Welcome to mirror list, hosted at ThFree Co, Russian Federation.

NoisePlusPalette.ino « NoisePlusPalette « examples « FastLED-master « Библиотеки - github.com/AlexGyver/Arduino_Ambilight.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4e06bdd859f3a25d1266770c13a1a2c445cc4aa6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#include<FastLED.h>

#define LED_PIN     3
#define BRIGHTNESS  96
#define LED_TYPE    WS2811
#define COLOR_ORDER GRB

const uint8_t kMatrixWidth  = 16;
const uint8_t kMatrixHeight = 16;
const bool    kMatrixSerpentineLayout = true;


// This example combines two features of FastLED to produce a remarkable range of
// effects from a relatively small amount of code.  This example combines FastLED's 
// color palette lookup functions with FastLED's Perlin/simplex noise generator, and
// the combination is extremely powerful.
//
// You might want to look at the "ColorPalette" and "Noise" examples separately
// if this example code seems daunting.
//
// 
// The basic setup here is that for each frame, we generate a new array of 
// 'noise' data, and then map it onto the LED matrix through a color palette.
//
// Periodically, the color palette is changed, and new noise-generation parameters
// are chosen at the same time.  In this example, specific noise-generation
// values have been selected to match the given color palettes; some are faster, 
// or slower, or larger, or smaller than others, but there's no reason these 
// parameters can't be freely mixed-and-matched.
//
// In addition, this example includes some fast automatic 'data smoothing' at 
// lower noise speeds to help produce smoother animations in those cases.
//
// The FastLED built-in color palettes (Forest, Clouds, Lava, Ocean, Party) are
// used, as well as some 'hand-defined' ones, and some proceedurally generated
// palettes.


#define NUM_LEDS (kMatrixWidth * kMatrixHeight)
#define MAX_DIMENSION ((kMatrixWidth>kMatrixHeight) ? kMatrixWidth : kMatrixHeight)

// The leds
CRGB leds[kMatrixWidth * kMatrixHeight];

// The 16 bit version of our coordinates
static uint16_t x;
static uint16_t y;
static uint16_t z;

// We're using the x/y dimensions to map to the x/y pixels on the matrix.  We'll
// use the z-axis for "time".  speed determines how fast time moves forward.  Try
// 1 for a very slow moving effect, or 60 for something that ends up looking like
// water.
uint16_t speed = 20; // speed is set dynamically once we've started up

// Scale determines how far apart the pixels in our noise matrix are.  Try
// changing these values around to see how it affects the motion of the display.  The
// higher the value of scale, the more "zoomed out" the noise iwll be.  A value
// of 1 will be so zoomed in, you'll mostly see solid colors.
uint16_t scale = 30; // scale is set dynamically once we've started up

// This is the array that we keep our computed noise values in
uint8_t noise[MAX_DIMENSION][MAX_DIMENSION];

CRGBPalette16 currentPalette( PartyColors_p );
uint8_t       colorLoop = 1;

void setup() {
  delay(3000);
  LEDS.addLeds<LED_TYPE,LED_PIN,COLOR_ORDER>(leds,NUM_LEDS);
  LEDS.setBrightness(BRIGHTNESS);

  // Initialize our coordinates to some random values
  x = random16();
  y = random16();
  z = random16();
}



// Fill the x/y array of 8-bit noise values using the inoise8 function.
void fillnoise8() {
  // If we're runing at a low "speed", some 8-bit artifacts become visible
  // from frame-to-frame.  In order to reduce this, we can do some fast data-smoothing.
  // The amount of data smoothing we're doing depends on "speed".
  uint8_t dataSmoothing = 0;
  if( speed < 50) {
    dataSmoothing = 200 - (speed * 4);
  }
  
  for(int i = 0; i < MAX_DIMENSION; i++) {
    int ioffset = scale * i;
    for(int j = 0; j < MAX_DIMENSION; j++) {
      int joffset = scale * j;
      
      uint8_t data = inoise8(x + ioffset,y + joffset,z);

      // The range of the inoise8 function is roughly 16-238.
      // These two operations expand those values out to roughly 0..255
      // You can comment them out if you want the raw noise data.
      data = qsub8(data,16);
      data = qadd8(data,scale8(data,39));

      if( dataSmoothing ) {
        uint8_t olddata = noise[i][j];
        uint8_t newdata = scale8( olddata, dataSmoothing) + scale8( data, 256 - dataSmoothing);
        data = newdata;
      }
      
      noise[i][j] = data;
    }
  }
  
  z += speed;
  
  // apply slow drift to X and Y, just for visual variation.
  x += speed / 8;
  y -= speed / 16;
}

void mapNoiseToLEDsUsingPalette()
{
  static uint8_t ihue=0;
  
  for(int i = 0; i < kMatrixWidth; i++) {
    for(int j = 0; j < kMatrixHeight; j++) {
      // We use the value at the (i,j) coordinate in the noise
      // array for our brightness, and the flipped value from (j,i)
      // for our pixel's index into the color palette.

      uint8_t index = noise[j][i];
      uint8_t bri =   noise[i][j];

      // if this palette is a 'loop', add a slowly-changing base value
      if( colorLoop) { 
        index += ihue;
      }

      // brighten up, as the color palette itself often contains the 
      // light/dark dynamic range desired
      if( bri > 127 ) {
        bri = 255;
      } else {
        bri = dim8_raw( bri * 2);
      }

      CRGB color = ColorFromPalette( currentPalette, index, bri);
      leds[XY(i,j)] = color;
    }
  }
  
  ihue+=1;
}

void loop() {
  // Periodically choose a new palette, speed, and scale
  ChangePaletteAndSettingsPeriodically();

  // generate noise data
  fillnoise8();
  
  // convert the noise data to colors in the LED array
  // using the current palette
  mapNoiseToLEDsUsingPalette();

  LEDS.show();
  // delay(10);
}



// There are several different palettes of colors demonstrated here.
//
// FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p,
// OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p.
//
// Additionally, you can manually define your own color palettes, or you can write
// code that creates color palettes on the fly.

// 1 = 5 sec per palette
// 2 = 10 sec per palette
// etc
#define HOLD_PALETTES_X_TIMES_AS_LONG 1

void ChangePaletteAndSettingsPeriodically()
{
  uint8_t secondHand = ((millis() / 1000) / HOLD_PALETTES_X_TIMES_AS_LONG) % 60;
  static uint8_t lastSecond = 99;
  
  if( lastSecond != secondHand) {
    lastSecond = secondHand;
    if( secondHand ==  0)  { currentPalette = RainbowColors_p;         speed = 20; scale = 30; colorLoop = 1; }
    if( secondHand ==  5)  { SetupPurpleAndGreenPalette();             speed = 10; scale = 50; colorLoop = 1; }
    if( secondHand == 10)  { SetupBlackAndWhiteStripedPalette();       speed = 20; scale = 30; colorLoop = 1; }
    if( secondHand == 15)  { currentPalette = ForestColors_p;          speed =  8; scale =120; colorLoop = 0; }
    if( secondHand == 20)  { currentPalette = CloudColors_p;           speed =  4; scale = 30; colorLoop = 0; }
    if( secondHand == 25)  { currentPalette = LavaColors_p;            speed =  8; scale = 50; colorLoop = 0; }
    if( secondHand == 30)  { currentPalette = OceanColors_p;           speed = 20; scale = 90; colorLoop = 0; }
    if( secondHand == 35)  { currentPalette = PartyColors_p;           speed = 20; scale = 30; colorLoop = 1; }
    if( secondHand == 40)  { SetupRandomPalette();                     speed = 20; scale = 20; colorLoop = 1; }
    if( secondHand == 45)  { SetupRandomPalette();                     speed = 50; scale = 50; colorLoop = 1; }
    if( secondHand == 50)  { SetupRandomPalette();                     speed = 90; scale = 90; colorLoop = 1; }
    if( secondHand == 55)  { currentPalette = RainbowStripeColors_p;   speed = 30; scale = 20; colorLoop = 1; }
  }
}

// This function generates a random palette that's a gradient
// between four different colors.  The first is a dim hue, the second is 
// a bright hue, the third is a bright pastel, and the last is 
// another bright hue.  This gives some visual bright/dark variation
// which is more interesting than just a gradient of different hues.
void SetupRandomPalette()
{
  currentPalette = CRGBPalette16( 
                      CHSV( random8(), 255, 32), 
                      CHSV( random8(), 255, 255), 
                      CHSV( random8(), 128, 255), 
                      CHSV( random8(), 255, 255)); 
}

// This function sets up a palette of black and white stripes,
// using code.  Since the palette is effectively an array of
// sixteen CRGB colors, the various fill_* functions can be used
// to set them up.
void SetupBlackAndWhiteStripedPalette()
{
  // 'black out' all 16 palette entries...
  fill_solid( currentPalette, 16, CRGB::Black);
  // and set every fourth one to white.
  currentPalette[0] = CRGB::White;
  currentPalette[4] = CRGB::White;
  currentPalette[8] = CRGB::White;
  currentPalette[12] = CRGB::White;

}

// This function sets up a palette of purple and green stripes.
void SetupPurpleAndGreenPalette()
{
  CRGB purple = CHSV( HUE_PURPLE, 255, 255);
  CRGB green  = CHSV( HUE_GREEN, 255, 255);
  CRGB black  = CRGB::Black;
  
  currentPalette = CRGBPalette16( 
    green,  green,  black,  black,
    purple, purple, black,  black,
    green,  green,  black,  black,
    purple, purple, black,  black );
}


//
// Mark's xy coordinate mapping code.  See the XYMatrix for more information on it.
//
uint16_t XY( uint8_t x, uint8_t y)
{
  uint16_t i;
  if( kMatrixSerpentineLayout == false) {
    i = (y * kMatrixWidth) + x;
  }
  if( kMatrixSerpentineLayout == true) {
    if( y & 0x01) {
      // Odd rows run backwards
      uint8_t reverseX = (kMatrixWidth - 1) - x;
      i = (y * kMatrixWidth) + reverseX;
    } else {
      // Even rows run forwards
      i = (y * kMatrixWidth) + x;
    }
  }
  return i;
}