Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/AlexGyver/Arduino_Ambilight.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Библиотеки/FastLED-master/colorutils.h')
-rw-r--r--Библиотеки/FastLED-master/colorutils.h1706
1 files changed, 1706 insertions, 0 deletions
diff --git a/Библиотеки/FastLED-master/colorutils.h b/Библиотеки/FastLED-master/colorutils.h
new file mode 100644
index 0000000..4fcf394
--- /dev/null
+++ b/Библиотеки/FastLED-master/colorutils.h
@@ -0,0 +1,1706 @@
+#ifndef __INC_COLORUTILS_H
+#define __INC_COLORUTILS_H
+
+///@file colorutils.h
+/// functions for color fill, paletters, blending, and more
+
+#include "FastLED.h"
+#include "pixeltypes.h"
+#include "fastled_progmem.h"
+
+FASTLED_NAMESPACE_BEGIN
+///@defgroup Colorutils Color utility functions
+///A variety of functions for working with color, palletes, and leds
+///@{
+
+/// fill_solid - fill a range of LEDs with a solid color
+/// Example: fill_solid( leds, NUM_LEDS, CRGB(50,0,200));
+void fill_solid( struct CRGB * leds, int numToFill,
+ const struct CRGB& color);
+
+/// fill_solid - fill a range of LEDs with a solid color
+/// Example: fill_solid( leds, NUM_LEDS, CRGB(50,0,200));
+void fill_solid( struct CHSV* targetArray, int numToFill,
+ const struct CHSV& hsvColor);
+
+
+/// fill_rainbow - fill a range of LEDs with a rainbow of colors, at
+/// full saturation and full value (brightness)
+void fill_rainbow( struct CRGB * pFirstLED, int numToFill,
+ uint8_t initialhue,
+ uint8_t deltahue = 5);
+
+/// fill_rainbow - fill a range of LEDs with a rainbow of colors, at
+/// full saturation and full value (brightness)
+void fill_rainbow( struct CHSV * targetArray, int numToFill,
+ uint8_t initialhue,
+ uint8_t deltahue = 5);
+
+
+// fill_gradient - fill an array of colors with a smooth HSV gradient
+// between two specified HSV colors.
+// Since 'hue' is a value around a color wheel,
+// there are always two ways to sweep from one hue
+// to another.
+// This function lets you specify which way you want
+// the hue gradient to sweep around the color wheel:
+// FORWARD_HUES: hue always goes clockwise
+// BACKWARD_HUES: hue always goes counter-clockwise
+// SHORTEST_HUES: hue goes whichever way is shortest
+// LONGEST_HUES: hue goes whichever way is longest
+// The default is SHORTEST_HUES, as this is nearly
+// always what is wanted.
+//
+// fill_gradient can write the gradient colors EITHER
+// (1) into an array of CRGBs (e.g., into leds[] array, or an RGB Palette)
+// OR
+// (2) into an array of CHSVs (e.g. an HSV Palette).
+//
+// In the case of writing into a CRGB array, the gradient is
+// computed in HSV space, and then HSV values are converted to RGB
+// as they're written into the RGB array.
+
+typedef enum { FORWARD_HUES, BACKWARD_HUES, SHORTEST_HUES, LONGEST_HUES } TGradientDirectionCode;
+
+
+
+#define saccum87 int16_t
+
+/// fill_gradient - fill an array of colors with a smooth HSV gradient
+/// between two specified HSV colors.
+/// Since 'hue' is a value around a color wheel,
+/// there are always two ways to sweep from one hue
+/// to another.
+/// This function lets you specify which way you want
+/// the hue gradient to sweep around the color wheel:
+///
+/// FORWARD_HUES: hue always goes clockwise
+/// BACKWARD_HUES: hue always goes counter-clockwise
+/// SHORTEST_HUES: hue goes whichever way is shortest
+/// LONGEST_HUES: hue goes whichever way is longest
+///
+/// The default is SHORTEST_HUES, as this is nearly
+/// always what is wanted.
+///
+/// fill_gradient can write the gradient colors EITHER
+/// (1) into an array of CRGBs (e.g., into leds[] array, or an RGB Palette)
+/// OR
+/// (2) into an array of CHSVs (e.g. an HSV Palette).
+///
+/// In the case of writing into a CRGB array, the gradient is
+/// computed in HSV space, and then HSV values are converted to RGB
+/// as they're written into the RGB array.
+template <typename T>
+void fill_gradient( T* targetArray,
+ uint16_t startpos, CHSV startcolor,
+ uint16_t endpos, CHSV endcolor,
+ TGradientDirectionCode directionCode = SHORTEST_HUES )
+{
+ // if the points are in the wrong order, straighten them
+ if( endpos < startpos ) {
+ uint16_t t = endpos;
+ CHSV tc = endcolor;
+ endcolor = startcolor;
+ endpos = startpos;
+ startpos = t;
+ startcolor = tc;
+ }
+
+ // If we're fading toward black (val=0) or white (sat=0),
+ // then set the endhue to the starthue.
+ // This lets us ramp smoothly to black or white, regardless
+ // of what 'hue' was set in the endcolor (since it doesn't matter)
+ if( endcolor.value == 0 || endcolor.saturation == 0) {
+ endcolor.hue = startcolor.hue;
+ }
+
+ // Similarly, if we're fading in from black (val=0) or white (sat=0)
+ // then set the starthue to the endhue.
+ // This lets us ramp smoothly up from black or white, regardless
+ // of what 'hue' was set in the startcolor (since it doesn't matter)
+ if( startcolor.value == 0 || startcolor.saturation == 0) {
+ startcolor.hue = endcolor.hue;
+ }
+
+ saccum87 huedistance87;
+ saccum87 satdistance87;
+ saccum87 valdistance87;
+
+ satdistance87 = (endcolor.sat - startcolor.sat) << 7;
+ valdistance87 = (endcolor.val - startcolor.val) << 7;
+
+ uint8_t huedelta8 = endcolor.hue - startcolor.hue;
+
+ if( directionCode == SHORTEST_HUES ) {
+ directionCode = FORWARD_HUES;
+ if( huedelta8 > 127) {
+ directionCode = BACKWARD_HUES;
+ }
+ }
+
+ if( directionCode == LONGEST_HUES ) {
+ directionCode = FORWARD_HUES;
+ if( huedelta8 < 128) {
+ directionCode = BACKWARD_HUES;
+ }
+ }
+
+ if( directionCode == FORWARD_HUES) {
+ huedistance87 = huedelta8 << 7;
+ }
+ else /* directionCode == BACKWARD_HUES */
+ {
+ huedistance87 = (uint8_t)(256 - huedelta8) << 7;
+ huedistance87 = -huedistance87;
+ }
+
+ uint16_t pixeldistance = endpos - startpos;
+ int16_t divisor = pixeldistance ? pixeldistance : 1;
+
+ saccum87 huedelta87 = huedistance87 / divisor;
+ saccum87 satdelta87 = satdistance87 / divisor;
+ saccum87 valdelta87 = valdistance87 / divisor;
+
+ huedelta87 *= 2;
+ satdelta87 *= 2;
+ valdelta87 *= 2;
+
+ accum88 hue88 = startcolor.hue << 8;
+ accum88 sat88 = startcolor.sat << 8;
+ accum88 val88 = startcolor.val << 8;
+ for( uint16_t i = startpos; i <= endpos; i++) {
+ targetArray[i] = CHSV( hue88 >> 8, sat88 >> 8, val88 >> 8);
+ hue88 += huedelta87;
+ sat88 += satdelta87;
+ val88 += valdelta87;
+ }
+}
+
+
+// Convenience functions to fill an array of colors with a
+// two-color, three-color, or four-color gradient
+template <typename T>
+void fill_gradient( T* targetArray, uint16_t numLeds, const CHSV& c1, const CHSV& c2,
+ TGradientDirectionCode directionCode = SHORTEST_HUES )
+{
+ uint16_t last = numLeds - 1;
+ fill_gradient( targetArray, 0, c1, last, c2, directionCode);
+}
+
+template <typename T>
+void fill_gradient( T* targetArray, uint16_t numLeds,
+ const CHSV& c1, const CHSV& c2, const CHSV& c3,
+ TGradientDirectionCode directionCode = SHORTEST_HUES )
+{
+ uint16_t half = (numLeds / 2);
+ uint16_t last = numLeds - 1;
+ fill_gradient( targetArray, 0, c1, half, c2, directionCode);
+ fill_gradient( targetArray, half, c2, last, c3, directionCode);
+}
+
+template <typename T>
+void fill_gradient( T* targetArray, uint16_t numLeds,
+ const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4,
+ TGradientDirectionCode directionCode = SHORTEST_HUES )
+{
+ uint16_t onethird = (numLeds / 3);
+ uint16_t twothirds = ((numLeds * 2) / 3);
+ uint16_t last = numLeds - 1;
+ fill_gradient( targetArray, 0, c1, onethird, c2, directionCode);
+ fill_gradient( targetArray, onethird, c2, twothirds, c3, directionCode);
+ fill_gradient( targetArray, twothirds, c3, last, c4, directionCode);
+}
+
+// convenience synonym
+#define fill_gradient_HSV fill_gradient
+
+
+// fill_gradient_RGB - fill a range of LEDs with a smooth RGB gradient
+// between two specified RGB colors.
+// Unlike HSV, there is no 'color wheel' in RGB space,
+// and therefore there's only one 'direction' for the
+// gradient to go, and no 'direction code' is needed.
+void fill_gradient_RGB( CRGB* leds,
+ uint16_t startpos, CRGB startcolor,
+ uint16_t endpos, CRGB endcolor );
+void fill_gradient_RGB( CRGB* leds, uint16_t numLeds, const CRGB& c1, const CRGB& c2);
+void fill_gradient_RGB( CRGB* leds, uint16_t numLeds, const CRGB& c1, const CRGB& c2, const CRGB& c3);
+void fill_gradient_RGB( CRGB* leds, uint16_t numLeds, const CRGB& c1, const CRGB& c2, const CRGB& c3, const CRGB& c4);
+
+
+// fadeLightBy and fade_video - reduce the brightness of an array
+// of pixels all at once. Guaranteed
+// to never fade all the way to black.
+// (The two names are synonyms.)
+void fadeLightBy( CRGB* leds, uint16_t num_leds, uint8_t fadeBy);
+void fade_video( CRGB* leds, uint16_t num_leds, uint8_t fadeBy);
+
+// nscale8_video - scale down the brightness of an array of pixels
+// all at once. Guaranteed to never scale a pixel
+// all the way down to black, unless 'scale' is zero.
+void nscale8_video( CRGB* leds, uint16_t num_leds, uint8_t scale);
+
+// fadeToBlackBy and fade_raw - reduce the brightness of an array
+// of pixels all at once. These
+// functions will eventually fade all
+// the way to black.
+// (The two names are synonyms.)
+void fadeToBlackBy( CRGB* leds, uint16_t num_leds, uint8_t fadeBy);
+void fade_raw( CRGB* leds, uint16_t num_leds, uint8_t fadeBy);
+
+// nscale8 - scale down the brightness of an array of pixels
+// all at once. This function can scale pixels all the
+// way down to black even if 'scale' is not zero.
+void nscale8( CRGB* leds, uint16_t num_leds, uint8_t scale);
+
+// fadeUsingColor - scale down the brightness of an array of pixels,
+// as though it were seen through a transparent
+// filter with the specified color.
+// For example, if the colormask is
+// CRGB( 200, 100, 50)
+// then the pixels' red will be faded to 200/256ths,
+// their green to 100/256ths, and their blue to 50/256ths.
+// This particular example give a 'hot fade' look,
+// with white fading to yellow, then red, then black.
+// You can also use colormasks like CRGB::Blue to
+// zero out the red and green elements, leaving blue
+// (largely) the same.
+void fadeUsingColor( CRGB* leds, uint16_t numLeds, const CRGB& colormask);
+
+
+// Pixel blending
+//
+// blend - computes a new color blended some fraction of the way
+// between two other colors.
+CRGB blend( const CRGB& p1, const CRGB& p2, fract8 amountOfP2 );
+
+CHSV blend( const CHSV& p1, const CHSV& p2, fract8 amountOfP2,
+ TGradientDirectionCode directionCode = SHORTEST_HUES );
+
+// blend - computes a new color blended array of colors, each
+// a given fraction of the way between corresponding
+// elements of two source arrays of colors.
+// Useful for blending palettes.
+CRGB* blend( const CRGB* src1, const CRGB* src2, CRGB* dest,
+ uint16_t count, fract8 amountOfsrc2 );
+
+CHSV* blend( const CHSV* src1, const CHSV* src2, CHSV* dest,
+ uint16_t count, fract8 amountOfsrc2,
+ TGradientDirectionCode directionCode = SHORTEST_HUES );
+
+// nblend - destructively modifies one color, blending
+// in a given fraction of an overlay color
+CRGB& nblend( CRGB& existing, const CRGB& overlay, fract8 amountOfOverlay );
+
+CHSV& nblend( CHSV& existing, const CHSV& overlay, fract8 amountOfOverlay,
+ TGradientDirectionCode directionCode = SHORTEST_HUES );
+
+// nblend - destructively blends a given fraction of
+// a new color array into an existing color array
+void nblend( CRGB* existing, CRGB* overlay, uint16_t count, fract8 amountOfOverlay);
+
+void nblend( CHSV* existing, CHSV* overlay, uint16_t count, fract8 amountOfOverlay,
+ TGradientDirectionCode directionCode = SHORTEST_HUES);
+
+
+// blur1d: one-dimensional blur filter. Spreads light to 2 line neighbors.
+// blur2d: two-dimensional blur filter. Spreads light to 8 XY neighbors.
+//
+// 0 = no spread at all
+// 64 = moderate spreading
+// 172 = maximum smooth, even spreading
+//
+// 173..255 = wider spreading, but increasing flicker
+//
+// Total light is NOT entirely conserved, so many repeated
+// calls to 'blur' will also result in the light fading,
+// eventually all the way to black; this is by design so that
+// it can be used to (slowly) clear the LEDs to black.
+void blur1d( CRGB* leds, uint16_t numLeds, fract8 blur_amount);
+void blur2d( CRGB* leds, uint8_t width, uint8_t height, fract8 blur_amount);
+
+// blurRows: perform a blur1d on every row of a rectangular matrix
+void blurRows( CRGB* leds, uint8_t width, uint8_t height, fract8 blur_amount);
+// blurColumns: perform a blur1d on each column of a rectangular matrix
+void blurColumns(CRGB* leds, uint8_t width, uint8_t height, fract8 blur_amount);
+
+
+// CRGB HeatColor( uint8_t temperature)
+//
+// Approximates a 'black body radiation' spectrum for
+// a given 'heat' level. This is useful for animations of 'fire'.
+// Heat is specified as an arbitrary scale from 0 (cool) to 255 (hot).
+// This is NOT a chromatically correct 'black body radiation'
+// spectrum, but it's surprisingly close, and it's fast and small.
+CRGB HeatColor( uint8_t temperature);
+
+
+// Palettes
+//
+// RGB Palettes map an 8-bit value (0..255) to an RGB color.
+//
+// You can create any color palette you wish; a couple of starters
+// are provided: Forest, Clouds, Lava, Ocean, Rainbow, and Rainbow Stripes.
+//
+// Palettes come in the traditional 256-entry variety, which take
+// up 768 bytes of RAM, and lightweight 16-entry varieties. The 16-entry
+// variety automatically interpolates between its entries to produce
+// a full 256-element color map, but at a cost of only 48 bytes or RAM.
+//
+// Basic operation is like this: (example shows the 16-entry variety)
+// 1. Declare your palette storage:
+// CRGBPalette16 myPalette;
+//
+// 2. Fill myPalette with your own 16 colors, or with a preset color scheme.
+// You can specify your 16 colors a variety of ways:
+// CRGBPalette16 myPalette(
+// CRGB::Black,
+// CRGB::Black,
+// CRGB::Red,
+// CRGB::Yellow,
+// CRGB::Green,
+// CRGB::Blue,
+// CRGB::Purple,
+// CRGB::Black,
+//
+// 0x100000,
+// 0x200000,
+// 0x400000,
+// 0x800000,
+//
+// CHSV( 30,255,255),
+// CHSV( 50,255,255),
+// CHSV( 70,255,255),
+// CHSV( 90,255,255)
+// );
+//
+// Or you can initiaize your palette with a preset color scheme:
+// myPalette = RainbowStripesColors_p;
+//
+// 3. Any time you want to set a pixel to a color from your palette, use
+// "ColorFromPalette(...)" as shown:
+//
+// uint8_t index = /* any value 0..255 */;
+// leds[i] = ColorFromPalette( myPalette, index);
+//
+// Even though your palette has only 16 explicily defined entries, you
+// can use an 'index' from 0..255. The 16 explicit palette entries will
+// be spread evenly across the 0..255 range, and the intermedate values
+// will be RGB-interpolated between adjacent explicit entries.
+//
+// It's easier to use than it sounds.
+//
+
+class CRGBPalette16;
+class CRGBPalette32;
+class CRGBPalette256;
+class CHSVPalette16;
+class CHSVPalette32;
+class CHSVPalette256;
+typedef uint32_t TProgmemRGBPalette16[16];
+typedef uint32_t TProgmemHSVPalette16[16];
+#define TProgmemPalette16 TProgmemRGBPalette16
+typedef uint32_t TProgmemRGBPalette32[32];
+typedef uint32_t TProgmemHSVPalette32[32];
+#define TProgmemPalette32 TProgmemRGBPalette32
+
+typedef const uint8_t TProgmemRGBGradientPalette_byte ;
+typedef const TProgmemRGBGradientPalette_byte *TProgmemRGBGradientPalette_bytes;
+typedef TProgmemRGBGradientPalette_bytes TProgmemRGBGradientPalettePtr;
+typedef union {
+ struct {
+ uint8_t index;
+ uint8_t r;
+ uint8_t g;
+ uint8_t b;
+ };
+ uint32_t dword;
+ uint8_t bytes[4];
+} TRGBGradientPaletteEntryUnion;
+
+typedef uint8_t TDynamicRGBGradientPalette_byte ;
+typedef const TDynamicRGBGradientPalette_byte *TDynamicRGBGradientPalette_bytes;
+typedef TDynamicRGBGradientPalette_bytes TDynamicRGBGradientPalettePtr;
+
+// Convert a 16-entry palette to a 256-entry palette
+void UpscalePalette(const struct CRGBPalette16& srcpal16, struct CRGBPalette256& destpal256);
+void UpscalePalette(const struct CHSVPalette16& srcpal16, struct CHSVPalette256& destpal256);
+
+// Convert a 16-entry palette to a 32-entry palette
+void UpscalePalette(const struct CRGBPalette16& srcpal16, struct CRGBPalette32& destpal32);
+void UpscalePalette(const struct CHSVPalette16& srcpal16, struct CHSVPalette32& destpal32);
+
+// Convert a 32-entry palette to a 256-entry palette
+void UpscalePalette(const struct CRGBPalette32& srcpal32, struct CRGBPalette256& destpal256);
+void UpscalePalette(const struct CHSVPalette32& srcpal32, struct CHSVPalette256& destpal256);
+
+
+class CHSVPalette16 {
+public:
+ CHSV entries[16];
+ CHSVPalette16() {};
+ CHSVPalette16( const CHSV& c00,const CHSV& c01,const CHSV& c02,const CHSV& c03,
+ const CHSV& c04,const CHSV& c05,const CHSV& c06,const CHSV& c07,
+ const CHSV& c08,const CHSV& c09,const CHSV& c10,const CHSV& c11,
+ const CHSV& c12,const CHSV& c13,const CHSV& c14,const CHSV& c15 )
+ {
+ entries[0]=c00; entries[1]=c01; entries[2]=c02; entries[3]=c03;
+ entries[4]=c04; entries[5]=c05; entries[6]=c06; entries[7]=c07;
+ entries[8]=c08; entries[9]=c09; entries[10]=c10; entries[11]=c11;
+ entries[12]=c12; entries[13]=c13; entries[14]=c14; entries[15]=c15;
+ };
+
+ CHSVPalette16( const CHSVPalette16& rhs)
+ {
+ memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
+ }
+ CHSVPalette16& operator=( const CHSVPalette16& rhs)
+ {
+ memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
+ return *this;
+ }
+
+ CHSVPalette16( const TProgmemHSVPalette16& rhs)
+ {
+ for( uint8_t i = 0; i < 16; i++) {
+ CRGB xyz = FL_PGM_READ_DWORD_NEAR( rhs + i);
+ entries[i].hue = xyz.red;
+ entries[i].sat = xyz.green;
+ entries[i].val = xyz.blue;
+ }
+ }
+ CHSVPalette16& operator=( const TProgmemHSVPalette16& rhs)
+ {
+ for( uint8_t i = 0; i < 16; i++) {
+ CRGB xyz = FL_PGM_READ_DWORD_NEAR( rhs + i);
+ entries[i].hue = xyz.red;
+ entries[i].sat = xyz.green;
+ entries[i].val = xyz.blue;
+ }
+ return *this;
+ }
+
+ inline CHSV& operator[] (uint8_t x) __attribute__((always_inline))
+ {
+ return entries[x];
+ }
+ inline const CHSV& operator[] (uint8_t x) const __attribute__((always_inline))
+ {
+ return entries[x];
+ }
+
+ inline CHSV& operator[] (int x) __attribute__((always_inline))
+ {
+ return entries[(uint8_t)x];
+ }
+ inline const CHSV& operator[] (int x) const __attribute__((always_inline))
+ {
+ return entries[(uint8_t)x];
+ }
+
+ operator CHSV*()
+ {
+ return &(entries[0]);
+ }
+
+ bool operator==( const CHSVPalette16 rhs)
+ {
+ const uint8_t* p = (const uint8_t*)(&(this->entries[0]));
+ const uint8_t* q = (const uint8_t*)(&(rhs.entries[0]));
+ if( p == q) return true;
+ for( uint8_t i = 0; i < (sizeof( entries)); i++) {
+ if( *p != *q) return false;
+ p++;
+ q++;
+ }
+ return true;
+ }
+ bool operator!=( const CHSVPalette16 rhs)
+ {
+ return !( *this == rhs);
+ }
+
+ CHSVPalette16( const CHSV& c1)
+ {
+ fill_solid( &(entries[0]), 16, c1);
+ }
+ CHSVPalette16( const CHSV& c1, const CHSV& c2)
+ {
+ fill_gradient( &(entries[0]), 16, c1, c2);
+ }
+ CHSVPalette16( const CHSV& c1, const CHSV& c2, const CHSV& c3)
+ {
+ fill_gradient( &(entries[0]), 16, c1, c2, c3);
+ }
+ CHSVPalette16( const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4)
+ {
+ fill_gradient( &(entries[0]), 16, c1, c2, c3, c4);
+ }
+
+};
+
+class CHSVPalette256 {
+public:
+ CHSV entries[256];
+ CHSVPalette256() {};
+ CHSVPalette256( const CHSV& c00,const CHSV& c01,const CHSV& c02,const CHSV& c03,
+ const CHSV& c04,const CHSV& c05,const CHSV& c06,const CHSV& c07,
+ const CHSV& c08,const CHSV& c09,const CHSV& c10,const CHSV& c11,
+ const CHSV& c12,const CHSV& c13,const CHSV& c14,const CHSV& c15 )
+ {
+ CHSVPalette16 p16(c00,c01,c02,c03,c04,c05,c06,c07,
+ c08,c09,c10,c11,c12,c13,c14,c15);
+ *this = p16;
+ };
+
+ CHSVPalette256( const CHSVPalette256& rhs)
+ {
+ memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
+ }
+ CHSVPalette256& operator=( const CHSVPalette256& rhs)
+ {
+ memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
+ return *this;
+ }
+
+ CHSVPalette256( const CHSVPalette16& rhs16)
+ {
+ UpscalePalette( rhs16, *this);
+ }
+ CHSVPalette256& operator=( const CHSVPalette16& rhs16)
+ {
+ UpscalePalette( rhs16, *this);
+ return *this;
+ }
+
+ CHSVPalette256( const TProgmemRGBPalette16& rhs)
+ {
+ CHSVPalette16 p16(rhs);
+ *this = p16;
+ }
+ CHSVPalette256& operator=( const TProgmemRGBPalette16& rhs)
+ {
+ CHSVPalette16 p16(rhs);
+ *this = p16;
+ return *this;
+ }
+
+ inline CHSV& operator[] (uint8_t x) __attribute__((always_inline))
+ {
+ return entries[x];
+ }
+ inline const CHSV& operator[] (uint8_t x) const __attribute__((always_inline))
+ {
+ return entries[x];
+ }
+
+ inline CHSV& operator[] (int x) __attribute__((always_inline))
+ {
+ return entries[(uint8_t)x];
+ }
+ inline const CHSV& operator[] (int x) const __attribute__((always_inline))
+ {
+ return entries[(uint8_t)x];
+ }
+
+ operator CHSV*()
+ {
+ return &(entries[0]);
+ }
+
+ bool operator==( const CHSVPalette256 rhs)
+ {
+ const uint8_t* p = (const uint8_t*)(&(this->entries[0]));
+ const uint8_t* q = (const uint8_t*)(&(rhs.entries[0]));
+ if( p == q) return true;
+ for( uint16_t i = 0; i < (sizeof( entries)); i++) {
+ if( *p != *q) return false;
+ p++;
+ q++;
+ }
+ return true;
+ }
+ bool operator!=( const CHSVPalette256 rhs)
+ {
+ return !( *this == rhs);
+ }
+
+ CHSVPalette256( const CHSV& c1)
+ {
+ fill_solid( &(entries[0]), 256, c1);
+ }
+ CHSVPalette256( const CHSV& c1, const CHSV& c2)
+ {
+ fill_gradient( &(entries[0]), 256, c1, c2);
+ }
+ CHSVPalette256( const CHSV& c1, const CHSV& c2, const CHSV& c3)
+ {
+ fill_gradient( &(entries[0]), 256, c1, c2, c3);
+ }
+ CHSVPalette256( const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4)
+ {
+ fill_gradient( &(entries[0]), 256, c1, c2, c3, c4);
+ }
+};
+
+class CRGBPalette16 {
+public:
+ CRGB entries[16];
+ CRGBPalette16() {};
+ CRGBPalette16( const CRGB& c00,const CRGB& c01,const CRGB& c02,const CRGB& c03,
+ const CRGB& c04,const CRGB& c05,const CRGB& c06,const CRGB& c07,
+ const CRGB& c08,const CRGB& c09,const CRGB& c10,const CRGB& c11,
+ const CRGB& c12,const CRGB& c13,const CRGB& c14,const CRGB& c15 )
+ {
+ entries[0]=c00; entries[1]=c01; entries[2]=c02; entries[3]=c03;
+ entries[4]=c04; entries[5]=c05; entries[6]=c06; entries[7]=c07;
+ entries[8]=c08; entries[9]=c09; entries[10]=c10; entries[11]=c11;
+ entries[12]=c12; entries[13]=c13; entries[14]=c14; entries[15]=c15;
+ };
+
+ CRGBPalette16( const CRGBPalette16& rhs)
+ {
+ memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
+ }
+ CRGBPalette16( const CRGB rhs[16])
+ {
+ memmove8( &(entries[0]), &(rhs[0]), sizeof( entries));
+ }
+ CRGBPalette16& operator=( const CRGBPalette16& rhs)
+ {
+ memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
+ return *this;
+ }
+ CRGBPalette16& operator=( const CRGB rhs[16])
+ {
+ memmove8( &(entries[0]), &(rhs[0]), sizeof( entries));
+ return *this;
+ }
+
+ CRGBPalette16( const CHSVPalette16& rhs)
+ {
+ for( uint8_t i = 0; i < 16; i++) {
+ entries[i] = rhs.entries[i]; // implicit HSV-to-RGB conversion
+ }
+ }
+ CRGBPalette16( const CHSV rhs[16])
+ {
+ for( uint8_t i = 0; i < 16; i++) {
+ entries[i] = rhs[i]; // implicit HSV-to-RGB conversion
+ }
+ }
+ CRGBPalette16& operator=( const CHSVPalette16& rhs)
+ {
+ for( uint8_t i = 0; i < 16; i++) {
+ entries[i] = rhs.entries[i]; // implicit HSV-to-RGB conversion
+ }
+ return *this;
+ }
+ CRGBPalette16& operator=( const CHSV rhs[16])
+ {
+ for( uint8_t i = 0; i < 16; i++) {
+ entries[i] = rhs[i]; // implicit HSV-to-RGB conversion
+ }
+ return *this;
+ }
+
+ CRGBPalette16( const TProgmemRGBPalette16& rhs)
+ {
+ for( uint8_t i = 0; i < 16; i++) {
+ entries[i] = FL_PGM_READ_DWORD_NEAR( rhs + i);
+ }
+ }
+ CRGBPalette16& operator=( const TProgmemRGBPalette16& rhs)
+ {
+ for( uint8_t i = 0; i < 16; i++) {
+ entries[i] = FL_PGM_READ_DWORD_NEAR( rhs + i);
+ }
+ return *this;
+ }
+
+ bool operator==( const CRGBPalette16 rhs)
+ {
+ const uint8_t* p = (const uint8_t*)(&(this->entries[0]));
+ const uint8_t* q = (const uint8_t*)(&(rhs.entries[0]));
+ if( p == q) return true;
+ for( uint8_t i = 0; i < (sizeof( entries)); i++) {
+ if( *p != *q) return false;
+ p++;
+ q++;
+ }
+ return true;
+ }
+ bool operator!=( const CRGBPalette16 rhs)
+ {
+ return !( *this == rhs);
+ }
+
+ inline CRGB& operator[] (uint8_t x) __attribute__((always_inline))
+ {
+ return entries[x];
+ }
+ inline const CRGB& operator[] (uint8_t x) const __attribute__((always_inline))
+ {
+ return entries[x];
+ }
+
+ inline CRGB& operator[] (int x) __attribute__((always_inline))
+ {
+ return entries[(uint8_t)x];
+ }
+ inline const CRGB& operator[] (int x) const __attribute__((always_inline))
+ {
+ return entries[(uint8_t)x];
+ }
+
+ operator CRGB*()
+ {
+ return &(entries[0]);
+ }
+
+ CRGBPalette16( const CHSV& c1)
+ {
+ fill_solid( &(entries[0]), 16, c1);
+ }
+ CRGBPalette16( const CHSV& c1, const CHSV& c2)
+ {
+ fill_gradient( &(entries[0]), 16, c1, c2);
+ }
+ CRGBPalette16( const CHSV& c1, const CHSV& c2, const CHSV& c3)
+ {
+ fill_gradient( &(entries[0]), 16, c1, c2, c3);
+ }
+ CRGBPalette16( const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4)
+ {
+ fill_gradient( &(entries[0]), 16, c1, c2, c3, c4);
+ }
+
+ CRGBPalette16( const CRGB& c1)
+ {
+ fill_solid( &(entries[0]), 16, c1);
+ }
+ CRGBPalette16( const CRGB& c1, const CRGB& c2)
+ {
+ fill_gradient_RGB( &(entries[0]), 16, c1, c2);
+ }
+ CRGBPalette16( const CRGB& c1, const CRGB& c2, const CRGB& c3)
+ {
+ fill_gradient_RGB( &(entries[0]), 16, c1, c2, c3);
+ }
+ CRGBPalette16( const CRGB& c1, const CRGB& c2, const CRGB& c3, const CRGB& c4)
+ {
+ fill_gradient_RGB( &(entries[0]), 16, c1, c2, c3, c4);
+ }
+
+
+ // Gradient palettes are loaded into CRGB16Palettes in such a way
+ // that, if possible, every color represented in the gradient palette
+ // is also represented in the CRGBPalette16.
+ // For example, consider a gradient palette that is all black except
+ // for a single, one-element-wide (1/256th!) spike of red in the middle:
+ // 0, 0,0,0
+ // 124, 0,0,0
+ // 125, 255,0,0 // one 1/256th-palette-wide red stripe
+ // 126, 0,0,0
+ // 255, 0,0,0
+ // A naive conversion of this 256-element palette to a 16-element palette
+ // might accidentally completely eliminate the red spike, rendering the
+ // palette completely black.
+ // However, the conversions provided here would attempt to include a
+ // the red stripe in the output, more-or-less as faithfully as possible.
+ // So in this case, the resulting CRGBPalette16 palette would have a red
+ // stripe in the middle which was 1/16th of a palette wide -- the
+ // narrowest possible in a CRGBPalette16.
+ // This means that the relative width of stripes in a CRGBPalette16
+ // will be, by definition, different from the widths in the gradient
+ // palette. This code attempts to preserve "all the colors", rather than
+ // the exact stripe widths at the expense of dropping some colors.
+ CRGBPalette16( TProgmemRGBGradientPalette_bytes progpal )
+ {
+ *this = progpal;
+ }
+ CRGBPalette16& operator=( TProgmemRGBGradientPalette_bytes progpal )
+ {
+ TRGBGradientPaletteEntryUnion* progent = (TRGBGradientPaletteEntryUnion*)(progpal);
+ TRGBGradientPaletteEntryUnion u;
+
+ // Count entries
+ uint16_t count = 0;
+ do {
+ u.dword = FL_PGM_READ_DWORD_NEAR(progent + count);
+ count++;;
+ } while ( u.index != 255);
+
+ int8_t lastSlotUsed = -1;
+
+ u.dword = FL_PGM_READ_DWORD_NEAR( progent);
+ CRGB rgbstart( u.r, u.g, u.b);
+
+ int indexstart = 0;
+ uint8_t istart8 = 0;
+ uint8_t iend8 = 0;
+ while( indexstart < 255) {
+ progent++;
+ u.dword = FL_PGM_READ_DWORD_NEAR( progent);
+ int indexend = u.index;
+ CRGB rgbend( u.r, u.g, u.b);
+ istart8 = indexstart / 16;
+ iend8 = indexend / 16;
+ if( count < 16) {
+ if( (istart8 <= lastSlotUsed) && (lastSlotUsed < 15)) {
+ istart8 = lastSlotUsed + 1;
+ if( iend8 < istart8) {
+ iend8 = istart8;
+ }
+ }
+ lastSlotUsed = iend8;
+ }
+ fill_gradient_RGB( &(entries[0]), istart8, rgbstart, iend8, rgbend);
+ indexstart = indexend;
+ rgbstart = rgbend;
+ }
+ return *this;
+ }
+ CRGBPalette16& loadDynamicGradientPalette( TDynamicRGBGradientPalette_bytes gpal )
+ {
+ TRGBGradientPaletteEntryUnion* ent = (TRGBGradientPaletteEntryUnion*)(gpal);
+ TRGBGradientPaletteEntryUnion u;
+
+ // Count entries
+ uint16_t count = 0;
+ do {
+ u = *(ent + count);
+ count++;;
+ } while ( u.index != 255);
+
+ int8_t lastSlotUsed = -1;
+
+
+ u = *ent;
+ CRGB rgbstart( u.r, u.g, u.b);
+
+ int indexstart = 0;
+ uint8_t istart8 = 0;
+ uint8_t iend8 = 0;
+ while( indexstart < 255) {
+ ent++;
+ u = *ent;
+ int indexend = u.index;
+ CRGB rgbend( u.r, u.g, u.b);
+ istart8 = indexstart / 16;
+ iend8 = indexend / 16;
+ if( count < 16) {
+ if( (istart8 <= lastSlotUsed) && (lastSlotUsed < 15)) {
+ istart8 = lastSlotUsed + 1;
+ if( iend8 < istart8) {
+ iend8 = istart8;
+ }
+ }
+ lastSlotUsed = iend8;
+ }
+ fill_gradient_RGB( &(entries[0]), istart8, rgbstart, iend8, rgbend);
+ indexstart = indexend;
+ rgbstart = rgbend;
+ }
+ return *this;
+ }
+
+};
+
+
+
+class CHSVPalette32 {
+public:
+ CHSV entries[32];
+ CHSVPalette32() {};
+ CHSVPalette32( const CHSV& c00,const CHSV& c01,const CHSV& c02,const CHSV& c03,
+ const CHSV& c04,const CHSV& c05,const CHSV& c06,const CHSV& c07,
+ const CHSV& c08,const CHSV& c09,const CHSV& c10,const CHSV& c11,
+ const CHSV& c12,const CHSV& c13,const CHSV& c14,const CHSV& c15 )
+ {
+ for( uint8_t i = 0; i < 2; i++) {
+ entries[0+i]=c00; entries[2+i]=c01; entries[4+i]=c02; entries[6+i]=c03;
+ entries[8+i]=c04; entries[10+i]=c05; entries[12+i]=c06; entries[14+i]=c07;
+ entries[16+i]=c08; entries[18+i]=c09; entries[20+i]=c10; entries[22+i]=c11;
+ entries[24+i]=c12; entries[26+i]=c13; entries[28+i]=c14; entries[30+i]=c15;
+ }
+ };
+
+ CHSVPalette32( const CHSVPalette32& rhs)
+ {
+ memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
+ }
+ CHSVPalette32& operator=( const CHSVPalette32& rhs)
+ {
+ memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
+ return *this;
+ }
+
+ CHSVPalette32( const TProgmemHSVPalette32& rhs)
+ {
+ for( uint8_t i = 0; i < 32; i++) {
+ CRGB xyz = FL_PGM_READ_DWORD_NEAR( rhs + i);
+ entries[i].hue = xyz.red;
+ entries[i].sat = xyz.green;
+ entries[i].val = xyz.blue;
+ }
+ }
+ CHSVPalette32& operator=( const TProgmemHSVPalette32& rhs)
+ {
+ for( uint8_t i = 0; i < 32; i++) {
+ CRGB xyz = FL_PGM_READ_DWORD_NEAR( rhs + i);
+ entries[i].hue = xyz.red;
+ entries[i].sat = xyz.green;
+ entries[i].val = xyz.blue;
+ }
+ return *this;
+ }
+
+ inline CHSV& operator[] (uint8_t x) __attribute__((always_inline))
+ {
+ return entries[x];
+ }
+ inline const CHSV& operator[] (uint8_t x) const __attribute__((always_inline))
+ {
+ return entries[x];
+ }
+
+ inline CHSV& operator[] (int x) __attribute__((always_inline))
+ {
+ return entries[(uint8_t)x];
+ }
+ inline const CHSV& operator[] (int x) const __attribute__((always_inline))
+ {
+ return entries[(uint8_t)x];
+ }
+
+ operator CHSV*()
+ {
+ return &(entries[0]);
+ }
+
+ bool operator==( const CHSVPalette32 rhs)
+ {
+ const uint8_t* p = (const uint8_t*)(&(this->entries[0]));
+ const uint8_t* q = (const uint8_t*)(&(rhs.entries[0]));
+ if( p == q) return true;
+ for( uint8_t i = 0; i < (sizeof( entries)); i++) {
+ if( *p != *q) return false;
+ p++;
+ q++;
+ }
+ return true;
+ }
+ bool operator!=( const CHSVPalette32 rhs)
+ {
+ return !( *this == rhs);
+ }
+
+ CHSVPalette32( const CHSV& c1)
+ {
+ fill_solid( &(entries[0]), 32, c1);
+ }
+ CHSVPalette32( const CHSV& c1, const CHSV& c2)
+ {
+ fill_gradient( &(entries[0]), 32, c1, c2);
+ }
+ CHSVPalette32( const CHSV& c1, const CHSV& c2, const CHSV& c3)
+ {
+ fill_gradient( &(entries[0]), 32, c1, c2, c3);
+ }
+ CHSVPalette32( const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4)
+ {
+ fill_gradient( &(entries[0]), 32, c1, c2, c3, c4);
+ }
+
+};
+
+class CRGBPalette32 {
+public:
+ CRGB entries[32];
+ CRGBPalette32() {};
+ CRGBPalette32( const CRGB& c00,const CRGB& c01,const CRGB& c02,const CRGB& c03,
+ const CRGB& c04,const CRGB& c05,const CRGB& c06,const CRGB& c07,
+ const CRGB& c08,const CRGB& c09,const CRGB& c10,const CRGB& c11,
+ const CRGB& c12,const CRGB& c13,const CRGB& c14,const CRGB& c15 )
+ {
+ for( uint8_t i = 0; i < 2; i++) {
+ entries[0+i]=c00; entries[2+i]=c01; entries[4+i]=c02; entries[6+i]=c03;
+ entries[8+i]=c04; entries[10+i]=c05; entries[12+i]=c06; entries[14+i]=c07;
+ entries[16+i]=c08; entries[18+i]=c09; entries[20+i]=c10; entries[22+i]=c11;
+ entries[24+i]=c12; entries[26+i]=c13; entries[28+i]=c14; entries[30+i]=c15;
+ }
+ };
+
+ CRGBPalette32( const CRGBPalette32& rhs)
+ {
+ memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
+ }
+ CRGBPalette32( const CRGB rhs[32])
+ {
+ memmove8( &(entries[0]), &(rhs[0]), sizeof( entries));
+ }
+ CRGBPalette32& operator=( const CRGBPalette32& rhs)
+ {
+ memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
+ return *this;
+ }
+ CRGBPalette32& operator=( const CRGB rhs[32])
+ {
+ memmove8( &(entries[0]), &(rhs[0]), sizeof( entries));
+ return *this;
+ }
+
+ CRGBPalette32( const CHSVPalette32& rhs)
+ {
+ for( uint8_t i = 0; i < 32; i++) {
+ entries[i] = rhs.entries[i]; // implicit HSV-to-RGB conversion
+ }
+ }
+ CRGBPalette32( const CHSV rhs[32])
+ {
+ for( uint8_t i = 0; i < 32; i++) {
+ entries[i] = rhs[i]; // implicit HSV-to-RGB conversion
+ }
+ }
+ CRGBPalette32& operator=( const CHSVPalette32& rhs)
+ {
+ for( uint8_t i = 0; i < 32; i++) {
+ entries[i] = rhs.entries[i]; // implicit HSV-to-RGB conversion
+ }
+ return *this;
+ }
+ CRGBPalette32& operator=( const CHSV rhs[32])
+ {
+ for( uint8_t i = 0; i < 32; i++) {
+ entries[i] = rhs[i]; // implicit HSV-to-RGB conversion
+ }
+ return *this;
+ }
+
+ CRGBPalette32( const TProgmemRGBPalette32& rhs)
+ {
+ for( uint8_t i = 0; i < 32; i++) {
+ entries[i] = FL_PGM_READ_DWORD_NEAR( rhs + i);
+ }
+ }
+ CRGBPalette32& operator=( const TProgmemRGBPalette32& rhs)
+ {
+ for( uint8_t i = 0; i < 32; i++) {
+ entries[i] = FL_PGM_READ_DWORD_NEAR( rhs + i);
+ }
+ return *this;
+ }
+
+ bool operator==( const CRGBPalette32 rhs)
+ {
+ const uint8_t* p = (const uint8_t*)(&(this->entries[0]));
+ const uint8_t* q = (const uint8_t*)(&(rhs.entries[0]));
+ if( p == q) return true;
+ for( uint8_t i = 0; i < (sizeof( entries)); i++) {
+ if( *p != *q) return false;
+ p++;
+ q++;
+ }
+ return true;
+ }
+ bool operator!=( const CRGBPalette32 rhs)
+ {
+ return !( *this == rhs);
+ }
+
+ inline CRGB& operator[] (uint8_t x) __attribute__((always_inline))
+ {
+ return entries[x];
+ }
+ inline const CRGB& operator[] (uint8_t x) const __attribute__((always_inline))
+ {
+ return entries[x];
+ }
+
+ inline CRGB& operator[] (int x) __attribute__((always_inline))
+ {
+ return entries[(uint8_t)x];
+ }
+ inline const CRGB& operator[] (int x) const __attribute__((always_inline))
+ {
+ return entries[(uint8_t)x];
+ }
+
+ operator CRGB*()
+ {
+ return &(entries[0]);
+ }
+
+ CRGBPalette32( const CHSV& c1)
+ {
+ fill_solid( &(entries[0]), 32, c1);
+ }
+ CRGBPalette32( const CHSV& c1, const CHSV& c2)
+ {
+ fill_gradient( &(entries[0]), 32, c1, c2);
+ }
+ CRGBPalette32( const CHSV& c1, const CHSV& c2, const CHSV& c3)
+ {
+ fill_gradient( &(entries[0]), 32, c1, c2, c3);
+ }
+ CRGBPalette32( const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4)
+ {
+ fill_gradient( &(entries[0]), 32, c1, c2, c3, c4);
+ }
+
+ CRGBPalette32( const CRGB& c1)
+ {
+ fill_solid( &(entries[0]), 32, c1);
+ }
+ CRGBPalette32( const CRGB& c1, const CRGB& c2)
+ {
+ fill_gradient_RGB( &(entries[0]), 32, c1, c2);
+ }
+ CRGBPalette32( const CRGB& c1, const CRGB& c2, const CRGB& c3)
+ {
+ fill_gradient_RGB( &(entries[0]), 32, c1, c2, c3);
+ }
+ CRGBPalette32( const CRGB& c1, const CRGB& c2, const CRGB& c3, const CRGB& c4)
+ {
+ fill_gradient_RGB( &(entries[0]), 32, c1, c2, c3, c4);
+ }
+
+
+ CRGBPalette32( const CRGBPalette16& rhs16)
+ {
+ UpscalePalette( rhs16, *this);
+ }
+ CRGBPalette32& operator=( const CRGBPalette16& rhs16)
+ {
+ UpscalePalette( rhs16, *this);
+ return *this;
+ }
+
+ CRGBPalette32( const TProgmemRGBPalette16& rhs)
+ {
+ CRGBPalette16 p16(rhs);
+ *this = p16;
+ }
+ CRGBPalette32& operator=( const TProgmemRGBPalette16& rhs)
+ {
+ CRGBPalette16 p16(rhs);
+ *this = p16;
+ return *this;
+ }
+
+
+ // Gradient palettes are loaded into CRGB16Palettes in such a way
+ // that, if possible, every color represented in the gradient palette
+ // is also represented in the CRGBPalette32.
+ // For example, consider a gradient palette that is all black except
+ // for a single, one-element-wide (1/256th!) spike of red in the middle:
+ // 0, 0,0,0
+ // 124, 0,0,0
+ // 125, 255,0,0 // one 1/256th-palette-wide red stripe
+ // 126, 0,0,0
+ // 255, 0,0,0
+ // A naive conversion of this 256-element palette to a 16-element palette
+ // might accidentally completely eliminate the red spike, rendering the
+ // palette completely black.
+ // However, the conversions provided here would attempt to include a
+ // the red stripe in the output, more-or-less as faithfully as possible.
+ // So in this case, the resulting CRGBPalette32 palette would have a red
+ // stripe in the middle which was 1/16th of a palette wide -- the
+ // narrowest possible in a CRGBPalette32.
+ // This means that the relative width of stripes in a CRGBPalette32
+ // will be, by definition, different from the widths in the gradient
+ // palette. This code attempts to preserve "all the colors", rather than
+ // the exact stripe widths at the expense of dropping some colors.
+ CRGBPalette32( TProgmemRGBGradientPalette_bytes progpal )
+ {
+ *this = progpal;
+ }
+ CRGBPalette32& operator=( TProgmemRGBGradientPalette_bytes progpal )
+ {
+ TRGBGradientPaletteEntryUnion* progent = (TRGBGradientPaletteEntryUnion*)(progpal);
+ TRGBGradientPaletteEntryUnion u;
+
+ // Count entries
+ uint16_t count = 0;
+ do {
+ u.dword = FL_PGM_READ_DWORD_NEAR(progent + count);
+ count++;;
+ } while ( u.index != 255);
+
+ int8_t lastSlotUsed = -1;
+
+ u.dword = FL_PGM_READ_DWORD_NEAR( progent);
+ CRGB rgbstart( u.r, u.g, u.b);
+
+ int indexstart = 0;
+ uint8_t istart8 = 0;
+ uint8_t iend8 = 0;
+ while( indexstart < 255) {
+ progent++;
+ u.dword = FL_PGM_READ_DWORD_NEAR( progent);
+ int indexend = u.index;
+ CRGB rgbend( u.r, u.g, u.b);
+ istart8 = indexstart / 8;
+ iend8 = indexend / 8;
+ if( count < 16) {
+ if( (istart8 <= lastSlotUsed) && (lastSlotUsed < 31)) {
+ istart8 = lastSlotUsed + 1;
+ if( iend8 < istart8) {
+ iend8 = istart8;
+ }
+ }
+ lastSlotUsed = iend8;
+ }
+ fill_gradient_RGB( &(entries[0]), istart8, rgbstart, iend8, rgbend);
+ indexstart = indexend;
+ rgbstart = rgbend;
+ }
+ return *this;
+ }
+ CRGBPalette32& loadDynamicGradientPalette( TDynamicRGBGradientPalette_bytes gpal )
+ {
+ TRGBGradientPaletteEntryUnion* ent = (TRGBGradientPaletteEntryUnion*)(gpal);
+ TRGBGradientPaletteEntryUnion u;
+
+ // Count entries
+ uint16_t count = 0;
+ do {
+ u = *(ent + count);
+ count++;;
+ } while ( u.index != 255);
+
+ int8_t lastSlotUsed = -1;
+
+
+ u = *ent;
+ CRGB rgbstart( u.r, u.g, u.b);
+
+ int indexstart = 0;
+ uint8_t istart8 = 0;
+ uint8_t iend8 = 0;
+ while( indexstart < 255) {
+ ent++;
+ u = *ent;
+ int indexend = u.index;
+ CRGB rgbend( u.r, u.g, u.b);
+ istart8 = indexstart / 8;
+ iend8 = indexend / 8;
+ if( count < 16) {
+ if( (istart8 <= lastSlotUsed) && (lastSlotUsed < 31)) {
+ istart8 = lastSlotUsed + 1;
+ if( iend8 < istart8) {
+ iend8 = istart8;
+ }
+ }
+ lastSlotUsed = iend8;
+ }
+ fill_gradient_RGB( &(entries[0]), istart8, rgbstart, iend8, rgbend);
+ indexstart = indexend;
+ rgbstart = rgbend;
+ }
+ return *this;
+ }
+
+};
+
+
+
+class CRGBPalette256 {
+public:
+ CRGB entries[256];
+ CRGBPalette256() {};
+ CRGBPalette256( const CRGB& c00,const CRGB& c01,const CRGB& c02,const CRGB& c03,
+ const CRGB& c04,const CRGB& c05,const CRGB& c06,const CRGB& c07,
+ const CRGB& c08,const CRGB& c09,const CRGB& c10,const CRGB& c11,
+ const CRGB& c12,const CRGB& c13,const CRGB& c14,const CRGB& c15 )
+ {
+ CRGBPalette16 p16(c00,c01,c02,c03,c04,c05,c06,c07,
+ c08,c09,c10,c11,c12,c13,c14,c15);
+ *this = p16;
+ };
+
+ CRGBPalette256( const CRGBPalette256& rhs)
+ {
+ memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
+ }
+ CRGBPalette256( const CRGB rhs[256])
+ {
+ memmove8( &(entries[0]), &(rhs[0]), sizeof( entries));
+ }
+ CRGBPalette256& operator=( const CRGBPalette256& rhs)
+ {
+ memmove8( &(entries[0]), &(rhs.entries[0]), sizeof( entries));
+ return *this;
+ }
+ CRGBPalette256& operator=( const CRGB rhs[256])
+ {
+ memmove8( &(entries[0]), &(rhs[0]), sizeof( entries));
+ return *this;
+ }
+
+ CRGBPalette256( const CHSVPalette256& rhs)
+ {
+ for( int i = 0; i < 256; i++) {
+ entries[i] = rhs.entries[i]; // implicit HSV-to-RGB conversion
+ }
+ }
+ CRGBPalette256( const CHSV rhs[256])
+ {
+ for( int i = 0; i < 256; i++) {
+ entries[i] = rhs[i]; // implicit HSV-to-RGB conversion
+ }
+ }
+ CRGBPalette256& operator=( const CHSVPalette256& rhs)
+ {
+ for( int i = 0; i < 256; i++) {
+ entries[i] = rhs.entries[i]; // implicit HSV-to-RGB conversion
+ }
+ return *this;
+ }
+ CRGBPalette256& operator=( const CHSV rhs[256])
+ {
+ for( int i = 0; i < 256; i++) {
+ entries[i] = rhs[i]; // implicit HSV-to-RGB conversion
+ }
+ return *this;
+ }
+
+ CRGBPalette256( const CRGBPalette16& rhs16)
+ {
+ UpscalePalette( rhs16, *this);
+ }
+ CRGBPalette256& operator=( const CRGBPalette16& rhs16)
+ {
+ UpscalePalette( rhs16, *this);
+ return *this;
+ }
+
+ CRGBPalette256( const TProgmemRGBPalette16& rhs)
+ {
+ CRGBPalette16 p16(rhs);
+ *this = p16;
+ }
+ CRGBPalette256& operator=( const TProgmemRGBPalette16& rhs)
+ {
+ CRGBPalette16 p16(rhs);
+ *this = p16;
+ return *this;
+ }
+
+ bool operator==( const CRGBPalette256 rhs)
+ {
+ const uint8_t* p = (const uint8_t*)(&(this->entries[0]));
+ const uint8_t* q = (const uint8_t*)(&(rhs.entries[0]));
+ if( p == q) return true;
+ for( uint16_t i = 0; i < (sizeof( entries)); i++) {
+ if( *p != *q) return false;
+ p++;
+ q++;
+ }
+ return true;
+ }
+ bool operator!=( const CRGBPalette256 rhs)
+ {
+ return !( *this == rhs);
+ }
+
+ inline CRGB& operator[] (uint8_t x) __attribute__((always_inline))
+ {
+ return entries[x];
+ }
+ inline const CRGB& operator[] (uint8_t x) const __attribute__((always_inline))
+ {
+ return entries[x];
+ }
+
+ inline CRGB& operator[] (int x) __attribute__((always_inline))
+ {
+ return entries[(uint8_t)x];
+ }
+ inline const CRGB& operator[] (int x) const __attribute__((always_inline))
+ {
+ return entries[(uint8_t)x];
+ }
+
+ operator CRGB*()
+ {
+ return &(entries[0]);
+ }
+
+ CRGBPalette256( const CHSV& c1)
+ {
+ fill_solid( &(entries[0]), 256, c1);
+ }
+ CRGBPalette256( const CHSV& c1, const CHSV& c2)
+ {
+ fill_gradient( &(entries[0]), 256, c1, c2);
+ }
+ CRGBPalette256( const CHSV& c1, const CHSV& c2, const CHSV& c3)
+ {
+ fill_gradient( &(entries[0]), 256, c1, c2, c3);
+ }
+ CRGBPalette256( const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4)
+ {
+ fill_gradient( &(entries[0]), 256, c1, c2, c3, c4);
+ }
+
+ CRGBPalette256( const CRGB& c1)
+ {
+ fill_solid( &(entries[0]), 256, c1);
+ }
+ CRGBPalette256( const CRGB& c1, const CRGB& c2)
+ {
+ fill_gradient_RGB( &(entries[0]), 256, c1, c2);
+ }
+ CRGBPalette256( const CRGB& c1, const CRGB& c2, const CRGB& c3)
+ {
+ fill_gradient_RGB( &(entries[0]), 256, c1, c2, c3);
+ }
+ CRGBPalette256( const CRGB& c1, const CRGB& c2, const CRGB& c3, const CRGB& c4)
+ {
+ fill_gradient_RGB( &(entries[0]), 256, c1, c2, c3, c4);
+ }
+
+ CRGBPalette256( TProgmemRGBGradientPalette_bytes progpal )
+ {
+ *this = progpal;
+ }
+ CRGBPalette256& operator=( TProgmemRGBGradientPalette_bytes progpal )
+ {
+ TRGBGradientPaletteEntryUnion* progent = (TRGBGradientPaletteEntryUnion*)(progpal);
+ TRGBGradientPaletteEntryUnion u;
+ u.dword = FL_PGM_READ_DWORD_NEAR( progent);
+ CRGB rgbstart( u.r, u.g, u.b);
+
+ int indexstart = 0;
+ while( indexstart < 255) {
+ progent++;
+ u.dword = FL_PGM_READ_DWORD_NEAR( progent);
+ int indexend = u.index;
+ CRGB rgbend( u.r, u.g, u.b);
+ fill_gradient_RGB( &(entries[0]), indexstart, rgbstart, indexend, rgbend);
+ indexstart = indexend;
+ rgbstart = rgbend;
+ }
+ return *this;
+ }
+ CRGBPalette256& loadDynamicGradientPalette( TDynamicRGBGradientPalette_bytes gpal )
+ {
+ TRGBGradientPaletteEntryUnion* ent = (TRGBGradientPaletteEntryUnion*)(gpal);
+ TRGBGradientPaletteEntryUnion u;
+ u = *ent;
+ CRGB rgbstart( u.r, u.g, u.b);
+
+ int indexstart = 0;
+ while( indexstart < 255) {
+ ent++;
+ u = *ent;
+ int indexend = u.index;
+ CRGB rgbend( u.r, u.g, u.b);
+ fill_gradient_RGB( &(entries[0]), indexstart, rgbstart, indexend, rgbend);
+ indexstart = indexend;
+ rgbstart = rgbend;
+ }
+ return *this;
+ }
+};
+
+
+
+typedef enum { NOBLEND=0, LINEARBLEND=1 } TBlendType;
+
+CRGB ColorFromPalette( const CRGBPalette16& pal,
+ uint8_t index,
+ uint8_t brightness=255,
+ TBlendType blendType=LINEARBLEND);
+
+CRGB ColorFromPalette( const TProgmemRGBPalette16& pal,
+ uint8_t index,
+ uint8_t brightness=255,
+ TBlendType blendType=LINEARBLEND);
+
+CRGB ColorFromPalette( const CRGBPalette256& pal,
+ uint8_t index,
+ uint8_t brightness=255,
+ TBlendType blendType=NOBLEND );
+
+CHSV ColorFromPalette( const CHSVPalette16& pal,
+ uint8_t index,
+ uint8_t brightness=255,
+ TBlendType blendType=LINEARBLEND);
+
+CHSV ColorFromPalette( const CHSVPalette256& pal,
+ uint8_t index,
+ uint8_t brightness=255,
+ TBlendType blendType=NOBLEND );
+
+CRGB ColorFromPalette( const CRGBPalette32& pal,
+ uint8_t index,
+ uint8_t brightness=255,
+ TBlendType blendType=LINEARBLEND);
+
+CRGB ColorFromPalette( const TProgmemRGBPalette32& pal,
+ uint8_t index,
+ uint8_t brightness=255,
+ TBlendType blendType=LINEARBLEND);
+
+CHSV ColorFromPalette( const CHSVPalette32& pal,
+ uint8_t index,
+ uint8_t brightness=255,
+ TBlendType blendType=LINEARBLEND);
+
+
+// Fill a range of LEDs with a sequece of entryies from a palette
+template <typename PALETTE>
+void fill_palette(CRGB* L, uint16_t N, uint8_t startIndex, uint8_t incIndex,
+ const PALETTE& pal, uint8_t brightness, TBlendType blendType)
+{
+ uint8_t colorIndex = startIndex;
+ for( uint16_t i = 0; i < N; i++) {
+ L[i] = ColorFromPalette( pal, colorIndex, brightness, blendType);
+ colorIndex += incIndex;
+ }
+}
+
+template <typename PALETTE>
+void map_data_into_colors_through_palette(
+ uint8_t *dataArray, uint16_t dataCount,
+ CRGB* targetColorArray,
+ const PALETTE& pal,
+ uint8_t brightness=255,
+ uint8_t opacity=255,
+ TBlendType blendType=LINEARBLEND)
+{
+ for( uint16_t i = 0; i < dataCount; i++) {
+ uint8_t d = dataArray[i];
+ CRGB rgb = ColorFromPalette( pal, d, brightness, blendType);
+ if( opacity == 255 ) {
+ targetColorArray[i] = rgb;
+ } else {
+ targetColorArray[i].nscale8( 256 - opacity);
+ rgb.nscale8_video( opacity);
+ targetColorArray[i] += rgb;
+ }
+ }
+}
+
+// nblendPaletteTowardPalette:
+// Alter one palette by making it slightly more like
+// a 'target palette', used for palette cross-fades.
+//
+// It does this by comparing each of the R, G, and B channels
+// of each entry in the current palette to the corresponding
+// entry in the target palette and making small adjustments:
+// If the Red channel is too low, it will be increased.
+// If the Red channel is too high, it will be slightly reduced.
+// ... and likewise for Green and Blue channels.
+//
+// Additionally, there are two significant visual improvements
+// to this algorithm implemented here. First is this:
+// When increasing a channel, it is stepped up by ONE.
+// When decreasing a channel, it is stepped down by TWO.
+// Due to the way the eye perceives light, and the way colors
+// are represented in RGB, this produces a more uniform apparent
+// brightness when cross-fading between most palette colors.
+//
+// The second visual tweak is limiting the number of changes
+// that will be made to the palette at once. If all the palette
+// entries are changed at once, it can give a muddled appearance.
+// However, if only a few palette entries are changed at once,
+// you get a visually smoother transition: in the middle of the
+// cross-fade your current palette will actually contain some
+// colors from the old palette, a few blended colors, and some
+// colors from the new palette.
+// The maximum number of possible palette changes per call
+// is 48 (sixteen color entries time three channels each).
+// The default 'maximim number of changes' here is 12, meaning
+// that only approximately a quarter of the palette entries
+// will be changed per call.
+void nblendPaletteTowardPalette( CRGBPalette16& currentPalette,
+ CRGBPalette16& targetPalette,
+ uint8_t maxChanges=24);
+
+
+
+
+// You can also define a static RGB palette very compactly in terms of a series
+// of connected color gradients.
+// For example, if you want the first 3/4ths of the palette to be a slow
+// gradient ramping from black to red, and then the remaining 1/4 of the
+// palette to be a quicker ramp to white, you specify just three points: the
+// starting black point (at index 0), the red midpoint (at index 192),
+// and the final white point (at index 255). It looks like this:
+//
+// index: 0 192 255
+// |----------r-r-r-rrrrrrrrRrRrRrRrRRRR-|-RRWRWWRWWW-|
+// color: (0,0,0) (255,0,0) (255,255,255)
+//
+// Here's how you'd define that gradient palette:
+//
+// DEFINE_GRADIENT_PALETTE( black_to_red_to_white_p ) {
+// 0, 0, 0, 0, /* at index 0, black(0,0,0) */
+// 192, 255, 0, 0, /* at index 192, red(255,0,0) */
+// 255, 255,255,255 /* at index 255, white(255,255,255) */
+// };
+//
+// This format is designed for compact storage. The example palette here
+// takes up just 12 bytes of PROGMEM (flash) storage, and zero bytes
+// of SRAM when not currently in use.
+//
+// To use one of these gradient palettes, simply assign it into a
+// CRGBPalette16 or a CRGBPalette256, like this:
+//
+// CRGBPalette16 pal = black_to_red_to_white_p;
+//
+// When the assignment is made, the gradients are expanded out into
+// either 16 or 256 palette entries, depending on the kind of palette
+// object they're assigned to.
+//
+// IMPORTANT NOTES & CAVEATS:
+//
+// - The last 'index' position MUST BE 255! Failure to end with
+// index 255 will result in program hangs or crashes.
+//
+// - At this point, these gradient palette definitions MUST BE
+// stored in PROGMEM on AVR-based Arduinos. If you use the
+// DEFINE_GRADIENT_PALETTE macro, this is taken care of automatically.
+//
+
+#define DEFINE_GRADIENT_PALETTE(X) \
+ FL_ALIGN_PROGMEM \
+ extern const TProgmemRGBGradientPalette_byte X[] FL_PROGMEM =
+
+#define DECLARE_GRADIENT_PALETTE(X) \
+ FL_ALIGN_PROGMEM \
+ extern const TProgmemRGBGradientPalette_byte X[] FL_PROGMEM
+
+
+// Functions to apply gamma adjustments, either:
+// - a single gamma adjustment to a single scalar value,
+// - a single gamma adjustment to each channel of a CRGB color, or
+// - different gamma adjustments for each channel of a CRFB color.
+//
+// Note that the gamma is specified as a traditional floating point value
+// e.g., "2.5", and as such these functions should not be called in
+// your innermost pixel loops, or in animations that are extremely
+// low on program storage space. Nevertheless, if you need these
+// functions, here they are.
+//
+// Furthermore, bear in mind that CRGB leds have only eight bits
+// per channel of color resolution, and that very small, subtle shadings
+// may not be visible.
+uint8_t applyGamma_video( uint8_t brightness, float gamma);
+CRGB applyGamma_video( const CRGB& orig, float gamma);
+CRGB applyGamma_video( const CRGB& orig, float gammaR, float gammaG, float gammaB);
+// The "n" versions below modify their arguments in-place.
+CRGB& napplyGamma_video( CRGB& rgb, float gamma);
+CRGB& napplyGamma_video( CRGB& rgb, float gammaR, float gammaG, float gammaB);
+void napplyGamma_video( CRGB* rgbarray, uint16_t count, float gamma);
+void napplyGamma_video( CRGB* rgbarray, uint16_t count, float gammaR, float gammaG, float gammaB);
+
+
+FASTLED_NAMESPACE_END
+
+///@}
+#endif