that have the collisionflag set
		if (poly->IsCollider())
		{   
			//Bullet can raycast any shape, so
			if (polytope)
			{
				for (int i=0;i<poly->VertexCount();i++)
				{
					const float* vtx = poly->GetVertex(i)->getXYZ();
					btPoint3 point(vtx[0],vtx[1],vtx[2]);
					m_vertexArray.push_back(point);
					numvalidpolys++;
				}
			} else
			{
				{
					const float* vtx = poly->GetVertex(2)->getXYZ();
					btPoint3 vertex0(vtx[0],vtx[1],vtx[2]);

					vtx = poly->GetVertex(1)->getXYZ();
					btPoint3 vertex1(vtx[0],vtx[1],vtx[2]);

					vtx = poly->GetVertex(0)->getXYZ();
					btPoint3 vertex2(vtx[0],vtx[1],vtx[2]);

					m_vertexArray.push_back(vertex0);
					m_vertexArray.push_back(vertex1);
					m_vertexArray.push_back(vertex2);
					numvalidpolys++;
				}
				if (poly->VertexCount() == 4)
				{
					const float* vtx = poly->GetVertex(3)->getXYZ();
					btPoint3 vertex0(vtx[0],vtx[1],vtx[2]);

					vtx = poly->GetVertex(2)->getXYZ();
					btPoint3 vertex1(vtx[0],vtx[1],vtx[2]);

					vtx = poly->GetVertex(0)->getXYZ();
					btPoint3 vertex2(vtx[0],vtx[1],vtx[2]);

					m_vertexArray.push_back(vertex0);
					m_vertexArray.push_back(vertex1);
					m_vertexArray.push_back(vertex2);
					numvalidpolys++;
				}
			}		
		}
	}

	if (!numvalidpolys)
	{
		// should not happen
		m_shapeType = PHY_SHAPE_NONE;
		return false;
	}
	return true;
}

btCollisionShape* CcdShapeConstructionInfo::CreateBulletShape()
{
	btCollisionShape* collisionShape = 0;
	btTriangleMeshShape* concaveShape = 0;
	btTriangleMesh* collisionMeshData = 0;
	btCompoundShape* compoundShape = 0;
	CcdShapeConstructionInfo* nextShapeInfo;

	switch (m_shapeType) 
	{
	case PHY_SHAPE_NONE:
		break;

	case PHY_SHAPE_BOX:
		collisionShape = new btBoxShape(m_halfExtend);
		break;

	case PHY_SHAPE_SPHERE:
		collisionShape = new btSphereShape(m_radius);
		break;

	case PHY_SHAPE_CYLINDER:
		collisionShape = new btCylinderShapeZ(m_halfExtend);
		break;

	case PHY_SHAPE_CONE:
		collisionShape = new btConeShapeZ(m_radius, m_height);
		break;

	case PHY_SHAPE_POLYTOPE:
		collisionShape = new btConvexHullShape(&m_vertexArray.begin()->getX(), m_vertexArray.size());
		break;

	case PHY_SHAPE_MESH:
		collisionMeshData = new btTriangleMesh();
		// m_vertexArray is necessarily a multiple of 3
		for (std::vector<btPoint3>::iterator it=m_vertexArray.begin(); it != m_vertexArray.end(); )
		{
            collisionMeshData->addTriangle(*it++,*it++,*it++);
		}
		concaveShape = new btBvhTriangleMeshShape( collisionMeshData, true );
		concaveShape->recalcLocalAabb();
		collisionShape = concaveShape;
		break;

	case PHY_SHAPE_COMPOUND:
		if (m_nextShape)
		{
			compoundShape = new btCompoundShape();
			for (nextShapeInfo=m_nextShape; nextShapeInfo; nextShapeInfo = nextShapeInfo->m_nextShape)
			{
				collisionShape = nextShapeInfo->CreateBulletShape();
				if (collisionShape)
				{
					compoundShape->addChildShape(nextShapeInfo->m_childTrans, collisionShape);
				}
			}
			collisionShape = compoundShape;
		}
	}
	return collisionShape;
}

void CcdShapeConstructionInfo::AddShape(CcdShapeConstructionInfo* shapeInfo)
{
	CcdShapeConstructionInfo* nextShape = this;
	while (nextShape->m_nextShape != NULL)
		nextShape = nextShape->m_nextShape;
	nextShape->m_nextShape = shapeInfo;
}

CcdShapeConstructionInfo::~CcdShapeConstructionInfo()
{
	CcdShapeConstructionInfo* childShape = m_nextShape;

	while (childShape)
	{
		CcdShapeConstructionInfo* nextShape = childShape->m_nextShape;
		childShape->m_nextShape = NULL;
		childShape->Release();
		childShape = nextShape;
	}
	
	m_vertexArray.clear();
}