Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/AlexGyver/Arduino_Ambilight.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Библиотеки/FastLED-master/platforms/arm/k20/fastspi_arm_k20.h')
-rw-r--r--Библиотеки/FastLED-master/platforms/arm/k20/fastspi_arm_k20.h466
1 files changed, 466 insertions, 0 deletions
diff --git a/Библиотеки/FastLED-master/platforms/arm/k20/fastspi_arm_k20.h b/Библиотеки/FastLED-master/platforms/arm/k20/fastspi_arm_k20.h
new file mode 100644
index 0000000..70210a3
--- /dev/null
+++ b/Библиотеки/FastLED-master/platforms/arm/k20/fastspi_arm_k20.h
@@ -0,0 +1,466 @@
+#ifndef __INC_FASTSPI_ARM_H
+#define __INC_FASTSPI_ARM_H
+
+FASTLED_NAMESPACE_BEGIN
+
+#if defined(FASTLED_TEENSY3) && defined(CORE_TEENSY)
+
+// Version 1.20 renamed SPI_t to KINETISK_SPI_t
+#if TEENSYDUINO >= 120
+#define SPI_t KINETISK_SPI_t
+#endif
+
+#ifndef KINETISK_SPI0
+#define KINETISK_SPI0 SPI0
+#endif
+
+#ifndef SPI_PUSHR_CONT
+#define SPI_PUSHR_CONT SPIX.PUSHR_CONT
+#define SPI_PUSHR_CTAS(X) SPIX.PUSHR_CTAS(X)
+#define SPI_PUSHR_EOQ SPIX.PUSHR_EOQ
+#define SPI_PUSHR_CTCNT SPIX.PUSHR_CTCNT
+#define SPI_PUSHR_PCS(X) SPIX.PUSHR_PCS(X)
+#endif
+
+// Template function that, on compilation, expands to a constant representing the highest bit set in a byte. Right now,
+// if no bits are set (value is 0), it returns 0, which is also the value returned if the lowest bit is the only bit
+// set (the zero-th bit). Unclear if I will want this to change at some point.
+template<int VAL, int BIT> class BitWork {
+public:
+ static int highestBit() __attribute__((always_inline)) { return (VAL & 1 << BIT) ? BIT : BitWork<VAL, BIT-1>::highestBit(); }
+};
+template<int VAL> class BitWork<VAL, 0> {
+public:
+ static int highestBit() __attribute__((always_inline)) { return 0; }
+};
+
+#define MAX(A, B) (( (A) > (B) ) ? (A) : (B))
+
+#define USE_CONT 0
+// intra-frame backup data
+struct SPIState {
+ uint32_t _ctar0,_ctar1;
+ uint32_t pins[4];
+};
+
+// extern SPIState gState;
+
+
+// Templated function to translate a clock divider value into the prescalar, scalar, and clock doubling setting for the world.
+template <int VAL> void getScalars(uint32_t & preScalar, uint32_t & scalar, uint32_t & dbl) {
+ switch(VAL) {
+ // Handle the dbl clock cases
+ case 0: case 1:
+ case 2: preScalar = 0; scalar = 0; dbl = 1; break;
+ case 3: preScalar = 1; scalar = 0; dbl = 1; break;
+ case 5: preScalar = 2; scalar = 0; dbl = 1; break;
+ case 7: preScalar = 3; scalar = 0; dbl = 1; break;
+
+ // Handle the scalar value 6 cases (since it's not a power of two, it won't get caught
+ // below)
+ case 9: preScalar = 1; scalar = 2; dbl = 1; break;
+ case 18: case 19: preScalar = 1; scalar = 2; dbl = 0; break;
+
+ case 15: preScalar = 2; scalar = 2; dbl = 1; break;
+ case 30: case 31: preScalar = 2; scalar = 2; dbl = 0; break;
+
+ case 21: case 22: case 23: preScalar = 3; scalar = 2; dbl = 1; break;
+ case 42: case 43: case 44: case 45: case 46: case 47: preScalar = 3; scalar = 2; dbl = 0; break;
+ default: {
+ int p2 = BitWork<VAL/2, 15>::highestBit();
+ int p3 = BitWork<VAL/3, 15>::highestBit();
+ int p5 = BitWork<VAL/5, 15>::highestBit();
+ int p7 = BitWork<VAL/7, 15>::highestBit();
+
+ int w2 = 2 * (1 << p2);
+ int w3 = (VAL/3) > 0 ? 3 * (1 << p3) : 0;
+ int w5 = (VAL/5) > 0 ? 5 * (1 << p5) : 0;
+ int w7 = (VAL/7) > 0 ? 7 * (1 << p7) : 0;
+
+ int maxval = MAX(MAX(w2, w3), MAX(w5, w7));
+
+ if(w2 == maxval) { preScalar = 0; scalar = p2; }
+ else if(w3 == maxval) { preScalar = 1; scalar = p3; }
+ else if(w5 == maxval) { preScalar = 2; scalar = p5; }
+ else if(w7 == maxval) { preScalar = 3; scalar = p7; }
+
+ dbl = 0;
+ if(scalar == 0) { dbl = 1; }
+ else if(scalar < 3) { scalar--; }
+ }
+ }
+ return;
+}
+
+#define SPIX (*(SPI_t*)pSPIX)
+
+template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint8_t _SPI_CLOCK_DIVIDER, uint32_t pSPIX>
+class ARMHardwareSPIOutput {
+ Selectable *m_pSelect;
+ SPIState gState;
+
+ // Borrowed from the teensy3 SPSR emulation code -- note, enabling pin 7 disables pin 11 (and vice versa),
+ // and likewise enabling pin 14 disables pin 13 (and vice versa)
+ inline void enable_pins(void) __attribute__((always_inline)) {
+ //serial_print("enable_pins\n");
+ switch(_DATA_PIN) {
+ case 7:
+ CORE_PIN7_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
+ CORE_PIN11_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
+ break;
+ case 11:
+ CORE_PIN11_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
+ CORE_PIN7_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
+ break;
+ }
+
+ switch(_CLOCK_PIN) {
+ case 13:
+ CORE_PIN13_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
+ CORE_PIN14_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
+ break;
+ case 14:
+ CORE_PIN14_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
+ CORE_PIN13_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
+ break;
+ }
+ }
+
+ // Borrowed from the teensy3 SPSR emulation code. We disable the pins that we're using, and restore the state on the pins that we aren't using
+ inline void disable_pins(void) __attribute__((always_inline)) {
+ switch(_DATA_PIN) {
+ case 7: CORE_PIN7_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); CORE_PIN11_CONFIG = gState.pins[1]; break;
+ case 11: CORE_PIN11_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); CORE_PIN7_CONFIG = gState.pins[0]; break;
+ }
+
+ switch(_CLOCK_PIN) {
+ case 13: CORE_PIN13_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); CORE_PIN14_CONFIG = gState.pins[3]; break;
+ case 14: CORE_PIN14_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); CORE_PIN13_CONFIG = gState.pins[2]; break;
+ }
+ }
+
+ static inline void update_ctars(uint32_t ctar0, uint32_t ctar1) __attribute__((always_inline)) {
+ if(SPIX.CTAR0 == ctar0 && SPIX.CTAR1 == ctar1) return;
+ uint32_t mcr = SPIX.MCR;
+ if(mcr & SPI_MCR_MDIS) {
+ SPIX.CTAR0 = ctar0;
+ SPIX.CTAR1 = ctar1;
+ } else {
+ SPIX.MCR = mcr | SPI_MCR_MDIS | SPI_MCR_HALT;
+ SPIX.CTAR0 = ctar0;
+ SPIX.CTAR1 = ctar1;
+ SPIX.MCR = mcr;
+ }
+ }
+
+ static inline void update_ctar0(uint32_t ctar) __attribute__((always_inline)) {
+ if (SPIX.CTAR0 == ctar) return;
+ uint32_t mcr = SPIX.MCR;
+ if (mcr & SPI_MCR_MDIS) {
+ SPIX.CTAR0 = ctar;
+ } else {
+ SPIX.MCR = mcr | SPI_MCR_MDIS | SPI_MCR_HALT;
+ SPIX.CTAR0 = ctar;
+
+ SPIX.MCR = mcr;
+ }
+ }
+
+ static inline void update_ctar1(uint32_t ctar) __attribute__((always_inline)) {
+ if (SPIX.CTAR1 == ctar) return;
+ uint32_t mcr = SPIX.MCR;
+ if (mcr & SPI_MCR_MDIS) {
+ SPIX.CTAR1 = ctar;
+ } else {
+ SPIX.MCR = mcr | SPI_MCR_MDIS | SPI_MCR_HALT;
+ SPIX.CTAR1 = ctar;
+ SPIX.MCR = mcr;
+
+ }
+ }
+
+ void setSPIRate() {
+ // Configure CTAR0, defaulting to 8 bits and CTAR1, defaulting to 16 bits
+ uint32_t _PBR = 0;
+ uint32_t _BR = 0;
+ uint32_t _CSSCK = 0;
+ uint32_t _DBR = 0;
+
+ // if(_SPI_CLOCK_DIVIDER >= 256) { _PBR = 0; _BR = _CSSCK = 7; _DBR = 0; } // osc/256
+ // else if(_SPI_CLOCK_DIVIDER >= 128) { _PBR = 0; _BR = _CSSCK = 6; _DBR = 0; } // osc/128
+ // else if(_SPI_CLOCK_DIVIDER >= 64) { _PBR = 0; _BR = _CSSCK = 5; _DBR = 0; } // osc/64
+ // else if(_SPI_CLOCK_DIVIDER >= 32) { _PBR = 0; _BR = _CSSCK = 4; _DBR = 0; } // osc/32
+ // else if(_SPI_CLOCK_DIVIDER >= 16) { _PBR = 0; _BR = _CSSCK = 3; _DBR = 0; } // osc/16
+ // else if(_SPI_CLOCK_DIVIDER >= 8) { _PBR = 0; _BR = _CSSCK = 1; _DBR = 0; } // osc/8
+ // else if(_SPI_CLOCK_DIVIDER >= 7) { _PBR = 3; _BR = _CSSCK = 0; _DBR = 1; } // osc/7
+ // else if(_SPI_CLOCK_DIVIDER >= 5) { _PBR = 2; _BR = _CSSCK = 0; _DBR = 1; } // osc/5
+ // else if(_SPI_CLOCK_DIVIDER >= 4) { _PBR = 0; _BR = _CSSCK = 0; _DBR = 0; } // osc/4
+ // else if(_SPI_CLOCK_DIVIDER >= 3) { _PBR = 1; _BR = _CSSCK = 0; _DBR = 1; } // osc/3
+ // else { _PBR = 0; _BR = _CSSCK = 0; _DBR = 1; } // osc/2
+
+ getScalars<_SPI_CLOCK_DIVIDER>(_PBR, _BR, _DBR);
+ _CSSCK = _BR;
+
+ uint32_t ctar0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(_PBR) | SPI_CTAR_BR(_BR) | SPI_CTAR_CSSCK(_CSSCK);
+ uint32_t ctar1 = SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(_PBR) | SPI_CTAR_BR(_BR) | SPI_CTAR_CSSCK(_CSSCK);
+
+ #if USE_CONT == 1
+ ctar0 |= SPI_CTAR_CPHA | SPI_CTAR_CPOL;
+ ctar1 |= SPI_CTAR_CPHA | SPI_CTAR_CPOL;
+ #endif
+
+ if(_DBR) {
+ ctar0 |= SPI_CTAR_DBR;
+ ctar1 |= SPI_CTAR_DBR;
+ }
+
+ update_ctars(ctar0,ctar1);
+ }
+
+ void inline save_spi_state() __attribute__ ((always_inline)) {
+ // save ctar data
+ gState._ctar0 = SPIX.CTAR0;
+ gState._ctar1 = SPIX.CTAR1;
+
+ // save data for the not-us pins
+ gState.pins[0] = CORE_PIN7_CONFIG;
+ gState.pins[1] = CORE_PIN11_CONFIG;
+ gState.pins[2] = CORE_PIN13_CONFIG;
+ gState.pins[3] = CORE_PIN14_CONFIG;
+ }
+
+ void inline restore_spi_state() __attribute__ ((always_inline)) {
+ // restore ctar data
+ update_ctars(gState._ctar0,gState._ctar1);
+
+ // restore data for the not-us pins (not necessary because disable_pins will do this)
+ // CORE_PIN7_CONFIG = gState.pins[0];
+ // CORE_PIN11_CONFIG = gState.pins[1];
+ // CORE_PIN13_CONFIG = gState.pins[2];
+ // CORE_PIN14_CONFIG = gState.pins[3];
+ }
+
+
+public:
+ ARMHardwareSPIOutput() { m_pSelect = NULL; }
+ ARMHardwareSPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
+ void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }
+
+
+ void init() {
+ // set the pins to output
+ FastPin<_DATA_PIN>::setOutput();
+ FastPin<_CLOCK_PIN>::setOutput();
+
+ // Enable SPI0 clock
+ uint32_t sim6 = SIM_SCGC6;
+ if((SPI_t*)pSPIX == &KINETISK_SPI0) {
+ if (!(sim6 & SIM_SCGC6_SPI0)) {
+ //serial_print("init1\n");
+ SIM_SCGC6 = sim6 | SIM_SCGC6_SPI0;
+ SPIX.CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(1) | SPI_CTAR_BR(1);
+ }
+ } else if((SPI_t*)pSPIX == &SPI1) {
+ if (!(sim6 & SIM_SCGC6_SPI1)) {
+ //serial_print("init1\n");
+ SIM_SCGC6 = sim6 | SIM_SCGC6_SPI1;
+ SPIX.CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(1) | SPI_CTAR_BR(1);
+ }
+ }
+
+ // Configure SPI as the master and enable
+ SPIX.MCR |= SPI_MCR_MSTR; // | SPI_MCR_CONT_SCKE);
+ SPIX.MCR &= ~(SPI_MCR_MDIS | SPI_MCR_HALT);
+
+ // pin/spi configuration happens on select
+ }
+
+ static void waitFully() __attribute__((always_inline)) {
+ // Wait for the last byte to get shifted into the register
+ bool empty = false;
+
+ do {
+ cli();
+ if ((SPIX.SR & 0xF000) > 0) {
+ // reset the TCF flag
+ SPIX.SR |= SPI_SR_TCF;
+ } else {
+ empty = true;
+ }
+ sei();
+ } while (!empty);
+
+ // wait for the TCF flag to get set
+ while (!(SPIX.SR & SPI_SR_TCF));
+ SPIX.SR |= (SPI_SR_TCF | SPI_SR_EOQF);
+ }
+
+ static bool needwait() __attribute__((always_inline)) { return (SPIX.SR & 0x4000); }
+ static void wait() __attribute__((always_inline)) { while( (SPIX.SR & 0x4000) ); }
+ static void wait1() __attribute__((always_inline)) { while( (SPIX.SR & 0xF000) >= 0x2000); }
+
+ enum ECont { CONT, NOCONT };
+ enum EWait { PRE, POST, NONE };
+ enum ELast { NOTLAST, LAST };
+
+ #if USE_CONT == 1
+ #define CM CONT
+ #else
+ #define CM NOCONT
+ #endif
+ #define WM PRE
+
+ template<ECont CONT_STATE, EWait WAIT_STATE, ELast LAST_STATE> class Write {
+ public:
+ static void writeWord(uint16_t w) __attribute__((always_inline)) {
+ if(WAIT_STATE == PRE) { wait(); }
+ cli();
+ SPIX.PUSHR = ((LAST_STATE == LAST) ? SPI_PUSHR_EOQ : 0) |
+ ((CONT_STATE == CONT) ? SPI_PUSHR_CONT : 0) |
+ SPI_PUSHR_CTAS(1) | (w & 0xFFFF);
+ SPIX.SR |= SPI_SR_TCF;
+ sei();
+ if(WAIT_STATE == POST) { wait(); }
+ }
+
+ static void writeByte(uint8_t b) __attribute__((always_inline)) {
+ if(WAIT_STATE == PRE) { wait(); }
+ cli();
+ SPIX.PUSHR = ((LAST_STATE == LAST) ? SPI_PUSHR_EOQ : 0) |
+ ((CONT_STATE == CONT) ? SPI_PUSHR_CONT : 0) |
+ SPI_PUSHR_CTAS(0) | (b & 0xFF);
+ SPIX.SR |= SPI_SR_TCF;
+ sei();
+ if(WAIT_STATE == POST) { wait(); }
+ }
+ };
+
+ static void writeWord(uint16_t w) __attribute__((always_inline)) { wait(); cli(); SPIX.PUSHR = SPI_PUSHR_CTAS(1) | (w & 0xFFFF); SPIX.SR |= SPI_SR_TCF; sei(); }
+ static void writeWordNoWait(uint16_t w) __attribute__((always_inline)) { cli(); SPIX.PUSHR = SPI_PUSHR_CTAS(1) | (w & 0xFFFF); SPIX.SR |= SPI_SR_TCF; sei(); }
+
+ static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); cli(); SPIX.PUSHR = SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF; sei(); }
+ static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { cli(); SPIX.PUSHR = SPI_PUSHR_CTAS(0) | (b & 0xFF);SPIX.SR |= SPI_SR_TCF; sei(); wait(); }
+ static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { cli(); SPIX.PUSHR = SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF; sei(); }
+
+ static void writeWordCont(uint16_t w) __attribute__((always_inline)) { wait(); cli(); SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | (w & 0xFFFF); SPIX.SR |= SPI_SR_TCF; sei(); }
+ static void writeWordContNoWait(uint16_t w) __attribute__((always_inline)) { cli(); SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | (w & 0xFFFF); SPIX.SR |= SPI_SR_TCF; sei();}
+
+ static void writeByteCont(uint8_t b) __attribute__((always_inline)) { wait(); cli(); SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF; sei(); }
+ static void writeByteContPostWait(uint8_t b) __attribute__((always_inline)) { cli(); SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF; sei(); wait(); }
+ static void writeByteContNoWait(uint8_t b) __attribute__((always_inline)) { cli(); SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF; sei(); }
+
+ // not the most efficient mechanism in the world - but should be enough for sm16716 and friends
+ template <uint8_t BIT> inline static void writeBit(uint8_t b) {
+ uint32_t ctar1_save = SPIX.CTAR1;
+
+ // Clear out the FMSZ bits, reset them for 1 bit transferd for the start bit
+ uint32_t ctar1 = (ctar1_save & (~SPI_CTAR_FMSZ(15))) | SPI_CTAR_FMSZ(0);
+ update_ctar1(ctar1);
+
+ writeWord( (b & (1 << BIT)) != 0);
+
+ update_ctar1(ctar1_save);
+ }
+
+ void inline select() __attribute__((always_inline)) {
+ save_spi_state();
+ if(m_pSelect != NULL) { m_pSelect->select(); }
+ setSPIRate();
+ enable_pins();
+ }
+
+ void inline release() __attribute__((always_inline)) {
+ disable_pins();
+ if(m_pSelect != NULL) { m_pSelect->release(); }
+ restore_spi_state();
+ }
+
+ static void writeBytesValueRaw(uint8_t value, int len) {
+ while(len--) { Write<CM, WM, NOTLAST>::writeByte(value); }
+ }
+
+ void writeBytesValue(uint8_t value, int len) {
+ select();
+ while(len--) {
+ writeByte(value);
+ }
+ waitFully();
+ release();
+ }
+
+ // Write a block of n uint8_ts out
+ template <class D> void writeBytes(register uint8_t *data, int len) {
+ uint8_t *end = data + len;
+ select();
+ // could be optimized to write 16bit words out instead of 8bit bytes
+ while(data != end) {
+ writeByte(D::adjust(*data++));
+ }
+ D::postBlock(len);
+ waitFully();
+ release();
+ }
+
+ void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }
+
+ // write a block of uint8_ts out in groups of three. len is the total number of uint8_ts to write out. The template
+ // parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
+ template <uint8_t FLAGS, class D, EOrder RGB_ORDER> void writePixels(PixelController<RGB_ORDER> pixels) {
+ select();
+ int len = pixels.mLen;
+
+ // Setup the pixel controller
+ if((FLAGS & FLAG_START_BIT) == 0) {
+ //If no start bit stupiditiy, write out as many 16-bit blocks as we can
+ while(pixels.has(2)) {
+ // Load and write out the first two bytes
+ if(WM == NONE) { wait1(); }
+ Write<CM, WM, NOTLAST>::writeWord(D::adjust(pixels.loadAndScale0()) << 8 | D::adjust(pixels.loadAndScale1()));
+
+ // Load and write out the next two bytes (step dithering, advance data in between since we
+ // cross pixels here)
+ Write<CM, WM, NOTLAST>::writeWord(D::adjust(pixels.loadAndScale2()) << 8 | D::adjust(pixels.stepAdvanceAndLoadAndScale0()));
+
+ // Load and write out the next two bytes
+ Write<CM, WM, NOTLAST>::writeWord(D::adjust(pixels.loadAndScale1()) << 8 | D::adjust(pixels.loadAndScale2()));
+ pixels.stepDithering();
+ pixels.advanceData();
+ }
+
+ if(pixels.has(1)) {
+ if(WM == NONE) { wait1(); }
+ // write out the rest as alternating 16/8-bit blocks (likely to be just one)
+ Write<CM, WM, NOTLAST>::writeWord(D::adjust(pixels.loadAndScale0()) << 8 | D::adjust(pixels.loadAndScale1()));
+ Write<CM, WM, NOTLAST>::writeByte(D::adjust(pixels.loadAndScale2()));
+ }
+
+ D::postBlock(len);
+ waitFully();
+ } else if(FLAGS & FLAG_START_BIT) {
+ uint32_t ctar1_save = SPIX.CTAR1;
+
+ // Clear out the FMSZ bits, reset them for 9 bits transferd for the start bit
+ uint32_t ctar1 = (ctar1_save & (~SPI_CTAR_FMSZ(15))) | SPI_CTAR_FMSZ(8);
+ update_ctar1(ctar1);
+
+ while(pixels.has(1)) {
+ writeWord( 0x100 | D::adjust(pixels.loadAndScale0()));
+ writeByte(D::adjust(pixels.loadAndScale1()));
+ writeByte(D::adjust(pixels.loadAndScale2()));
+ pixels.advanceData();
+ pixels.stepDithering();
+ }
+ D::postBlock(len);
+ waitFully();
+
+ // restore ctar1
+ update_ctar1(ctar1_save);
+ }
+ release();
+ }
+};
+#endif
+
+FASTLED_NAMESPACE_END
+
+#endif