Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.busybox.net/busybox.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'libbb/hash_sha1_x86-64.S.sh')
-rwxr-xr-xlibbb/hash_sha1_x86-64.S.sh478
1 files changed, 478 insertions, 0 deletions
diff --git a/libbb/hash_sha1_x86-64.S.sh b/libbb/hash_sha1_x86-64.S.sh
new file mode 100755
index 000000000..3fc125d51
--- /dev/null
+++ b/libbb/hash_sha1_x86-64.S.sh
@@ -0,0 +1,478 @@
+#!/bin/sh
+
+# We don't regenerate it on every "make" invocation - only by hand.
+# The reason is that the changes to generated code are difficult
+# to visualize by looking only at this script, it helps when the commit
+# also contains the diff of the generated file.
+exec >hash_sha1_x86-64.S
+
+# Based on http://arctic.org/~dean/crypto/sha1.html.
+# ("This SHA1 implementation is public domain.")
+#
+# x86-64 has at least SSE2 vector insns always available.
+# We can use them without any CPUID checks (and without a need
+# for a fallback code if needed insns are not available).
+# This code uses them to calculate W[] ahead of time.
+#
+# Unfortunately, results are passed from vector unit to
+# integer ALUs on the stack. MOVD/Q insns to move them directly
+# from vector to integer registers are slower than store-to-load
+# forwarding in LSU (on Skylake at least).
+#
+# The win against a purely integer code is small on Skylake,
+# only about 7-8%. We offload about 1/3 of our operations to the vector unit.
+# It can do 4 ops at once in one 128-bit register,
+# but we have to use x2 of them because of W[0] complication,
+# SSE2 has no "rotate each word by N bits" insns,
+# moving data to/from vector unit is clunky, and Skylake
+# has four integer ALUs unified with three vector ALUs,
+# which makes pure integer code rather fast, and makes
+# vector ops compete with integer ones.
+#
+# Zen3, with its separate vector ALUs, wins more, about 12%.
+
+xmmT1="%xmm4"
+xmmT2="%xmm5"
+xmmRCONST="%xmm6"
+xmmALLRCONST="%xmm7"
+T=`printf '\t'`
+
+# SSE instructions are longer than 4 bytes on average.
+# Intel CPUs (up to Tiger Lake at least) can't decode
+# more than 16 bytes of code in one cycle.
+# By interleaving SSE code and integer code
+# we mostly achieve a situation where 16-byte decode fetch window
+# contains 4 (or more) insns.
+#
+# However. On Skylake, there was no observed difference,
+# but on Zen3, non-interleaved code is ~3% faster
+# (822 Mb/s versus 795 Mb/s hashing speed).
+# Off for now:
+interleave=false
+
+INTERLEAVE() {
+ $interleave || \
+ {
+ # Generate non-interleaved code
+ # (it should work correctly too)
+ echo "$1"
+ echo "$2"
+ return
+ }
+ (
+ echo "$1" | grep -v '^$' >"$0.temp1"
+ echo "$2" | grep -v '^$' >"$0.temp2"
+ exec 3<"$0.temp1"
+ exec 4<"$0.temp2"
+ IFS=''
+ while :; do
+ line1=''
+ line2=''
+ while :; do
+ read -r line1 <&3
+ if test "${line1:0:1}" != "#" && test "${line1:0:2}" != "$T#"; then
+ break
+ fi
+ echo "$line1"
+ done
+ while :; do
+ read -r line2 <&4
+ if test "${line2:0:4}" = "${T}lea"; then
+ # We use 7-8 byte long forms of LEA.
+ # Do not interleave them with SSE insns
+ # which are also long.
+ echo "$line2"
+ read -r line2 <&4
+ echo "$line2"
+ continue
+ fi
+ if test "${line2:0:1}" != "#" && test "${line2:0:2}" != "$T#"; then
+ break
+ fi
+ echo "$line2"
+ done
+ test "$line1$line2" || break
+ echo "$line1"
+ echo "$line2"
+ done
+ rm "$0.temp1" "$0.temp2"
+ )
+}
+
+# movaps bswap32_mask(%rip), $xmmT1
+# Load W[] to xmm0..3, byteswapping on the fly.
+# For iterations 0..15, we pass RCONST+W[] in rsi,r8..r14
+# for use in RD1As instead of spilling them to stack.
+# (We use rsi instead of rN because this makes two
+# ADDs in two first RD1As shorter by one byte).
+# movups 16*0(%rdi), %xmm0
+# pshufb $xmmT1, %xmm0 #SSSE3 insn
+# movaps %xmm0, $xmmT2
+# paddd $xmmRCONST, $xmmT2
+# movq $xmmT2, %rsi
+# #pextrq \$1, $xmmT2, %r8 #SSE4.1 insn
+# #movhpd $xmmT2, %r8 #can only move to mem, not to reg
+# shufps \$0x0e, $xmmT2, $xmmT2 # have to use two-insn sequence
+# movq $xmmT2, %r8 # instead
+# ...
+# <repeat for xmm1,2,3>
+# ...
+#- leal $RCONST(%r$e,%rsi), %e$e # e += RCONST + W[n]
+#+ addl %esi, %e$e # e += RCONST + W[n]
+# ^^^^^^^^^^^^^^^^^^^^^^^^
+# The above is -97 bytes of code...
+# ...but pshufb is a SSSE3 insn. Can't use it.
+
+echo \
+"### Generated by hash_sha1_x86-64.S.sh ###
+
+#if CONFIG_SHA1_SMALL == 0 && defined(__GNUC__) && defined(__x86_64__)
+#ifdef __linux__
+ .section .note.GNU-stack, \"\", @progbits
+#endif
+ .section .text.sha1_process_block64, \"ax\", @progbits
+ .globl sha1_process_block64
+ .hidden sha1_process_block64
+ .type sha1_process_block64, @function
+
+ .balign 8 # allow decoders to fetch at least 5 first insns
+sha1_process_block64:
+ pushq %rbp # 1 byte insn
+ pushq %rbx # 1 byte insn
+# pushq %r15 # 2 byte insn
+ pushq %r14 # 2 byte insn
+ pushq %r13 # 2 byte insn
+ pushq %r12 # 2 byte insn
+ pushq %rdi # we need ctx at the end
+
+#Register and stack use:
+# eax..edx: a..d
+# ebp: e
+# esi,edi,r8..r14: temps
+# r15: unused
+# xmm0..xmm3: W[]
+# xmm4,xmm5: temps
+# xmm6: current round constant
+# xmm7: all round constants
+# -64(%rsp): area for passing RCONST + W[] from vector to integer units
+
+ movl 80(%rdi), %eax # a = ctx->hash[0]
+ movl 84(%rdi), %ebx # b = ctx->hash[1]
+ movl 88(%rdi), %ecx # c = ctx->hash[2]
+ movl 92(%rdi), %edx # d = ctx->hash[3]
+ movl 96(%rdi), %ebp # e = ctx->hash[4]
+
+ movaps sha1const(%rip), $xmmALLRCONST
+ pshufd \$0x00, $xmmALLRCONST, $xmmRCONST
+
+ # Load W[] to xmm0..3, byteswapping on the fly.
+ #
+ # For iterations 0..15, we pass W[] in rsi,r8..r14
+ # for use in RD1As instead of spilling them to stack.
+ # We lose parallelized addition of RCONST, but LEA
+ # can do two additions at once, so it is probably a wash.
+ # (We use rsi instead of rN because this makes two
+ # LEAs in two first RD1As shorter by one byte).
+ movq 4*0(%rdi), %rsi
+ movq 4*2(%rdi), %r8
+ bswapq %rsi
+ bswapq %r8
+ rolq \$32, %rsi # rsi = W[1]:W[0]
+ rolq \$32, %r8 # r8 = W[3]:W[2]
+ movq %rsi, %xmm0
+ movq %r8, $xmmT1
+ punpcklqdq $xmmT1, %xmm0 # xmm0 = r8:rsi = (W[0],W[1],W[2],W[3])
+# movaps %xmm0, $xmmT1 # add RCONST, spill to stack
+# paddd $xmmRCONST, $xmmT1
+# movups $xmmT1, -64+16*0(%rsp)
+
+ movq 4*4(%rdi), %r9
+ movq 4*6(%rdi), %r10
+ bswapq %r9
+ bswapq %r10
+ rolq \$32, %r9 # r9 = W[5]:W[4]
+ rolq \$32, %r10 # r10 = W[7]:W[6]
+ movq %r9, %xmm1
+ movq %r10, $xmmT1
+ punpcklqdq $xmmT1, %xmm1 # xmm1 = r10:r9 = (W[4],W[5],W[6],W[7])
+
+ movq 4*8(%rdi), %r11
+ movq 4*10(%rdi), %r12
+ bswapq %r11
+ bswapq %r12
+ rolq \$32, %r11 # r11 = W[9]:W[8]
+ rolq \$32, %r12 # r12 = W[11]:W[10]
+ movq %r11, %xmm2
+ movq %r12, $xmmT1
+ punpcklqdq $xmmT1, %xmm2 # xmm2 = r12:r11 = (W[8],W[9],W[10],W[11])
+
+ movq 4*12(%rdi), %r13
+ movq 4*14(%rdi), %r14
+ bswapq %r13
+ bswapq %r14
+ rolq \$32, %r13 # r13 = W[13]:W[12]
+ rolq \$32, %r14 # r14 = W[15]:W[14]
+ movq %r13, %xmm3
+ movq %r14, $xmmT1
+ punpcklqdq $xmmT1, %xmm3 # xmm3 = r14:r13 = (W[12],W[13],W[14],W[15])
+"
+
+PREP() {
+local xmmW0=$1
+local xmmW4=$2
+local xmmW8=$3
+local xmmW12=$4
+# the above must be %xmm0..3 in some permutation
+local dstmem=$5
+#W[0] = rol(W[13] ^ W[8] ^ W[2] ^ W[0], 1);
+#W[1] = rol(W[14] ^ W[9] ^ W[3] ^ W[1], 1);
+#W[2] = rol(W[15] ^ W[10] ^ W[4] ^ W[2], 1);
+#W[3] = rol( 0 ^ W[11] ^ W[5] ^ W[3], 1);
+#W[3] ^= rol(W[0], 1);
+echo "# PREP $@
+ movaps $xmmW12, $xmmT1
+ psrldq \$4, $xmmT1 # rshift by 4 bytes: T1 = ([13],[14],[15],0)
+
+# pshufd \$0x4e, $xmmW0, $xmmT2 # 01001110=2,3,0,1 shuffle, ([2],[3],x,x)
+# punpcklqdq $xmmW4, $xmmT2 # T2 = W4[0..63]:T2[0..63] = ([2],[3],[4],[5])
+# same result as above, but shorter and faster:
+# pshufd/shufps are subtly different: pshufd takes all dwords from source operand,
+# shufps takes dwords 0,1 from *2nd* operand, and dwords 2,3 from 1st one!
+ movaps $xmmW0, $xmmT2
+ shufps \$0x4e, $xmmW4, $xmmT2 # 01001110=(T2.dw[2], T2.dw[3], W4.dw[0], W4.dw[1]) = ([2],[3],[4],[5])
+
+ xorps $xmmW8, $xmmW0 # ([8],[9],[10],[11]) ^ ([0],[1],[2],[3])
+ xorps $xmmT1, $xmmT2 # ([13],[14],[15],0) ^ ([2],[3],[4],[5])
+ xorps $xmmT2, $xmmW0 # ^
+ # W0 = unrotated (W[0]..W[3]), still needs W[3] fixup
+ movaps $xmmW0, $xmmT2
+
+ xorps $xmmT1, $xmmT1 # rol(W0,1):
+ pcmpgtd $xmmW0, $xmmT1 # ffffffff for elements <0 (ones with msb bit 1)
+ paddd $xmmW0, $xmmW0 # shift left by 1
+ psubd $xmmT1, $xmmW0 # add 1 to those who had msb bit 1
+ # W0 = rotated (W[0]..W[3]), still needs W[3] fixup
+
+ pslldq \$12, $xmmT2 # lshift by 12 bytes: T2 = (0,0,0,unrotW[0])
+ movaps $xmmT2, $xmmT1
+ pslld \$2, $xmmT2
+ psrld \$30, $xmmT1
+# xorps $xmmT1, $xmmT2 # rol((0,0,0,unrotW[0]),2)
+ xorps $xmmT1, $xmmW0 # same result, but does not depend on/does not modify T2
+
+ xorps $xmmT2, $xmmW0 # W0 = rol(W[0]..W[3],1) ^ (0,0,0,rol(unrotW[0],2))
+"
+# movq $xmmW0, %r8 # high latency (~6 cycles)
+# movaps $xmmW0, $xmmT1
+# psrldq \$8, $xmmT1 # rshift by 8 bytes: move upper 64 bits to lower
+# movq $xmmT1, %r10 # high latency
+# movq %r8, %r9
+# movq %r10, %r11
+# shrq \$32, %r9
+# shrq \$32, %r11
+# ^^^ slower than passing the results on stack (!!!)
+echo "
+ movaps $xmmW0, $xmmT2
+ paddd $xmmRCONST, $xmmT2
+ movups $xmmT2, $dstmem
+"
+}
+
+# It's possible to interleave integer insns in rounds to mostly eliminate
+# dependency chains, but this likely to only help old Pentium-based
+# CPUs (ones without OOO, which can only simultaneously execute a pair
+# of _adjacent_ insns).
+# Testing on old-ish Silvermont CPU (which has OOO window of only
+# about ~8 insns) shows very small (~1%) speedup.
+
+RD1A() {
+local a=$1;local b=$2;local c=$3;local d=$4;local e=$5
+local n=$(($6))
+local n0=$(((n+0) & 15))
+local rN=$((7+n0/2))
+echo "
+# $n
+";test $n0 = 0 && echo "
+ leal $RCONST(%r$e,%rsi), %e$e # e += RCONST + W[n]
+ shrq \$32, %rsi
+";test $n0 = 1 && echo "
+ leal $RCONST(%r$e,%rsi), %e$e # e += RCONST + W[n]
+";test $n0 -ge 2 && test $((n0 & 1)) = 0 && echo "
+ leal $RCONST(%r$e,%r$rN), %e$e # e += RCONST + W[n]
+ shrq \$32, %r$rN
+";test $n0 -ge 2 && test $((n0 & 1)) = 1 && echo "
+ leal $RCONST(%r$e,%r$rN), %e$e # e += RCONST + W[n]
+";echo "
+ movl %e$c, %edi # c
+ xorl %e$d, %edi # ^d
+ andl %e$b, %edi # &b
+ xorl %e$d, %edi # (((c ^ d) & b) ^ d)
+ addl %edi, %e$e # e += (((c ^ d) & b) ^ d)
+ movl %e$a, %edi #
+ roll \$5, %edi # rotl32(a,5)
+ addl %edi, %e$e # e += rotl32(a,5)
+ rorl \$2, %e$b # b = rotl32(b,30)
+"
+}
+RD1B() {
+local a=$1;local b=$2;local c=$3;local d=$4;local e=$5
+local n=$(($6))
+local n13=$(((n+13) & 15))
+local n8=$(((n+8) & 15))
+local n2=$(((n+2) & 15))
+local n0=$(((n+0) & 15))
+echo "
+# $n
+ movl %e$c, %edi # c
+ xorl %e$d, %edi # ^d
+ andl %e$b, %edi # &b
+ xorl %e$d, %edi # (((c ^ d) & b) ^ d)
+ addl -64+4*$n0(%rsp), %e$e # e += RCONST + W[n & 15]
+ addl %edi, %e$e # e += (((c ^ d) & b) ^ d)
+ movl %e$a, %esi #
+ roll \$5, %esi # rotl32(a,5)
+ addl %esi, %e$e # e += rotl32(a,5)
+ rorl \$2, %e$b # b = rotl32(b,30)
+"
+}
+
+RD2() {
+local a=$1;local b=$2;local c=$3;local d=$4;local e=$5
+local n=$(($6))
+local n13=$(((n+13) & 15))
+local n8=$(((n+8) & 15))
+local n2=$(((n+2) & 15))
+local n0=$(((n+0) & 15))
+echo "
+# $n
+ movl %e$c, %edi # c
+ xorl %e$d, %edi # ^d
+ xorl %e$b, %edi # ^b
+ addl -64+4*$n0(%rsp), %e$e # e += RCONST + W[n & 15]
+ addl %edi, %e$e # e += (c ^ d ^ b)
+ movl %e$a, %esi #
+ roll \$5, %esi # rotl32(a,5)
+ addl %esi, %e$e # e += rotl32(a,5)
+ rorl \$2, %e$b # b = rotl32(b,30)
+"
+}
+
+RD3() {
+local a=$1;local b=$2;local c=$3;local d=$4;local e=$5
+local n=$(($6))
+local n13=$(((n+13) & 15))
+local n8=$(((n+8) & 15))
+local n2=$(((n+2) & 15))
+local n0=$(((n+0) & 15))
+echo "
+# $n
+ movl %e$b, %edi # di: b
+ movl %e$b, %esi # si: b
+ orl %e$c, %edi # di: b | c
+ andl %e$c, %esi # si: b & c
+ andl %e$d, %edi # di: (b | c) & d
+ orl %esi, %edi # ((b | c) & d) | (b & c)
+ addl %edi, %e$e # += ((b | c) & d) | (b & c)
+ addl -64+4*$n0(%rsp), %e$e # e += RCONST + W[n & 15]
+ movl %e$a, %esi #
+ roll \$5, %esi # rotl32(a,5)
+ addl %esi, %e$e # e += rotl32(a,5)
+ rorl \$2, %e$b # b = rotl32(b,30)
+"
+}
+
+{
+# Round 1
+RCONST=0x5A827999
+RD1A ax bx cx dx bp 0; RD1A bp ax bx cx dx 1; RD1A dx bp ax bx cx 2; RD1A cx dx bp ax bx 3;
+RD1A bx cx dx bp ax 4; RD1A ax bx cx dx bp 5; RD1A bp ax bx cx dx 6; RD1A dx bp ax bx cx 7;
+a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"`
+b=`RD1A cx dx bp ax bx 8; RD1A bx cx dx bp ax 9; RD1A ax bx cx dx bp 10; RD1A bp ax bx cx dx 11;`
+INTERLEAVE "$a" "$b"
+a=`echo " pshufd \\$0x55, $xmmALLRCONST, $xmmRCONST"
+ PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"`
+b=`RD1A dx bp ax bx cx 12; RD1A cx dx bp ax bx 13; RD1A bx cx dx bp ax 14; RD1A ax bx cx dx bp 15;`
+INTERLEAVE "$a" "$b"
+a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"`
+b=`RD1B bp ax bx cx dx 16; RD1B dx bp ax bx cx 17; RD1B cx dx bp ax bx 18; RD1B bx cx dx bp ax 19;`
+INTERLEAVE "$a" "$b"
+
+# Round 2
+RCONST=0x6ED9EBA1
+a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"`
+b=`RD2 ax bx cx dx bp 20; RD2 bp ax bx cx dx 21; RD2 dx bp ax bx cx 22; RD2 cx dx bp ax bx 23;`
+INTERLEAVE "$a" "$b"
+a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"`
+b=`RD2 bx cx dx bp ax 24; RD2 ax bx cx dx bp 25; RD2 bp ax bx cx dx 26; RD2 dx bp ax bx cx 27;`
+INTERLEAVE "$a" "$b"
+a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"`
+b=`RD2 cx dx bp ax bx 28; RD2 bx cx dx bp ax 29; RD2 ax bx cx dx bp 30; RD2 bp ax bx cx dx 31;`
+INTERLEAVE "$a" "$b"
+a=`echo " pshufd \\$0xaa, $xmmALLRCONST, $xmmRCONST"
+ PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"`
+b=`RD2 dx bp ax bx cx 32; RD2 cx dx bp ax bx 33; RD2 bx cx dx bp ax 34; RD2 ax bx cx dx bp 35;`
+INTERLEAVE "$a" "$b"
+a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"`
+b=`RD2 bp ax bx cx dx 36; RD2 dx bp ax bx cx 37; RD2 cx dx bp ax bx 38; RD2 bx cx dx bp ax 39;`
+INTERLEAVE "$a" "$b"
+
+# Round 3
+RCONST=0x8F1BBCDC
+a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"`
+b=`RD3 ax bx cx dx bp 40; RD3 bp ax bx cx dx 41; RD3 dx bp ax bx cx 42; RD3 cx dx bp ax bx 43;`
+INTERLEAVE "$a" "$b"
+a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"`
+b=`RD3 bx cx dx bp ax 44; RD3 ax bx cx dx bp 45; RD3 bp ax bx cx dx 46; RD3 dx bp ax bx cx 47;`
+INTERLEAVE "$a" "$b"
+a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"`
+b=`RD3 cx dx bp ax bx 48; RD3 bx cx dx bp ax 49; RD3 ax bx cx dx bp 50; RD3 bp ax bx cx dx 51;`
+INTERLEAVE "$a" "$b"
+a=`echo " pshufd \\$0xff, $xmmALLRCONST, $xmmRCONST"
+ PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"`
+b=`RD3 dx bp ax bx cx 52; RD3 cx dx bp ax bx 53; RD3 bx cx dx bp ax 54; RD3 ax bx cx dx bp 55;`
+INTERLEAVE "$a" "$b"
+a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"`
+b=`RD3 bp ax bx cx dx 56; RD3 dx bp ax bx cx 57; RD3 cx dx bp ax bx 58; RD3 bx cx dx bp ax 59;`
+INTERLEAVE "$a" "$b"
+
+# Round 4 has the same logic as round 2, only n and RCONST are different
+RCONST=0xCA62C1D6
+a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"`
+b=`RD2 ax bx cx dx bp 60; RD2 bp ax bx cx dx 61; RD2 dx bp ax bx cx 62; RD2 cx dx bp ax bx 63;`
+INTERLEAVE "$a" "$b"
+a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"`
+b=`RD2 bx cx dx bp ax 64; RD2 ax bx cx dx bp 65; RD2 bp ax bx cx dx 66; RD2 dx bp ax bx cx 67;`
+INTERLEAVE "$a" "$b"
+a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"`
+b=`RD2 cx dx bp ax bx 68; RD2 bx cx dx bp ax 69; RD2 ax bx cx dx bp 70; RD2 bp ax bx cx dx 71;`
+INTERLEAVE "$a" "$b"
+RD2 dx bp ax bx cx 72; RD2 cx dx bp ax bx 73; RD2 bx cx dx bp ax 74; RD2 ax bx cx dx bp 75;
+RD2 bp ax bx cx dx 76; RD2 dx bp ax bx cx 77; RD2 cx dx bp ax bx 78; RD2 bx cx dx bp ax 79;
+} | grep -v '^$'
+
+echo "
+ popq %rdi #
+ popq %r12 #
+ addl %eax, 80(%rdi) # ctx->hash[0] += a
+ popq %r13 #
+ addl %ebx, 84(%rdi) # ctx->hash[1] += b
+ popq %r14 #
+ addl %ecx, 88(%rdi) # ctx->hash[2] += c
+# popq %r15 #
+ addl %edx, 92(%rdi) # ctx->hash[3] += d
+ popq %rbx #
+ addl %ebp, 96(%rdi) # ctx->hash[4] += e
+ popq %rbp #
+
+ ret
+ .size sha1_process_block64, .-sha1_process_block64
+
+ .section .rodata.cst16.sha1const, \"aM\", @progbits, 16
+ .balign 16
+sha1const:
+ .long 0x5A827999
+ .long 0x6ED9EBA1
+ .long 0x8F1BBCDC
+ .long 0xCA62C1D6
+
+#endif"