Welcome to mirror list, hosted at ThFree Co, Russian Federation.

clockless_block_arm_k66.h « k66 « arm « platforms « FastLED-master « Библиотеки - github.com/AlexGyver/Arduino_Ambilight.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3b3f97875761ef355b43340eafc9f5089e9fb750 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#ifndef __INC_BLOCK_CLOCKLESS_ARM_K66_H
#define __INC_BLOCK_CLOCKLESS_ARM_K66_H

// Definition for a single channel clockless controller for the k66 family of chips, like that used in the teensy 3.6
// See clockless.h for detailed info on how the template parameters are used.
#if defined(FASTLED_TEENSY3)
#define FASTLED_HAS_BLOCKLESS 1

#define PORTB_FIRST_PIN 0
#define PORTC_FIRST_PIN 15
#define PORTD_FIRST_PIN 2
#define HAS_PORTDC 1

#define LANE_MASK (((1<<LANES)-1) & ((FIRST_PIN==2) ? 0xFF : 0xFFF))
#define PORT_SHIFT(P) ((P) << ((FIRST_PIN==0) ? 16 : 0))
#define PORT_MASK PORT_SHIFT(LANE_MASK)

#define MIN(X,Y) (((X)<(Y)) ? (X):(Y))
#define USED_LANES ((FIRST_PIN!=15) ? MIN(LANES,8) : MIN(LANES,12))

#include "kinetis.h"

FASTLED_NAMESPACE_BEGIN

template <uint8_t LANES, int FIRST_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = GRB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 40>
class InlineBlockClocklessController : public CPixelLEDController<RGB_ORDER, LANES, LANE_MASK> {
	typedef typename FastPin<FIRST_PIN>::port_ptr_t data_ptr_t;
	typedef typename FastPin<FIRST_PIN>::port_t data_t;

	data_t mPinMask;
	data_ptr_t mPort;
	CMinWait<WAIT_TIME> mWait;
public:
	virtual int size() { return CLEDController::size() * LANES; }

	virtual void showPixels(PixelController<RGB_ORDER, LANES, LANE_MASK> & pixels) { 
		mWait.wait();
		uint32_t clocks = showRGBInternal(pixels);
		#if FASTLED_ALLOW_INTTERUPTS == 0
		// Adjust the timer
		long microsTaken = CLKS_TO_MICROS(clocks);
		MS_COUNTER += (1 + (microsTaken / 1000));
		#endif

		mWait.mark();
	}

	virtual void init() {
		if(FIRST_PIN == PORTC_FIRST_PIN) { // PORTC
			switch(USED_LANES) {
				case 12: FastPin<30>::setOutput();
				case 11: FastPin<29>::setOutput();
				case 10: FastPin<27>::setOutput();
				case 9: FastPin<28>::setOutput();
				case 8: FastPin<12>::setOutput();
				case 7: FastPin<11>::setOutput();
				case 6: FastPin<13>::setOutput();
				case 5: FastPin<10>::setOutput();
				case 4: FastPin<9>::setOutput();
				case 3: FastPin<23>::setOutput();
				case 2: FastPin<22>::setOutput();
				case 1: FastPin<15>::setOutput();
			}
		} else if(FIRST_PIN == PORTD_FIRST_PIN) { // PORTD
			switch(USED_LANES) {
				case 8: FastPin<5>::setOutput();
				case 7: FastPin<21>::setOutput();
				case 6: FastPin<20>::setOutput();
				case 5: FastPin<6>::setOutput();
				case 4: FastPin<8>::setOutput();
				case 3: FastPin<7>::setOutput();
				case 2: FastPin<14>::setOutput();
				case 1: FastPin<2>::setOutput();
			}
		} else if (FIRST_PIN == PORTB_FIRST_PIN) { // PORTB
			switch (USED_LANES) {
				case 8: FastPin<45>::setOutput();
				case 7: FastPin<44>::setOutput();
				case 6: FastPin<46>::setOutput();
				case 5: FastPin<43>::setOutput();
				case 4: FastPin<30>::setOutput();
				case 3: FastPin<29>::setOutput();
				case 2: FastPin<1>::setOutput();
				case 1: FastPin<0>::setOutput();
			}
		}
		mPinMask = FastPin<FIRST_PIN>::mask();
		mPort = FastPin<FIRST_PIN>::port();
	}

	virtual uint16_t getMaxRefreshRate() const { return 400; }

	typedef union {
		uint8_t bytes[12];
		uint16_t shorts[6];
		uint32_t raw[3];
	} Lines;

	template<int BITS,int PX> __attribute__ ((always_inline)) inline static void writeBits(register uint32_t & next_mark, register Lines & b, PixelController<RGB_ORDER, LANES, LANE_MASK> &pixels) { // , register uint32_t & b2)  {
		register Lines b2;
		if(USED_LANES>8) {
			transpose8<1,2>(b.bytes,b2.bytes);
			transpose8<1,2>(b.bytes+8,b2.bytes+1);
		} else {
			transpose8x1(b.bytes,b2.bytes);
		}
		register uint8_t d = pixels.template getd<PX>(pixels);
		register uint8_t scale = pixels.template getscale<PX>(pixels);

		for(register uint32_t i = 0; i < (USED_LANES/2); i++) {
			while(ARM_DWT_CYCCNT < next_mark);
			next_mark = ARM_DWT_CYCCNT + (T1+T2+T3)-3;
			*FastPin<FIRST_PIN>::sport() = PORT_MASK;

			while((next_mark - ARM_DWT_CYCCNT) > (T2+T3+(2*(F_CPU/24000000))));
			if(USED_LANES>8) {
				*FastPin<FIRST_PIN>::cport() = ((~b2.shorts[i]) & PORT_MASK);
			} else {
				*FastPin<FIRST_PIN>::cport() = (PORT_SHIFT(~b2.bytes[7-i]) & PORT_MASK);
			}

			while((next_mark - ARM_DWT_CYCCNT) > (T3));
			*FastPin<FIRST_PIN>::cport() = PORT_MASK;

			b.bytes[i] = pixels.template loadAndScale<PX>(pixels,i,d,scale);
			b.bytes[i+(USED_LANES/2)] = pixels.template loadAndScale<PX>(pixels,i+(USED_LANES/2),d,scale);
		}

		// if folks use an odd numnber of lanes, get the last byte's value here
		if(USED_LANES & 0x01) {
			b.bytes[USED_LANES-1] = pixels.template loadAndScale<PX>(pixels,USED_LANES-1,d,scale);
		}

		for(register uint32_t i = USED_LANES/2; i < 8; i++) {
			while(ARM_DWT_CYCCNT < next_mark);
			next_mark = ARM_DWT_CYCCNT + (T1+T2+T3)-3;
			*FastPin<FIRST_PIN>::sport() = PORT_MASK;
			while((next_mark - ARM_DWT_CYCCNT) > (T2+T3+(2*(F_CPU/24000000))));
			if(USED_LANES>8) {
				*FastPin<FIRST_PIN>::cport() = ((~b2.shorts[i]) & PORT_MASK);
			} else {
				// b2.bytes[0] = 0;
				*FastPin<FIRST_PIN>::cport() = (PORT_SHIFT(~b2.bytes[7-i]) & PORT_MASK);
			}

			while((next_mark - ARM_DWT_CYCCNT) > (T3));
			*FastPin<FIRST_PIN>::cport() = PORT_MASK;

		}
	}



	// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
	// gcc will use register Y for the this pointer.
		static uint32_t showRGBInternal(PixelController<RGB_ORDER, LANES, LANE_MASK> &allpixels) {
		// Get access to the clock
		ARM_DEMCR    |= ARM_DEMCR_TRCENA;
		ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA;
		ARM_DWT_CYCCNT = 0;

		// Setup the pixel controller and load/scale the first byte
		allpixels.preStepFirstByteDithering();
		register Lines b0;

		allpixels.preStepFirstByteDithering();
		for(int i = 0; i < USED_LANES; i++) {
			b0.bytes[i] = allpixels.loadAndScale0(i);
		}

		cli();
		uint32_t next_mark = ARM_DWT_CYCCNT + (T1+T2+T3);

		while(allpixels.has(1)) {
			#if (FASTLED_ALLOW_INTERRUPTS == 1)
			cli();
			// if interrupts took longer than 45µs, punt on the current frame
			if(ARM_DWT_CYCCNT > next_mark) {
				if((ARM_DWT_CYCCNT-next_mark) > ((WAIT_TIME-5)*CLKS_PER_US)) { sei(); return ARM_DWT_CYCCNT; }
			}
			#endif
			allpixels.stepDithering();

			// Write first byte, read next byte
			writeBits<8+XTRA0,1>(next_mark, b0, allpixels);

			// Write second byte, read 3rd byte
			writeBits<8+XTRA0,2>(next_mark, b0, allpixels);
			allpixels.advanceData();

			// Write third byte
			writeBits<8+XTRA0,0>(next_mark, b0, allpixels);
			#if (FASTLED_ALLOW_INTERRUPTS == 1)
			sei();
			#endif
		};

		return ARM_DWT_CYCCNT;
	}
};

#define PMASK ((1<<(LANES))-1)
#define PMASK_HI (PMASK>>8 & 0xFF)
#define PMASK_LO (PMASK & 0xFF)

template <uint8_t LANES, int T1, int T2, int T3, EOrder RGB_ORDER = GRB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 50>
class SixteenWayInlineBlockClocklessController : public CPixelLEDController<RGB_ORDER, LANES, PMASK> {
	typedef typename FastPin<PORTC_FIRST_PIN>::port_ptr_t data_ptr_t;
	typedef typename FastPin<PORTC_FIRST_PIN>::port_t data_t;

	data_t mPinMask;
	data_ptr_t mPort;
	CMinWait<WAIT_TIME> mWait;
public:
	virtual void init() {
		static_assert(LANES <= 16, "Maximum of 16 lanes for Teensy parallel controllers!");
		// FastPin<30>::setOutput();
		// FastPin<29>::setOutput();
		// FastPin<27>::setOutput();
		// FastPin<28>::setOutput();
		switch(LANES) {
			case 16: FastPin<12>::setOutput();
			case 15: FastPin<11>::setOutput();
			case 14: FastPin<13>::setOutput();
			case 13: FastPin<10>::setOutput();
			case 12: FastPin<9>::setOutput();
			case 11: FastPin<23>::setOutput();
			case 10: FastPin<22>::setOutput();
			case 9:  FastPin<15>::setOutput();

			case 8:  FastPin<5>::setOutput();
			case 7:  FastPin<21>::setOutput();
			case 6:  FastPin<20>::setOutput();
			case 5:  FastPin<6>::setOutput();
			case 4:  FastPin<8>::setOutput();
			case 3:  FastPin<7>::setOutput();
			case 2:  FastPin<14>::setOutput();
			case 1:  FastPin<2>::setOutput();
		}
	}

	virtual void showPixels(PixelController<RGB_ORDER, LANES, PMASK> & pixels) { 
		mWait.wait();
		uint32_t clocks = showRGBInternal(pixels);
		#if FASTLED_ALLOW_INTTERUPTS == 0
		// Adjust the timer
		long microsTaken = CLKS_TO_MICROS(clocks);
		MS_COUNTER += (1 + (microsTaken / 1000));
		#endif

		mWait.mark();
	}

	typedef union {
		uint8_t bytes[16];
		uint16_t shorts[8];
		uint32_t raw[4];
	} Lines;

	template<int BITS,int PX> __attribute__ ((always_inline)) inline static void writeBits(register uint32_t & next_mark, register Lines & b, PixelController<RGB_ORDER,LANES, PMASK> &pixels) { // , register uint32_t & b2)  {
		register Lines b2;
		transpose8x1(b.bytes,b2.bytes);
		transpose8x1(b.bytes+8,b2.bytes+8);
		register uint8_t d = pixels.template getd<PX>(pixels);
		register uint8_t scale = pixels.template getscale<PX>(pixels);

		for(register uint32_t i = 0; (i < LANES) && (i < 8); i++) {
			while(ARM_DWT_CYCCNT < next_mark);
			next_mark = ARM_DWT_CYCCNT + (T1+T2+T3)-3;
			*FastPin<PORTD_FIRST_PIN>::sport() = PMASK_LO;
			*FastPin<PORTC_FIRST_PIN>::sport() = PMASK_HI;

			while((next_mark - ARM_DWT_CYCCNT) > (T2+T3+6));
			*FastPin<PORTD_FIRST_PIN>::cport() = ((~b2.bytes[7-i]) & PMASK_LO);
			*FastPin<PORTC_FIRST_PIN>::cport() = ((~b2.bytes[15-i]) & PMASK_HI);

			while((next_mark - ARM_DWT_CYCCNT) > (T3));
			*FastPin<PORTD_FIRST_PIN>::cport() = PMASK_LO;
			*FastPin<PORTC_FIRST_PIN>::cport() = PMASK_HI;

			b.bytes[i] = pixels.template loadAndScale<PX>(pixels,i,d,scale);
			if(LANES==16 || (LANES>8 && ((i+8) < LANES))) {
				b.bytes[i+8] = pixels.template loadAndScale<PX>(pixels,i+8,d,scale);
			}
		}
	}



	// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
	// gcc will use register Y for the this pointer.
		static uint32_t showRGBInternal(PixelController<RGB_ORDER,LANES, PMASK> &allpixels) {
		// Get access to the clock
		ARM_DEMCR    |= ARM_DEMCR_TRCENA;
		ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA;
		ARM_DWT_CYCCNT = 0;

		// Setup the pixel controller and load/scale the first byte
		allpixels.preStepFirstByteDithering();
		register Lines b0;

		allpixels.preStepFirstByteDithering();
		for(int i = 0; i < LANES; i++) {
			b0.bytes[i] = allpixels.loadAndScale0(i);
		}

		cli();
		uint32_t next_mark = ARM_DWT_CYCCNT + (T1+T2+T3);

		while(allpixels.has(1)) {
			allpixels.stepDithering();
			#if 0 && (FASTLED_ALLOW_INTERRUPTS == 1)
			cli();
			// if interrupts took longer than 45µs, punt on the current frame
			if(ARM_DWT_CYCCNT > next_mark) {
				if((ARM_DWT_CYCCNT-next_mark) > ((WAIT_TIME-INTERRUPT_THRESHOLD)*CLKS_PER_US)) { sei(); return ARM_DWT_CYCCNT; }
			}
			#endif

			// Write first byte, read next byte
			writeBits<8+XTRA0,1>(next_mark, b0, allpixels);

			// Write second byte, read 3rd byte
			writeBits<8+XTRA0,2>(next_mark, b0, allpixels);
			allpixels.advanceData();

			// Write third byte
			writeBits<8+XTRA0,0>(next_mark, b0, allpixels);

			#if 0 && (FASTLED_ALLOW_INTERRUPTS == 1)
			sei();
			#endif
		};
		sei();

		return ARM_DWT_CYCCNT;
	}
};

FASTLED_NAMESPACE_END

#endif

#endif