Welcome to mirror list, hosted at ThFree Co, Russian Federation.

ImageRender.cpp « VideoTexture « gameengine « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 5147cb1fbb14f3ef7619f4640d50b8c0e1a0b1db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software  Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * Copyright (c) 2007 The Zdeno Ash Miklas
 *
 * This source file is part of VideoTexture library
 *
 * Contributor(s):
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file gameengine/VideoTexture/ImageRender.cpp
 *  \ingroup bgevideotex
 */

// implementation

#include "EXP_PyObjectPlus.h"
#include <structmember.h>
#include <float.h>
#include <math.h>


#include "glew-mx.h"

#include "KX_PythonInit.h"
#include "DNA_scene_types.h"
#include "RAS_CameraData.h"
#include "RAS_MeshObject.h"
#include "RAS_Polygon.h"
#include "RAS_IOffScreen.h"
#include "RAS_ISync.h"
#include "BLI_math.h"

#include "ImageRender.h"
#include "ImageBase.h"
#include "BlendType.h"
#include "Exception.h"
#include "Texture.h"

ExceptionID SceneInvalid, CameraInvalid, ObserverInvalid, OffScreenInvalid;
ExceptionID MirrorInvalid, MirrorSizeInvalid, MirrorNormalInvalid, MirrorHorizontal, MirrorTooSmall;
ExpDesc SceneInvalidDesc(SceneInvalid, "Scene object is invalid");
ExpDesc CameraInvalidDesc(CameraInvalid, "Camera object is invalid");
ExpDesc ObserverInvalidDesc(ObserverInvalid, "Observer object is invalid");
ExpDesc OffScreenInvalidDesc(OffScreenInvalid, "Offscreen object is invalid");
ExpDesc MirrorInvalidDesc(MirrorInvalid, "Mirror object is invalid");
ExpDesc MirrorSizeInvalidDesc(MirrorSizeInvalid, "Mirror has no vertex or no size");
ExpDesc MirrorNormalInvalidDesc(MirrorNormalInvalid, "Cannot determine mirror plane");
ExpDesc MirrorHorizontalDesc(MirrorHorizontal, "Mirror is horizontal in local space");
ExpDesc MirrorTooSmallDesc(MirrorTooSmall, "Mirror is too small");

// constructor
ImageRender::ImageRender (KX_Scene *scene, KX_Camera * camera, PyRASOffScreen * offscreen) :
    ImageViewport(offscreen),
    m_render(true),
    m_done(false),
    m_scene(scene),
    m_camera(camera),
    m_owncamera(false),
    m_offscreen(offscreen),
    m_sync(NULL),
    m_observer(NULL),
    m_mirror(NULL),
    m_clip(100.f),
    m_mirrorHalfWidth(0.f),
    m_mirrorHalfHeight(0.f)
{
	// initialize background color to scene background color as default
	setBackgroundFromScene(m_scene);
	// retrieve rendering objects
	m_engine = KX_GetActiveEngine();
	m_rasterizer = m_engine->GetRasterizer();
	m_canvas = m_engine->GetCanvas();
	// keep a reference to the offscreen buffer
	if (m_offscreen) {
		Py_INCREF(m_offscreen);
	}
}

// destructor
ImageRender::~ImageRender (void)
{
	if (m_owncamera)
		m_camera->Release();
	if (m_sync)
		delete m_sync;
	Py_XDECREF(m_offscreen);
}

// get background color
float ImageRender::getBackground (int idx)
{
	return (idx < 0 || idx > 3) ? 0.0f : m_background[idx] * 255.0f;
}

// set background color
void ImageRender::setBackground (float red, float green, float blue, float alpha)
{
	m_background[0] = (red < 0.0f) ? 0.0f : (red > 255.0f) ? 1.0f : red / 255.0f;
	m_background[1] = (green < 0.0f) ? 0.0f : (green > 255.0f) ? 1.0f : green / 255.0f;
	m_background[2] = (blue < 0.0f) ? 0.0f : (blue > 255.0f) ? 1.0f : blue / 255.0f;
	m_background[3] = (alpha < 0.0f) ? 0.0f : (alpha > 255.0f) ? 1.0f : alpha / 255.0f;
}

// set background color from scene
void ImageRender::setBackgroundFromScene (KX_Scene *scene)
{
	if (scene) {
		const float *background_color = scene->GetWorldInfo()->getBackColorConverted();
		copy_v3_v3(m_background, background_color);
		m_background[3] = 1.0f;
	}
	else {
		const float blue_color[] = {0.0f, 0.0f, 1.0f, 1.0f};
		copy_v4_v4(m_background, blue_color);
	}
}


// capture image from viewport
void ImageRender::calcImage (unsigned int texId, double ts)
{
	// render the scene from the camera
	if (!m_done) {
		if (!Render()) {
			return;
		}
	}
	else if (m_offscreen) {
		m_offscreen->ofs->Bind(RAS_IOffScreen::RAS_OFS_BIND_READ);
	}
	// wait until all render operations are completed
	WaitSync();
	// get image from viewport (or FBO)
	calcViewport(texId, ts);
	if (m_offscreen) {
		m_offscreen->ofs->Unbind();
	}
}

bool ImageRender::loadImage(unsigned int *buffer, unsigned int size, unsigned int format, double ts)
{
	bool ret;
	// render the scene from the camera
	if (!m_done) {
		if (!Render()) {
			return false;
		}
	}
	else if (m_offscreen) {
		m_offscreen->ofs->Bind(RAS_IOffScreen::RAS_OFS_BIND_READ);
	}
	// wait until all render operations are completed
	WaitSync();
	// get image from viewport (or FBO)
	ret = loadRender(buffer, size, format);
	if (m_offscreen) {
		m_offscreen->ofs->Unbind();
	}
	return ret;
}

bool ImageRender::Render()
{
	RAS_FrameFrustum frustum;

	if (!m_render ||
	    m_rasterizer->GetDrawingMode() != RAS_IRasterizer::KX_TEXTURED ||   // no need for texture
        m_camera->GetViewport() ||        // camera must be inactive
        m_camera == m_scene->GetActiveCamera())
	{
		// no need to compute texture in non texture rendering
		return false;
	}

	if (!m_scene->IsShadowDone())
		m_engine->RenderShadowBuffers(m_scene);

	if (m_mirror)
	{
		// mirror mode, compute camera frustum, position and orientation
		// convert mirror position and normal in world space
		const MT_Matrix3x3 & mirrorObjWorldOri = m_mirror->GetSGNode()->GetWorldOrientation();
		const MT_Point3 & mirrorObjWorldPos = m_mirror->GetSGNode()->GetWorldPosition();
		const MT_Vector3 & mirrorObjWorldScale = m_mirror->GetSGNode()->GetWorldScaling();
		MT_Point3 mirrorWorldPos =
		        mirrorObjWorldPos + mirrorObjWorldScale * (mirrorObjWorldOri * m_mirrorPos);
		MT_Vector3 mirrorWorldZ = mirrorObjWorldOri * m_mirrorZ;
		// get observer world position
		const MT_Point3 & observerWorldPos = m_observer->GetSGNode()->GetWorldPosition();
		// get plane D term = mirrorPos . normal
		MT_Scalar mirrorPlaneDTerm = mirrorWorldPos.dot(mirrorWorldZ);
		// compute distance of observer to mirror = D - observerPos . normal
		MT_Scalar observerDistance = mirrorPlaneDTerm - observerWorldPos.dot(mirrorWorldZ);
		// if distance < 0.01 => observer is on wrong side of mirror, don't render
		if (observerDistance < 0.01)
			return false;
		// set camera world position = observerPos + normal * 2 * distance
		MT_Point3 cameraWorldPos = observerWorldPos + (MT_Scalar(2.0)*observerDistance)*mirrorWorldZ;
		m_camera->GetSGNode()->SetLocalPosition(cameraWorldPos);
		// set camera orientation: z=normal, y=mirror_up in world space, x= y x z
		MT_Vector3 mirrorWorldY = mirrorObjWorldOri * m_mirrorY;
		MT_Vector3 mirrorWorldX = mirrorObjWorldOri * m_mirrorX;
		MT_Matrix3x3 cameraWorldOri(
		            mirrorWorldX[0], mirrorWorldY[0], mirrorWorldZ[0],
		            mirrorWorldX[1], mirrorWorldY[1], mirrorWorldZ[1],
		            mirrorWorldX[2], mirrorWorldY[2], mirrorWorldZ[2]);
		m_camera->GetSGNode()->SetLocalOrientation(cameraWorldOri);
		m_camera->GetSGNode()->UpdateWorldData(0.0);
		// compute camera frustum:
		//   get position of mirror relative to camera: offset = mirrorPos-cameraPos
		MT_Vector3 mirrorOffset = mirrorWorldPos - cameraWorldPos;
		//   convert to camera orientation
		mirrorOffset = mirrorOffset * cameraWorldOri;
		//   scale mirror size to world scale:
		//     get closest local axis for mirror Y and X axis and scale height and width by local axis scale
		MT_Scalar x, y;
		x = fabs(m_mirrorY[0]);
		y = fabs(m_mirrorY[1]);
		float height = (x > y) ?
		            ((x > fabs(m_mirrorY[2])) ? mirrorObjWorldScale[0] : mirrorObjWorldScale[2]):
		            ((y > fabs(m_mirrorY[2])) ? mirrorObjWorldScale[1] : mirrorObjWorldScale[2]);
		x = fabs(m_mirrorX[0]);
		y = fabs(m_mirrorX[1]);
		float width = (x > y) ?
		            ((x > fabs(m_mirrorX[2])) ? mirrorObjWorldScale[0] : mirrorObjWorldScale[2]):
		            ((y > fabs(m_mirrorX[2])) ? mirrorObjWorldScale[1] : mirrorObjWorldScale[2]);
		width *= m_mirrorHalfWidth;
		height *= m_mirrorHalfHeight;
		//   left = offsetx-width
		//   right = offsetx+width
		//   top = offsety+height
		//   bottom = offsety-height
		//   near = -offsetz
		//   far = near+100
		frustum.x1 = mirrorOffset[0]-width;
		frustum.x2 = mirrorOffset[0]+width;
		frustum.y1 = mirrorOffset[1]-height;
		frustum.y2 = mirrorOffset[1]+height;
		frustum.camnear = -mirrorOffset[2];
		frustum.camfar = -mirrorOffset[2]+m_clip;
	}
	// Store settings to be restored later
	const RAS_IRasterizer::StereoMode stereomode = m_rasterizer->GetStereoMode();
	RAS_Rect area = m_canvas->GetWindowArea();

	// The screen area that ImageViewport will copy is also the rendering zone
	if (m_offscreen) {
		// bind the fbo and set the viewport to full size
		m_offscreen->ofs->Bind(RAS_IOffScreen::RAS_OFS_BIND_RENDER);
		// this is needed to stop crashing in canvas check
		m_canvas->UpdateViewPort(0, 0, m_offscreen->ofs->GetWidth(), m_offscreen->ofs->GetHeight());
	}
	else {
		m_canvas->SetViewPort(m_position[0], m_position[1], m_position[0]+m_capSize[0]-1, m_position[1]+m_capSize[1]-1);
	}
	m_canvas->ClearColor(m_background[0], m_background[1], m_background[2], m_background[3]);
	m_canvas->ClearBuffer(RAS_ICanvas::COLOR_BUFFER|RAS_ICanvas::DEPTH_BUFFER);
	m_rasterizer->BeginFrame(m_engine->GetClockTime());
	m_scene->GetWorldInfo()->UpdateWorldSettings();
	m_rasterizer->SetAuxilaryClientInfo(m_scene);
	m_rasterizer->DisplayFog();
	// matrix calculation, don't apply any of the stereo mode
	m_rasterizer->SetStereoMode(RAS_IRasterizer::RAS_STEREO_NOSTEREO);
	if (m_mirror)
	{
		// frustum was computed above
		// get frustum matrix and set projection matrix
		MT_Matrix4x4 projmat = m_rasterizer->GetFrustumMatrix(
		            frustum.x1, frustum.x2, frustum.y1, frustum.y2, frustum.camnear, frustum.camfar);

		m_camera->SetProjectionMatrix(projmat);
	}
	else if (m_camera->hasValidProjectionMatrix()) {
		m_rasterizer->SetProjectionMatrix(m_camera->GetProjectionMatrix());
	}
	else {
		float lens = m_camera->GetLens();
		float sensor_x = m_camera->GetSensorWidth();
		float sensor_y = m_camera->GetSensorHeight();
		float shift_x = m_camera->GetShiftHorizontal();
		float shift_y = m_camera->GetShiftVertical();
		bool orthographic = !m_camera->GetCameraData()->m_perspective;
		float nearfrust = m_camera->GetCameraNear();
		float farfrust = m_camera->GetCameraFar();
		float aspect_ratio = 1.0f;
		Scene *blenderScene = m_scene->GetBlenderScene();
		MT_Matrix4x4 projmat;

		// compute the aspect ratio from frame blender scene settings so that render to texture
		// works the same in Blender and in Blender player
		if (blenderScene->r.ysch != 0)
			aspect_ratio = float(blenderScene->r.xsch*blenderScene->r.xasp) / float(blenderScene->r.ysch*blenderScene->r.yasp);

		if (orthographic) {

			RAS_FramingManager::ComputeDefaultOrtho(
			            nearfrust,
			            farfrust,
			            m_camera->GetScale(),
			            aspect_ratio,
						m_camera->GetSensorFit(),
			            shift_x,
			            shift_y,
			            frustum
			            );

			projmat = m_rasterizer->GetOrthoMatrix(
			            frustum.x1, frustum.x2, frustum.y1, frustum.y2, frustum.camnear, frustum.camfar);
		}
		else {
			RAS_FramingManager::ComputeDefaultFrustum(
			            nearfrust,
			            farfrust,
			            lens,
			            sensor_x,
			            sensor_y,
			            RAS_SENSORFIT_AUTO,
			            shift_x,
			            shift_y,
			            aspect_ratio,
			            frustum);
			
			projmat = m_rasterizer->GetFrustumMatrix(
			            frustum.x1, frustum.x2, frustum.y1, frustum.y2, frustum.camnear, frustum.camfar);
		}
		m_camera->SetProjectionMatrix(projmat);
	}

	MT_Transform camtrans(m_camera->GetWorldToCamera());
	MT_Matrix4x4 viewmat(camtrans);
	
	m_rasterizer->SetViewMatrix(viewmat, m_camera->NodeGetWorldOrientation(), m_camera->NodeGetWorldPosition(), m_camera->NodeGetLocalScaling(), m_camera->GetCameraData()->m_perspective);
	m_camera->SetModelviewMatrix(viewmat);
	// restore the stereo mode now that the matrix is computed
	m_rasterizer->SetStereoMode(stereomode);

	if (m_rasterizer->Stereo())	{
		// stereo mode change render settings that disturb this render, cancel them all
		// we don't need to restore them as they are set before each frame render.
		glDrawBuffer(GL_BACK_LEFT);
		glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
		glDisable(GL_POLYGON_STIPPLE);
	}

	m_scene->CalculateVisibleMeshes(m_rasterizer,m_camera);

	m_engine->UpdateAnimations(m_scene);

	m_scene->RenderBuckets(camtrans, m_rasterizer);

	m_scene->RenderFonts();

	// restore the canvas area now that the render is completed
	m_canvas->GetWindowArea() = area;
	m_canvas->EndFrame();

	// In case multisample is active, blit the FBO
	if (m_offscreen)
		m_offscreen->ofs->Blit();
	// end of all render operations, let's create a sync object just in case
	if (m_sync) {
		// a sync from a previous render, should not happen
		delete m_sync;
		m_sync = NULL;
	}
	m_sync = m_rasterizer->CreateSync(RAS_ISync::RAS_SYNC_TYPE_FENCE);
	// remember that we have done render
	m_done = true;
	// the image is not available at this stage
	m_avail = false;
	return true;
}

void ImageRender::Unbind()
{
	if (m_offscreen)
	{
		m_offscreen->ofs->Unbind();
	}
}

void ImageRender::WaitSync()
{
	if (m_sync) {
		m_sync->Wait();
		// done with it, deleted it
		delete m_sync;
		m_sync = NULL;
	}
	if (m_offscreen) {
		// this is needed to finalize the image if the target is a texture
		m_offscreen->ofs->MipMap();
	}
	// all rendered operation done and complete, invalidate render for next time
	m_done = false;
}

// cast Image pointer to ImageRender
inline ImageRender * getImageRender (PyImage *self)
{ return static_cast<ImageRender*>(self->m_image); }


// python methods

// Blender Scene type
static BlendType<KX_Scene> sceneType ("KX_Scene");
// Blender Camera type
static BlendType<KX_Camera> cameraType ("KX_Camera");


// object initialization
static int ImageRender_init(PyObject *pySelf, PyObject *args, PyObject *kwds)
{
	// parameters - scene object
	PyObject *scene;
	// camera object
	PyObject *camera;
	// offscreen buffer object
	PyRASOffScreen *offscreen = NULL;
	// parameter keywords
	static const char *kwlist[] = {"sceneObj", "cameraObj", "ofsObj", NULL};
	// get parameters
	if (!PyArg_ParseTupleAndKeywords(args, kwds, "OO|O",
		const_cast<char**>(kwlist), &scene, &camera, &offscreen))
		return -1;
	try
	{
		// get scene pointer
		KX_Scene * scenePtr (NULL);
		if (scene != NULL) scenePtr = sceneType.checkType(scene);
		// throw exception if scene is not available
		if (scenePtr == NULL) THRWEXCP(SceneInvalid, S_OK);

		// get camera pointer
		KX_Camera * cameraPtr (NULL);
		if (camera != NULL) cameraPtr = cameraType.checkType(camera);
		// throw exception if camera is not available
		if (cameraPtr == NULL) THRWEXCP(CameraInvalid, S_OK);

		if (offscreen) {
			if (Py_TYPE(offscreen) != &PyRASOffScreen_Type) {
				THRWEXCP(OffScreenInvalid, S_OK);
			}
		}
		// get pointer to image structure
		PyImage *self = reinterpret_cast<PyImage*>(pySelf);
		// create source object
		if (self->m_image != NULL) delete self->m_image;
		self->m_image = new ImageRender(scenePtr, cameraPtr, offscreen);
	}
	catch (Exception & exp)
	{
		exp.report();
		return -1;
	}
	// initialization succeded
	return 0;
}

static PyObject *ImageRender_refresh(PyImage *self, PyObject *args)
{
	ImageRender *imageRender = getImageRender(self);

	if (!imageRender) {
		PyErr_SetString(PyExc_TypeError, "Incomplete ImageRender() object");
		return NULL;
	}
	if (PyArg_ParseTuple(args, "")) {
		// refresh called with no argument.
		// For other image objects it simply invalidates the image buffer
		// For ImageRender it triggers a render+sync
		// Note that this only makes sense when doing offscreen render on texture
		if (!imageRender->isDone()) {
			if (!imageRender->Render()) {
				Py_RETURN_FALSE;
			}
			// as we are not trying to read the pixels, just unbind
			imageRender->Unbind();
		}
		// wait until all render operations are completed
		// this will also finalize the texture
		imageRender->WaitSync();
		Py_RETURN_TRUE;
	}
	else {
		// fallback on standard processing
		PyErr_Clear();
		return Image_refresh(self, args);
	}
}

// refresh image
static PyObject *ImageRender_render(PyImage *self)
{
	ImageRender *imageRender = getImageRender(self);

	if (!imageRender) {
		PyErr_SetString(PyExc_TypeError, "Incomplete ImageRender() object");
		return NULL;
	}
	if (!imageRender->Render()) {
		Py_RETURN_FALSE;
	}
	// we are not reading the pixels now, unbind
	imageRender->Unbind();
	Py_RETURN_TRUE;
}


// get background color
static PyObject *getBackground (PyImage *self, void *closure)
{
	return Py_BuildValue("[ffff]",
	                     getImageRender(self)->getBackground(0),
	                     getImageRender(self)->getBackground(1),
	                     getImageRender(self)->getBackground(2),
	                     getImageRender(self)->getBackground(3));
}

// set color
static int setBackground(PyImage *self, PyObject *value, void *closure)
{
	// check validity of parameter
	if (value == NULL || !PySequence_Check(value) || PySequence_Size(value) != 4
		|| (!PyFloat_Check(PySequence_Fast_GET_ITEM(value, 0)) && !PyLong_Check(PySequence_Fast_GET_ITEM(value, 0)))
		|| (!PyFloat_Check(PySequence_Fast_GET_ITEM(value, 1)) && !PyLong_Check(PySequence_Fast_GET_ITEM(value, 1)))
		|| (!PyFloat_Check(PySequence_Fast_GET_ITEM(value, 2)) && !PyLong_Check(PySequence_Fast_GET_ITEM(value, 2)))
		|| (!PyFloat_Check(PySequence_Fast_GET_ITEM(value, 3)) && !PyLong_Check(PySequence_Fast_GET_ITEM(value, 3)))) {

		PyErr_SetString(PyExc_TypeError, "The value must be a sequence of 4 floats or ints between 0.0 and 255.0");
		return -1;
	}
	// set background color
	getImageRender(self)->setBackground(
	        PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0)),
	        PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1)),
	        PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 2)),
	        PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 3)));
	// success
	return 0;
}


// methods structure
static PyMethodDef imageRenderMethods[] =
{ // methods from ImageBase class
	{"refresh", (PyCFunction)ImageRender_refresh, METH_VARARGS, "Refresh image - invalidate its current content after optionally transferring its content to a target buffer"},
	{"render", (PyCFunction)ImageRender_render, METH_NOARGS, "Render scene - run before refresh() to performs asynchronous render"},
	{NULL}
};
// attributes structure
static PyGetSetDef imageRenderGetSets[] =
{ 
	{(char*)"background", (getter)getBackground, (setter)setBackground, (char*)"background color", NULL},
	// attribute from ImageViewport
	{(char*)"capsize", (getter)ImageViewport_getCaptureSize, (setter)ImageViewport_setCaptureSize, (char*)"size of render area", NULL},
	{(char*)"alpha", (getter)ImageViewport_getAlpha, (setter)ImageViewport_setAlpha, (char*)"use alpha in texture", NULL},
	{(char*)"whole", (getter)ImageViewport_getWhole, (setter)ImageViewport_setWhole, (char*)"use whole viewport to render", NULL},
	// attributes from ImageBase class
	{(char*)"valid", (getter)Image_valid, NULL, (char*)"bool to tell if an image is available", NULL},
	{(char*)"image", (getter)Image_getImage, NULL, (char*)"image data", NULL},
	{(char*)"size", (getter)Image_getSize, NULL, (char*)"image size", NULL},
	{(char*)"scale", (getter)Image_getScale, (setter)Image_setScale, (char*)"fast scale of image (near neighbor)",	NULL},
	{(char*)"flip", (getter)Image_getFlip, (setter)Image_setFlip, (char*)"flip image vertically", NULL},
	{(char*)"zbuff", (getter)Image_getZbuff, (setter)Image_setZbuff, (char*)"use depth buffer as texture", NULL},
	{(char*)"depth", (getter)Image_getDepth, (setter)Image_setDepth, (char*)"get depth information from z-buffer using unsigned int precision", NULL},
	{(char*)"filter", (getter)Image_getFilter, (setter)Image_setFilter, (char*)"pixel filter", NULL},
	{NULL}
};


// define python type
PyTypeObject ImageRenderType = {
	PyVarObject_HEAD_INIT(NULL, 0)
	"VideoTexture.ImageRender",   /*tp_name*/
	sizeof(PyImage),          /*tp_basicsize*/
	0,                         /*tp_itemsize*/
	(destructor)Image_dealloc, /*tp_dealloc*/
	0,                         /*tp_print*/
	0,                         /*tp_getattr*/
	0,                         /*tp_setattr*/
	0,                         /*tp_compare*/
	0,                         /*tp_repr*/
	0,                         /*tp_as_number*/
	0,                         /*tp_as_sequence*/
	0,                         /*tp_as_mapping*/
	0,                         /*tp_hash */
	0,                         /*tp_call*/
	0,                         /*tp_str*/
	0,                         /*tp_getattro*/
	0,                         /*tp_setattro*/
	&imageBufferProcs,         /*tp_as_buffer*/
	Py_TPFLAGS_DEFAULT,        /*tp_flags*/
	"Image source from render",       /* tp_doc */
	0,		               /* tp_traverse */
	0,		               /* tp_clear */
	0,		               /* tp_richcompare */
	0,		               /* tp_weaklistoffset */
	0,		               /* tp_iter */
	0,		               /* tp_iternext */
	imageRenderMethods,    /* tp_methods */
	0,                   /* tp_members */
	imageRenderGetSets,          /* tp_getset */
	0,                         /* tp_base */
	0,                         /* tp_dict */
	0,                         /* tp_descr_get */
	0,                         /* tp_descr_set */
	0,                         /* tp_dictoffset */
	(initproc)ImageRender_init,     /* tp_init */
	0,                         /* tp_alloc */
	Image_allocNew,           /* tp_new */
};

// object initialization
static int ImageMirror_init(PyObject *pySelf, PyObject *args, PyObject *kwds)
{
	// parameters - scene object
	PyObject *scene;
	// reference object for mirror
	PyObject *observer;
	// object holding the mirror
	PyObject *mirror;
	// material of the mirror
	short materialID = 0;
	// parameter keywords
	static const char *kwlist[] = {"scene", "observer", "mirror", "material", NULL};
	// get parameters
	if (!PyArg_ParseTupleAndKeywords(args, kwds, "OOO|h",
	                                 const_cast<char**>(kwlist), &scene, &observer, &mirror, &materialID))
		return -1;
	try
	{
		// get scene pointer
		KX_Scene * scenePtr (NULL);
		if (scene != NULL && PyObject_TypeCheck(scene, &KX_Scene::Type))
			scenePtr = static_cast<KX_Scene*>BGE_PROXY_REF(scene);
		else
			THRWEXCP(SceneInvalid, S_OK);
		
		if (scenePtr==NULL) /* in case the python proxy reference is invalid */
			THRWEXCP(SceneInvalid, S_OK);
		
		// get observer pointer
		KX_GameObject * observerPtr (NULL);
		if (observer != NULL && PyObject_TypeCheck(observer, &KX_GameObject::Type))
			observerPtr = static_cast<KX_GameObject*>BGE_PROXY_REF(observer);
		else if (observer != NULL && PyObject_TypeCheck(observer, &KX_Camera::Type))
			observerPtr = static_cast<KX_Camera*>BGE_PROXY_REF(observer);
		else
			THRWEXCP(ObserverInvalid, S_OK);
		
		if (observerPtr==NULL) /* in case the python proxy reference is invalid */
			THRWEXCP(ObserverInvalid, S_OK);

		// get mirror pointer
		KX_GameObject * mirrorPtr (NULL);
		if (mirror != NULL && PyObject_TypeCheck(mirror, &KX_GameObject::Type))
			mirrorPtr = static_cast<KX_GameObject*>BGE_PROXY_REF(mirror);
		else
			THRWEXCP(MirrorInvalid, S_OK);
		
		if (mirrorPtr==NULL) /* in case the python proxy reference is invalid */
			THRWEXCP(MirrorInvalid, S_OK);

		// locate the material in the mirror
		RAS_IPolyMaterial * material = getMaterial(mirror, materialID);
		if (material == NULL)
			THRWEXCP(MaterialNotAvail, S_OK);

		// get pointer to image structure
		PyImage *self = reinterpret_cast<PyImage*>(pySelf);

		// create source object
		if (self->m_image != NULL)
		{
			delete self->m_image;
			self->m_image = NULL;
		}
		self->m_image = new ImageRender(scenePtr, observerPtr, mirrorPtr, material);
	}
	catch (Exception & exp)
	{
		exp.report();
		return -1;
	}
	// initialization succeeded
	return 0;
}

// get background color
static PyObject *getClip (PyImage *self, void *closure)
{
	return PyFloat_FromDouble(getImageRender(self)->getClip());
}

// set clip
static int setClip(PyImage *self, PyObject *value, void *closure)
{
	// check validity of parameter
	double clip;
	if (value == NULL || !PyFloat_Check(value) || (clip = PyFloat_AsDouble(value)) < 0.01 || clip > 5000.0)
	{
		PyErr_SetString(PyExc_TypeError, "The value must be an float between 0.01 and 5000");
		return -1;
	}
	// set background color
	getImageRender(self)->setClip(float(clip));
	// success
	return 0;
}

// attributes structure
static PyGetSetDef imageMirrorGetSets[] =
{ 
	{(char*)"clip", (getter)getClip, (setter)setClip, (char*)"clipping distance", NULL},
	// attribute from ImageRender
	{(char*)"background", (getter)getBackground, (setter)setBackground, (char*)"background color", NULL},
	// attribute from ImageViewport
	{(char*)"capsize", (getter)ImageViewport_getCaptureSize, (setter)ImageViewport_setCaptureSize, (char*)"size of render area", NULL},
	{(char*)"alpha", (getter)ImageViewport_getAlpha, (setter)ImageViewport_setAlpha, (char*)"use alpha in texture", NULL},
	{(char*)"whole", (getter)ImageViewport_getWhole, (setter)ImageViewport_setWhole, (char*)"use whole viewport to render", NULL},
	// attributes from ImageBase class
	{(char*)"valid", (getter)Image_valid, NULL, (char*)"bool to tell if an image is available", NULL},
	{(char*)"image", (getter)Image_getImage, NULL, (char*)"image data", NULL},
	{(char*)"size", (getter)Image_getSize, NULL, (char*)"image size", NULL},
	{(char*)"scale", (getter)Image_getScale, (setter)Image_setScale, (char*)"fast scale of image (near neighbor)",	NULL},
	{(char*)"flip", (getter)Image_getFlip, (setter)Image_setFlip, (char*)"flip image vertically", NULL},
	{(char*)"zbuff", (getter)Image_getZbuff, (setter)Image_setZbuff, (char*)"use depth buffer as texture", NULL},
	{(char*)"depth", (getter)Image_getDepth, (setter)Image_setDepth, (char*)"get depth information from z-buffer using unsigned int precision", NULL},
	{(char*)"filter", (getter)Image_getFilter, (setter)Image_setFilter, (char*)"pixel filter", NULL},
	{NULL}
};


// constructor
ImageRender::ImageRender (KX_Scene *scene, KX_GameObject *observer, KX_GameObject *mirror, RAS_IPolyMaterial *mat) :
    ImageViewport(),
    m_render(false),
    m_done(false),
    m_scene(scene),
    m_offscreen(NULL),
    m_sync(NULL),
    m_observer(observer),
    m_mirror(mirror),
    m_clip(100.f)
{
	// this constructor is used for automatic planar mirror
	// create a camera, take all data by default, in any case we will recompute the frustum on each frame
	RAS_CameraData camdata;
	vector<RAS_TexVert*> mirrorVerts;
	vector<RAS_TexVert*>::iterator it;
	float mirrorArea = 0.f;
	float mirrorNormal[3] = {0.f, 0.f, 0.f};
	float mirrorUp[3];
	float dist, vec[3], axis[3];
	float zaxis[3] = {0.f, 0.f, 1.f};
	float yaxis[3] = {0.f, 1.f, 0.f};
	float mirrorMat[3][3];
	float left, right, top, bottom, back;
	// make sure this camera will delete its node
	m_camera= new KX_Camera(scene, KX_Scene::m_callbacks, camdata, true, true);
	m_camera->SetName("__mirror__cam__");
	// don't add the camera to the scene object list, it doesn't need to be accessible
	m_owncamera = true;
	// retrieve rendering objects
	m_engine = KX_GetActiveEngine();
	m_rasterizer = m_engine->GetRasterizer();
	m_canvas = m_engine->GetCanvas();
	// locate the vertex assigned to mat and do following calculation in mesh coordinates
	for (int meshIndex = 0; meshIndex < mirror->GetMeshCount(); meshIndex++)
	{
		RAS_MeshObject*	mesh = mirror->GetMesh(meshIndex);
		int numPolygons = mesh->NumPolygons();
		for (int polygonIndex=0; polygonIndex < numPolygons; polygonIndex++)
		{
			RAS_Polygon* polygon = mesh->GetPolygon(polygonIndex);
			if (polygon->GetMaterial()->GetPolyMaterial() == mat)
			{
				RAS_TexVert *v1, *v2, *v3, *v4;
				float normal[3];
				float area;
				// this polygon is part of the mirror
				v1 = polygon->GetVertex(0);
				v2 = polygon->GetVertex(1);
				v3 = polygon->GetVertex(2);
				mirrorVerts.push_back(v1);
				mirrorVerts.push_back(v2);
				mirrorVerts.push_back(v3);
				if (polygon->VertexCount() == 4) {
					v4 = polygon->GetVertex(3);
					mirrorVerts.push_back(v4);
					area = normal_quad_v3(normal,(float*)v1->getXYZ(), (float*)v2->getXYZ(), (float*)v3->getXYZ(), (float*)v4->getXYZ());
				}
				else {
					area = normal_tri_v3(normal,(float*)v1->getXYZ(), (float*)v2->getXYZ(), (float*)v3->getXYZ());
				}
				area = fabs(area);
				mirrorArea += area;
				mul_v3_fl(normal, area);
				add_v3_v3v3(mirrorNormal, mirrorNormal, normal);
			}
		}
	}
	if (mirrorVerts.size() == 0 || mirrorArea < FLT_EPSILON)
	{
		// no vertex or zero size mirror
		THRWEXCP(MirrorSizeInvalid, S_OK);
	}
	// compute average normal of mirror faces
	mul_v3_fl(mirrorNormal, 1.0f/mirrorArea);
	if (normalize_v3(mirrorNormal) == 0.f)
	{
		// no normal
		THRWEXCP(MirrorNormalInvalid, S_OK);
	}
	// the mirror plane has an equation of the type ax+by+cz = d where (a,b,c) is the normal vector
	// if the mirror is more vertical then horizontal, the Z axis is the up direction.
	// otherwise the Y axis is the up direction.
	// If the mirror is not perfectly vertical(horizontal), the Z(Y) axis projection on the mirror
	// plan by the normal will be the up direction.
	if (fabsf(mirrorNormal[2]) > fabsf(mirrorNormal[1]) &&
	    fabsf(mirrorNormal[2]) > fabsf(mirrorNormal[0]))
	{
		// the mirror is more horizontal than vertical
		copy_v3_v3(axis, yaxis);
	}
	else
	{
		// the mirror is more vertical than horizontal
		copy_v3_v3(axis, zaxis);
	}
	dist = dot_v3v3(mirrorNormal, axis);
	if (fabsf(dist) < FLT_EPSILON)
	{
		// the mirror is already fully aligned with up axis
		copy_v3_v3(mirrorUp, axis);
	}
	else
	{
		// projection of axis to mirror plane through normal
		copy_v3_v3(vec, mirrorNormal);
		mul_v3_fl(vec, dist);
		sub_v3_v3v3(mirrorUp, axis, vec);
		if (normalize_v3(mirrorUp) == 0.f)
		{
			// should not happen
			THRWEXCP(MirrorHorizontal, S_OK);
			return;
		}
	}
	// compute rotation matrix between local coord and mirror coord
	// to match camera orientation, we select mirror z = -normal, y = up, x = y x z
	negate_v3_v3(mirrorMat[2], mirrorNormal);
	copy_v3_v3(mirrorMat[1], mirrorUp);
	cross_v3_v3v3(mirrorMat[0], mirrorMat[1], mirrorMat[2]);
	// transpose to make it a orientation matrix from local space to mirror space
	transpose_m3(mirrorMat);
	// transform all vertex to plane coordinates and determine mirror position
	left = FLT_MAX;
	right = -FLT_MAX;
	bottom = FLT_MAX;
	top = -FLT_MAX;
	back = -FLT_MAX; // most backward vertex (=highest Z coord in mirror space)
	for (it = mirrorVerts.begin(); it != mirrorVerts.end(); it++)
	{
		copy_v3_v3(vec, (float*)(*it)->getXYZ());
		mul_m3_v3(mirrorMat, vec);
		if (vec[0] < left)
			left = vec[0];
		if (vec[0] > right)
			right = vec[0];
		if (vec[1] < bottom)
			bottom = vec[1];
		if (vec[1] > top)
			top = vec[1];
		if (vec[2] > back)
			back = vec[2];
	}
	// now store this information in the object for later rendering
	m_mirrorHalfWidth = (right-left)*0.5f;
	m_mirrorHalfHeight = (top-bottom)*0.5f;
	if (m_mirrorHalfWidth < 0.01f || m_mirrorHalfHeight < 0.01f)
	{
		// mirror too small
		THRWEXCP(MirrorTooSmall, S_OK);
	}
	// mirror position in mirror coord
	vec[0] = (left+right)*0.5f;
	vec[1] = (top+bottom)*0.5f;
	vec[2] = back;
	// convert it in local space: transpose again the matrix to get back to mirror to local transform
	transpose_m3(mirrorMat);
	mul_m3_v3(mirrorMat, vec);
	// mirror position in local space
	m_mirrorPos.setValue(vec[0], vec[1], vec[2]);
	// mirror normal vector (pointed towards the back of the mirror) in local space
	m_mirrorZ.setValue(-mirrorNormal[0], -mirrorNormal[1], -mirrorNormal[2]);
	m_mirrorY.setValue(mirrorUp[0], mirrorUp[1], mirrorUp[2]);
	m_mirrorX = m_mirrorY.cross(m_mirrorZ);
	m_render = true;

	// set mirror background color to scene background color as default
	setBackgroundFromScene(m_scene);
}




// define python type
PyTypeObject ImageMirrorType = {
	PyVarObject_HEAD_INIT(NULL, 0)
	"VideoTexture.ImageMirror",   /*tp_name*/
	sizeof(PyImage),          /*tp_basicsize*/
	0,                         /*tp_itemsize*/
	(destructor)Image_dealloc, /*tp_dealloc*/
	0,                         /*tp_print*/
	0,                         /*tp_getattr*/
	0,                         /*tp_setattr*/
	0,                         /*tp_compare*/
	0,                         /*tp_repr*/
	0,                         /*tp_as_number*/
	0,                         /*tp_as_sequence*/
	0,                         /*tp_as_mapping*/
	0,                         /*tp_hash */
	0,                         /*tp_call*/
	0,                         /*tp_str*/
	0,                         /*tp_getattro*/
	0,                         /*tp_setattro*/
	&imageBufferProcs,         /*tp_as_buffer*/
	Py_TPFLAGS_DEFAULT,        /*tp_flags*/
	"Image source from mirror",       /* tp_doc */
	0,		               /* tp_traverse */
	0,		               /* tp_clear */
	0,		               /* tp_richcompare */
	0,		               /* tp_weaklistoffset */
	0,		               /* tp_iter */
	0,		               /* tp_iternext */
	imageRenderMethods,    /* tp_methods */
	0,                   /* tp_members */
	imageMirrorGetSets,          /* tp_getset */
	0,                         /* tp_base */
	0,                         /* tp_dict */
	0,                         /* tp_descr_get */
	0,                         /* tp_descr_set */
	0,                         /* tp_dictoffset */
	(initproc)ImageMirror_init,     /* tp_init */
	0,                         /* tp_alloc */
	Image_allocNew,           /* tp_new */
};