Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/AlexGyver/Arduino_Ambilight.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Библиотеки/FastLED-master/hsv2rgb.cpp')
-rw-r--r--Библиотеки/FastLED-master/hsv2rgb.cpp714
1 files changed, 714 insertions, 0 deletions
diff --git a/Библиотеки/FastLED-master/hsv2rgb.cpp b/Библиотеки/FastLED-master/hsv2rgb.cpp
new file mode 100644
index 0000000..cdb576b
--- /dev/null
+++ b/Библиотеки/FastLED-master/hsv2rgb.cpp
@@ -0,0 +1,714 @@
+#define FASTLED_INTERNAL
+#include <stdint.h>
+
+#include "FastLED.h"
+
+FASTLED_NAMESPACE_BEGIN
+
+// Functions to convert HSV colors to RGB colors.
+//
+// The basically fall into two groups: spectra, and rainbows.
+// Spectra and rainbows are not the same thing. Wikipedia has a good
+// illustration here
+// http://upload.wikimedia.org/wikipedia/commons/f/f6/Prism_compare_rainbow_01.png
+// from this article
+// http://en.wikipedia.org/wiki/Rainbow#Number_of_colours_in_spectrum_or_rainbow
+// that shows a 'spectrum' and a 'rainbow' side by side. Among other
+// differences, you'll see that a 'rainbow' has much more yellow than
+// a plain spectrum. "Classic" LED color washes are spectrum based, and
+// usually show very little yellow.
+//
+// Wikipedia's page on HSV color space, with pseudocode for conversion
+// to RGB color space
+// http://en.wikipedia.org/wiki/HSL_and_HSV
+// Note that their conversion algorithm, which is (naturally) very popular
+// is in the "maximum brightness at any given hue" style, vs the "uniform
+// brightness for all hues" style.
+//
+// You can't have both; either purple is the same brightness as red, e.g
+// red = #FF0000 and purple = #800080 -> same "total light" output
+// OR purple is 'as bright as it can be', e.g.
+// red = #FF0000 and purple = #FF00FF -> purple is much brighter than red.
+// The colorspace conversions here try to keep the apparent brightness
+// constant even as the hue varies.
+//
+// Adafruit's "Wheel" function, discussed here
+// http://forums.adafruit.com/viewtopic.php?f=47&t=22483
+// is also of the "constant apparent brightness" variety.
+//
+// TODO: provide the 'maximum brightness no matter what' variation.
+//
+// See also some good, clear Arduino C code from Kasper Kamperman
+// http://www.kasperkamperman.com/blog/arduino/arduino-programming-hsb-to-rgb/
+// which in turn was was based on Windows C code from "nico80"
+// http://www.codeproject.com/Articles/9207/An-HSB-RGBA-colour-picker
+
+
+
+
+
+void hsv2rgb_raw_C (const struct CHSV & hsv, struct CRGB & rgb);
+void hsv2rgb_raw_avr(const struct CHSV & hsv, struct CRGB & rgb);
+
+#if defined(__AVR__) && !defined( LIB8_ATTINY )
+void hsv2rgb_raw(const struct CHSV & hsv, struct CRGB & rgb)
+{
+ hsv2rgb_raw_avr( hsv, rgb);
+}
+#else
+void hsv2rgb_raw(const struct CHSV & hsv, struct CRGB & rgb)
+{
+ hsv2rgb_raw_C( hsv, rgb);
+}
+#endif
+
+
+
+#define APPLY_DIMMING(X) (X)
+#define HSV_SECTION_6 (0x20)
+#define HSV_SECTION_3 (0x40)
+
+void hsv2rgb_raw_C (const struct CHSV & hsv, struct CRGB & rgb)
+{
+ // Convert hue, saturation and brightness ( HSV/HSB ) to RGB
+ // "Dimming" is used on saturation and brightness to make
+ // the output more visually linear.
+
+ // Apply dimming curves
+ uint8_t value = APPLY_DIMMING( hsv.val);
+ uint8_t saturation = hsv.sat;
+
+ // The brightness floor is minimum number that all of
+ // R, G, and B will be set to.
+ uint8_t invsat = APPLY_DIMMING( 255 - saturation);
+ uint8_t brightness_floor = (value * invsat) / 256;
+
+ // The color amplitude is the maximum amount of R, G, and B
+ // that will be added on top of the brightness_floor to
+ // create the specific hue desired.
+ uint8_t color_amplitude = value - brightness_floor;
+
+ // Figure out which section of the hue wheel we're in,
+ // and how far offset we are withing that section
+ uint8_t section = hsv.hue / HSV_SECTION_3; // 0..2
+ uint8_t offset = hsv.hue % HSV_SECTION_3; // 0..63
+
+ uint8_t rampup = offset; // 0..63
+ uint8_t rampdown = (HSV_SECTION_3 - 1) - offset; // 63..0
+
+ // We now scale rampup and rampdown to a 0-255 range -- at least
+ // in theory, but here's where architecture-specific decsions
+ // come in to play:
+ // To scale them up to 0-255, we'd want to multiply by 4.
+ // But in the very next step, we multiply the ramps by other
+ // values and then divide the resulting product by 256.
+ // So which is faster?
+ // ((ramp * 4) * othervalue) / 256
+ // or
+ // ((ramp ) * othervalue) / 64
+ // It depends on your processor architecture.
+ // On 8-bit AVR, the "/ 256" is just a one-cycle register move,
+ // but the "/ 64" might be a multicycle shift process. So on AVR
+ // it's faster do multiply the ramp values by four, and then
+ // divide by 256.
+ // On ARM, the "/ 256" and "/ 64" are one cycle each, so it's
+ // faster to NOT multiply the ramp values by four, and just to
+ // divide the resulting product by 64 (instead of 256).
+ // Moral of the story: trust your profiler, not your insticts.
+
+ // Since there's an AVR assembly version elsewhere, we'll
+ // assume what we're on an architecture where any number of
+ // bit shifts has roughly the same cost, and we'll remove the
+ // redundant math at the source level:
+
+ // // scale up to 255 range
+ // //rampup *= 4; // 0..252
+ // //rampdown *= 4; // 0..252
+
+ // compute color-amplitude-scaled-down versions of rampup and rampdown
+ uint8_t rampup_amp_adj = (rampup * color_amplitude) / (256 / 4);
+ uint8_t rampdown_amp_adj = (rampdown * color_amplitude) / (256 / 4);
+
+ // add brightness_floor offset to everything
+ uint8_t rampup_adj_with_floor = rampup_amp_adj + brightness_floor;
+ uint8_t rampdown_adj_with_floor = rampdown_amp_adj + brightness_floor;
+
+
+ if( section ) {
+ if( section == 1) {
+ // section 1: 0x40..0x7F
+ rgb.r = brightness_floor;
+ rgb.g = rampdown_adj_with_floor;
+ rgb.b = rampup_adj_with_floor;
+ } else {
+ // section 2; 0x80..0xBF
+ rgb.r = rampup_adj_with_floor;
+ rgb.g = brightness_floor;
+ rgb.b = rampdown_adj_with_floor;
+ }
+ } else {
+ // section 0: 0x00..0x3F
+ rgb.r = rampdown_adj_with_floor;
+ rgb.g = rampup_adj_with_floor;
+ rgb.b = brightness_floor;
+ }
+}
+
+
+
+#if defined(__AVR__) && !defined( LIB8_ATTINY )
+void hsv2rgb_raw_avr(const struct CHSV & hsv, struct CRGB & rgb)
+{
+ uint8_t hue, saturation, value;
+
+ hue = hsv.hue;
+ saturation = hsv.sat;
+ value = hsv.val;
+
+ // Saturation more useful the other way around
+ saturation = 255 - saturation;
+ uint8_t invsat = APPLY_DIMMING( saturation );
+
+ // Apply dimming curves
+ value = APPLY_DIMMING( value );
+
+ // The brightness floor is minimum number that all of
+ // R, G, and B will be set to, which is value * invsat
+ uint8_t brightness_floor;
+
+ asm volatile(
+ "mul %[value], %[invsat] \n"
+ "mov %[brightness_floor], r1 \n"
+ : [brightness_floor] "=r" (brightness_floor)
+ : [value] "r" (value),
+ [invsat] "r" (invsat)
+ : "r0", "r1"
+ );
+
+ // The color amplitude is the maximum amount of R, G, and B
+ // that will be added on top of the brightness_floor to
+ // create the specific hue desired.
+ uint8_t color_amplitude = value - brightness_floor;
+
+ // Figure how far we are offset into the section of the
+ // color wheel that we're in
+ uint8_t offset = hsv.hue & (HSV_SECTION_3 - 1); // 0..63
+ uint8_t rampup = offset * 4; // 0..252
+
+
+ // compute color-amplitude-scaled-down versions of rampup and rampdown
+ uint8_t rampup_amp_adj;
+ uint8_t rampdown_amp_adj;
+
+ asm volatile(
+ "mul %[rampup], %[color_amplitude] \n"
+ "mov %[rampup_amp_adj], r1 \n"
+ "com %[rampup] \n"
+ "mul %[rampup], %[color_amplitude] \n"
+ "mov %[rampdown_amp_adj], r1 \n"
+ : [rampup_amp_adj] "=&r" (rampup_amp_adj),
+ [rampdown_amp_adj] "=&r" (rampdown_amp_adj),
+ [rampup] "+r" (rampup)
+ : [color_amplitude] "r" (color_amplitude)
+ : "r0", "r1"
+ );
+
+
+ // add brightness_floor offset to everything
+ uint8_t rampup_adj_with_floor = rampup_amp_adj + brightness_floor;
+ uint8_t rampdown_adj_with_floor = rampdown_amp_adj + brightness_floor;
+
+
+ // keep gcc from using "X" as the index register for storing
+ // results back in the return structure. AVR's X register can't
+ // do "std X+q, rnn", but the Y and Z registers can.
+ // if the pointer to 'rgb' is in X, gcc will add all kinds of crazy
+ // extra instructions. Simply killing X here seems to help it
+ // try Y or Z first.
+ asm volatile( "" : : : "r26", "r27" );
+
+
+ if( hue & 0x80 ) {
+ // section 2: 0x80..0xBF
+ rgb.r = rampup_adj_with_floor;
+ rgb.g = brightness_floor;
+ rgb.b = rampdown_adj_with_floor;
+ } else {
+ if( hue & 0x40) {
+ // section 1: 0x40..0x7F
+ rgb.r = brightness_floor;
+ rgb.g = rampdown_adj_with_floor;
+ rgb.b = rampup_adj_with_floor;
+ } else {
+ // section 0: 0x00..0x3F
+ rgb.r = rampdown_adj_with_floor;
+ rgb.g = rampup_adj_with_floor;
+ rgb.b = brightness_floor;
+ }
+ }
+
+ cleanup_R1();
+}
+// End of AVR asm implementation
+
+#endif
+
+void hsv2rgb_spectrum( const CHSV& hsv, CRGB& rgb)
+{
+ CHSV hsv2(hsv);
+ hsv2.hue = scale8( hsv2.hue, 191);
+ hsv2rgb_raw(hsv2, rgb);
+}
+
+
+// Sometimes the compiler will do clever things to reduce
+// code size that result in a net slowdown, if it thinks that
+// a variable is not used in a certain location.
+// This macro does its best to convince the compiler that
+// the variable is used in this location, to help control
+// code motion and de-duplication that would result in a slowdown.
+#define FORCE_REFERENCE(var) asm volatile( "" : : "r" (var) )
+
+
+#define K255 255
+#define K171 171
+#define K170 170
+#define K85 85
+
+void hsv2rgb_rainbow( const CHSV& hsv, CRGB& rgb)
+{
+ // Yellow has a higher inherent brightness than
+ // any other color; 'pure' yellow is perceived to
+ // be 93% as bright as white. In order to make
+ // yellow appear the correct relative brightness,
+ // it has to be rendered brighter than all other
+ // colors.
+ // Level Y1 is a moderate boost, the default.
+ // Level Y2 is a strong boost.
+ const uint8_t Y1 = 1;
+ const uint8_t Y2 = 0;
+
+ // G2: Whether to divide all greens by two.
+ // Depends GREATLY on your particular LEDs
+ const uint8_t G2 = 0;
+
+ // Gscale: what to scale green down by.
+ // Depends GREATLY on your particular LEDs
+ const uint8_t Gscale = 0;
+
+
+ uint8_t hue = hsv.hue;
+ uint8_t sat = hsv.sat;
+ uint8_t val = hsv.val;
+
+ uint8_t offset = hue & 0x1F; // 0..31
+
+ // offset8 = offset * 8
+ uint8_t offset8 = offset;
+ {
+#if defined(__AVR__)
+ // Left to its own devices, gcc turns "x <<= 3" into a loop
+ // It's much faster and smaller to just do three single-bit shifts
+ // So this business is to force that.
+ offset8 <<= 1;
+ asm volatile("");
+ offset8 <<= 1;
+ asm volatile("");
+ offset8 <<= 1;
+#else
+ // On ARM and other non-AVR platforms, we just shift 3.
+ offset8 <<= 3;
+#endif
+ }
+
+ uint8_t third = scale8( offset8, (256 / 3)); // max = 85
+
+ uint8_t r, g, b;
+
+ if( ! (hue & 0x80) ) {
+ // 0XX
+ if( ! (hue & 0x40) ) {
+ // 00X
+ //section 0-1
+ if( ! (hue & 0x20) ) {
+ // 000
+ //case 0: // R -> O
+ r = K255 - third;
+ g = third;
+ b = 0;
+ FORCE_REFERENCE(b);
+ } else {
+ // 001
+ //case 1: // O -> Y
+ if( Y1 ) {
+ r = K171;
+ g = K85 + third ;
+ b = 0;
+ FORCE_REFERENCE(b);
+ }
+ if( Y2 ) {
+ r = K170 + third;
+ //uint8_t twothirds = (third << 1);
+ uint8_t twothirds = scale8( offset8, ((256 * 2) / 3)); // max=170
+ g = K85 + twothirds;
+ b = 0;
+ FORCE_REFERENCE(b);
+ }
+ }
+ } else {
+ //01X
+ // section 2-3
+ if( ! (hue & 0x20) ) {
+ // 010
+ //case 2: // Y -> G
+ if( Y1 ) {
+ //uint8_t twothirds = (third << 1);
+ uint8_t twothirds = scale8( offset8, ((256 * 2) / 3)); // max=170
+ r = K171 - twothirds;
+ g = K170 + third;
+ b = 0;
+ FORCE_REFERENCE(b);
+ }
+ if( Y2 ) {
+ r = K255 - offset8;
+ g = K255;
+ b = 0;
+ FORCE_REFERENCE(b);
+ }
+ } else {
+ // 011
+ // case 3: // G -> A
+ r = 0;
+ FORCE_REFERENCE(r);
+ g = K255 - third;
+ b = third;
+ }
+ }
+ } else {
+ // section 4-7
+ // 1XX
+ if( ! (hue & 0x40) ) {
+ // 10X
+ if( ! ( hue & 0x20) ) {
+ // 100
+ //case 4: // A -> B
+ r = 0;
+ FORCE_REFERENCE(r);
+ //uint8_t twothirds = (third << 1);
+ uint8_t twothirds = scale8( offset8, ((256 * 2) / 3)); // max=170
+ g = K171 - twothirds; //K170?
+ b = K85 + twothirds;
+
+ } else {
+ // 101
+ //case 5: // B -> P
+ r = third;
+ g = 0;
+ FORCE_REFERENCE(g);
+ b = K255 - third;
+
+ }
+ } else {
+ if( ! (hue & 0x20) ) {
+ // 110
+ //case 6: // P -- K
+ r = K85 + third;
+ g = 0;
+ FORCE_REFERENCE(g);
+ b = K171 - third;
+
+ } else {
+ // 111
+ //case 7: // K -> R
+ r = K170 + third;
+ g = 0;
+ FORCE_REFERENCE(g);
+ b = K85 - third;
+
+ }
+ }
+ }
+
+ // This is one of the good places to scale the green down,
+ // although the client can scale green down as well.
+ if( G2 ) g = g >> 1;
+ if( Gscale ) g = scale8_video_LEAVING_R1_DIRTY( g, Gscale);
+
+ // Scale down colors if we're desaturated at all
+ // and add the brightness_floor to r, g, and b.
+ if( sat != 255 ) {
+ if( sat == 0) {
+ r = 255; b = 255; g = 255;
+ } else {
+ //nscale8x3_video( r, g, b, sat);
+#if (FASTLED_SCALE8_FIXED==1)
+ if( r ) r = scale8_LEAVING_R1_DIRTY( r, sat);
+ if( g ) g = scale8_LEAVING_R1_DIRTY( g, sat);
+ if( b ) b = scale8_LEAVING_R1_DIRTY( b, sat);
+#else
+ if( r ) r = scale8_LEAVING_R1_DIRTY( r, sat) + 1;
+ if( g ) g = scale8_LEAVING_R1_DIRTY( g, sat) + 1;
+ if( b ) b = scale8_LEAVING_R1_DIRTY( b, sat) + 1;
+#endif
+ cleanup_R1();
+
+ uint8_t desat = 255 - sat;
+ desat = scale8( desat, desat);
+
+ uint8_t brightness_floor = desat;
+ r += brightness_floor;
+ g += brightness_floor;
+ b += brightness_floor;
+ }
+ }
+
+ // Now scale everything down if we're at value < 255.
+ if( val != 255 ) {
+
+ val = scale8_video_LEAVING_R1_DIRTY( val, val);
+ if( val == 0 ) {
+ r=0; g=0; b=0;
+ } else {
+ // nscale8x3_video( r, g, b, val);
+#if (FASTLED_SCALE8_FIXED==1)
+ if( r ) r = scale8_LEAVING_R1_DIRTY( r, val);
+ if( g ) g = scale8_LEAVING_R1_DIRTY( g, val);
+ if( b ) b = scale8_LEAVING_R1_DIRTY( b, val);
+#else
+ if( r ) r = scale8_LEAVING_R1_DIRTY( r, val) + 1;
+ if( g ) g = scale8_LEAVING_R1_DIRTY( g, val) + 1;
+ if( b ) b = scale8_LEAVING_R1_DIRTY( b, val) + 1;
+#endif
+ cleanup_R1();
+ }
+ }
+
+ // Here we have the old AVR "missing std X+n" problem again
+ // It turns out that fixing it winds up costing more than
+ // not fixing it.
+ // To paraphrase Dr Bronner, profile! profile! profile!
+ //asm volatile( "" : : : "r26", "r27" );
+ //asm volatile (" movw r30, r26 \n" : : : "r30", "r31");
+ rgb.r = r;
+ rgb.g = g;
+ rgb.b = b;
+}
+
+
+void hsv2rgb_raw(const struct CHSV * phsv, struct CRGB * prgb, int numLeds) {
+ for(int i = 0; i < numLeds; i++) {
+ hsv2rgb_raw(phsv[i], prgb[i]);
+ }
+}
+
+void hsv2rgb_rainbow( const struct CHSV* phsv, struct CRGB * prgb, int numLeds) {
+ for(int i = 0; i < numLeds; i++) {
+ hsv2rgb_rainbow(phsv[i], prgb[i]);
+ }
+}
+
+void hsv2rgb_spectrum( const struct CHSV* phsv, struct CRGB * prgb, int numLeds) {
+ for(int i = 0; i < numLeds; i++) {
+ hsv2rgb_spectrum(phsv[i], prgb[i]);
+ }
+}
+
+
+
+#define FIXFRAC8(N,D) (((N)*256)/(D))
+
+// This function is only an approximation, and it is not
+// nearly as fast as the normal HSV-to-RGB conversion.
+// See extended notes in the .h file.
+CHSV rgb2hsv_approximate( const CRGB& rgb)
+{
+ uint8_t r = rgb.r;
+ uint8_t g = rgb.g;
+ uint8_t b = rgb.b;
+ uint8_t h, s, v;
+
+ // find desaturation
+ uint8_t desat = 255;
+ if( r < desat) desat = r;
+ if( g < desat) desat = g;
+ if( b < desat) desat = b;
+
+ // remove saturation from all channels
+ r -= desat;
+ g -= desat;
+ b -= desat;
+
+ //Serial.print("desat="); Serial.print(desat); Serial.println("");
+
+ //uint8_t orig_desat = sqrt16( desat * 256);
+ //Serial.print("orig_desat="); Serial.print(orig_desat); Serial.println("");
+
+ // saturation is opposite of desaturation
+ s = 255 - desat;
+ //Serial.print("s.1="); Serial.print(s); Serial.println("");
+
+ if( s != 255 ) {
+ // undo 'dimming' of saturation
+ s = 255 - sqrt16( (255-s) * 256);
+ }
+ // without lib8tion: float ... ew ... sqrt... double ew, or rather, ew ^ 0.5
+ // if( s != 255 ) s = (255 - (256.0 * sqrt( (float)(255-s) / 256.0)));
+ //Serial.print("s.2="); Serial.print(s); Serial.println("");
+
+
+ // at least one channel is now zero
+ // if all three channels are zero, we had a
+ // shade of gray.
+ if( (r + g + b) == 0) {
+ // we pick hue zero for no special reason
+ return CHSV( 0, 0, 255 - s);
+ }
+
+ // scale all channels up to compensate for desaturation
+ if( s < 255) {
+ if( s == 0) s = 1;
+ uint32_t scaleup = 65535 / (s);
+ r = ((uint32_t)(r) * scaleup) / 256;
+ g = ((uint32_t)(g) * scaleup) / 256;
+ b = ((uint32_t)(b) * scaleup) / 256;
+ }
+ //Serial.print("r.2="); Serial.print(r); Serial.println("");
+ //Serial.print("g.2="); Serial.print(g); Serial.println("");
+ //Serial.print("b.2="); Serial.print(b); Serial.println("");
+
+ uint16_t total = r + g + b;
+
+ //Serial.print("total="); Serial.print(total); Serial.println("");
+
+ // scale all channels up to compensate for low values
+ if( total < 255) {
+ if( total == 0) total = 1;
+ uint32_t scaleup = 65535 / (total);
+ r = ((uint32_t)(r) * scaleup) / 256;
+ g = ((uint32_t)(g) * scaleup) / 256;
+ b = ((uint32_t)(b) * scaleup) / 256;
+ }
+ //Serial.print("r.3="); Serial.print(r); Serial.println("");
+ //Serial.print("g.3="); Serial.print(g); Serial.println("");
+ //Serial.print("b.3="); Serial.print(b); Serial.println("");
+
+ if( total > 255 ) {
+ v = 255;
+ } else {
+ v = qadd8(desat,total);
+ // undo 'dimming' of brightness
+ if( v != 255) v = sqrt16( v * 256);
+ // without lib8tion: float ... ew ... sqrt... double ew, or rather, ew ^ 0.5
+ // if( v != 255) v = (256.0 * sqrt( (float)(v) / 256.0));
+
+ }
+
+ //Serial.print("v="); Serial.print(v); Serial.println("");
+
+
+#if 0
+
+ //#else
+ if( v != 255) {
+ // this part could probably use refinement/rethinking,
+ // (but it doesn't overflow & wrap anymore)
+ uint16_t s16;
+ s16 = (s * 256);
+ s16 /= v;
+ //Serial.print("s16="); Serial.print(s16); Serial.println("");
+ if( s16 < 256) {
+ s = s16;
+ } else {
+ s = 255; // clamp to prevent overflow
+ }
+ }
+#endif
+
+ //Serial.print("s.3="); Serial.print(s); Serial.println("");
+
+
+ // since this wasn't a pure shade of gray,
+ // the interesting question is what hue is it
+
+
+
+ // start with which channel is highest
+ // (ties don't matter)
+ uint8_t highest = r;
+ if( g > highest) highest = g;
+ if( b > highest) highest = b;
+
+ if( highest == r ) {
+ // Red is highest.
+ // Hue could be Purple/Pink-Red,Red-Orange,Orange-Yellow
+ if( g == 0 ) {
+ // if green is zero, we're in Purple/Pink-Red
+ h = (HUE_PURPLE + HUE_PINK) / 2;
+ h += scale8( qsub8(r, 128), FIXFRAC8(48,128));
+ } else if ( (r - g) > g) {
+ // if R-G > G then we're in Red-Orange
+ h = HUE_RED;
+ h += scale8( g, FIXFRAC8(32,85));
+ } else {
+ // R-G < G, we're in Orange-Yellow
+ h = HUE_ORANGE;
+ h += scale8( qsub8((g - 85) + (171 - r), 4), FIXFRAC8(32,85)); //221
+ }
+
+ } else if ( highest == g) {
+ // Green is highest
+ // Hue could be Yellow-Green, Green-Aqua
+ if( b == 0) {
+ // if Blue is zero, we're in Yellow-Green
+ // G = 171..255
+ // R = 171.. 0
+ h = HUE_YELLOW;
+ uint8_t radj = scale8( qsub8(171,r), 47); //171..0 -> 0..171 -> 0..31
+ uint8_t gadj = scale8( qsub8(g,171), 96); //171..255 -> 0..84 -> 0..31;
+ uint8_t rgadj = radj + gadj;
+ uint8_t hueadv = rgadj / 2;
+ h += hueadv;
+ //h += scale8( qadd8( 4, qadd8((g - 128), (128 - r))),
+ // FIXFRAC8(32,255)); //
+ } else {
+ // if Blue is nonzero we're in Green-Aqua
+ if( (g-b) > b) {
+ h = HUE_GREEN;
+ h += scale8( b, FIXFRAC8(32,85));
+ } else {
+ h = HUE_AQUA;
+ h += scale8( qsub8(b, 85), FIXFRAC8(8,42));
+ }
+ }
+
+ } else /* highest == b */ {
+ // Blue is highest
+ // Hue could be Aqua/Blue-Blue, Blue-Purple, Purple-Pink
+ if( r == 0) {
+ // if red is zero, we're in Aqua/Blue-Blue
+ h = HUE_AQUA + ((HUE_BLUE - HUE_AQUA) / 4);
+ h += scale8( qsub8(b, 128), FIXFRAC8(24,128));
+ } else if ( (b-r) > r) {
+ // B-R > R, we're in Blue-Purple
+ h = HUE_BLUE;
+ h += scale8( r, FIXFRAC8(32,85));
+ } else {
+ // B-R < R, we're in Purple-Pink
+ h = HUE_PURPLE;
+ h += scale8( qsub8(r, 85), FIXFRAC8(32,85));
+ }
+ }
+
+ h += 1;
+ return CHSV( h, s, v);
+}
+
+// Examples that need work:
+// 0,192,192
+// 192,64,64
+// 224,32,32
+// 252,0,126
+// 252,252,0
+// 252,252,126
+
+FASTLED_NAMESPACE_END