Welcome to mirror list, hosted at ThFree Co, Russian Federation.

fastspi_avr.h « avr « platforms « FastLED-master « Библиотеки - github.com/AlexGyver/Arduino_Ambilight.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2ed5bb15d90adb210b42f90688c547984fe85152 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
#ifndef __INC_FASTSPI_AVR_H
#define __INC_FASTSPI_AVR_H

FASTLED_NAMESPACE_BEGIN

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Hardware SPI support using USART registers and friends
//
// TODO: Complete/test implementation - right now this doesn't work
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

// uno/mini/duemilanove
#if defined(AVR_HARDWARE_SPI)

#if defined(UBRR1)

#ifndef UCPHA1
#define UCPHA1 1
#endif

template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint8_t _SPI_CLOCK_DIVIDER>
class AVRUSART1SPIOutput {
	Selectable *m_pSelect;

public:
	AVRUSART1SPIOutput() { m_pSelect = NULL; }
	AVRUSART1SPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
	void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }

	void init() {
		UBRR1 = 0;

		/* Set MSPI mode of operation and SPI data mode 0. */
		UCSR1C = (1<<UMSEL11)|(1<<UMSEL10)|(0<<UCPHA1)|(0<<UCPOL1);
		/* Enable receiver and transmitter. */
		UCSR1B = (1<<RXEN1)|(1<<TXEN1);

		FastPin<_CLOCK_PIN>::setOutput();
		FastPin<_DATA_PIN>::setOutput();

		// must be done last, see page 206
		setSPIRate();
	}

	void setSPIRate() {
		if(_SPI_CLOCK_DIVIDER > 2) {
			UBRR1 = (_SPI_CLOCK_DIVIDER/2)-1;
		} else {
			UBRR1 = 0;
		}
	}


	static void stop() {
		// TODO: stop the uart spi output
	}

	static bool shouldWait(bool wait = false) __attribute__((always_inline)) {
		static bool sWait=false;
		if(sWait) {
			sWait = wait; return true;
		} else {
			sWait = wait; return false;
		}
		// return true;
	}
	static void wait() __attribute__((always_inline)) {
		if(shouldWait()) {
			while(!(UCSR1A & (1<<UDRE1)));
		}
	}
	static void waitFully() __attribute__((always_inline)) { wait(); }

	static void writeWord(uint16_t w) __attribute__((always_inline)) { writeByte(w>>8); writeByte(w&0xFF); }

	static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); UDR1=b;  shouldWait(true); }
	static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { UDR1=b; shouldWait(true); wait(); }
	static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { UDR1=b; shouldWait(true); }


	template <uint8_t BIT> inline static void writeBit(uint8_t b) {
		if(b && (1 << BIT)) {
			FastPin<_DATA_PIN>::hi();
		} else {
			FastPin<_DATA_PIN>::lo();
		}

		FastPin<_CLOCK_PIN>::hi();
		FastPin<_CLOCK_PIN>::lo();
	}

	void enable_pins() { }
	void disable_pins() { }

	void select() {
		if(m_pSelect != NULL) {
			m_pSelect->select();
		}
		enable_pins();
		setSPIRate();
	}

	void release() {
		if(m_pSelect != NULL) {
			m_pSelect->release();
		}
		disable_pins();
	}

	static void writeBytesValueRaw(uint8_t value, int len) {
		while(len--) {
			writeByte(value);
		}
	}

	void writeBytesValue(uint8_t value, int len) {
		//setSPIRate();
		select();
		while(len--) {
			writeByte(value);
		}
		release();
	}

	// Write a block of n uint8_ts out
	template <class D> void writeBytes(register uint8_t *data, int len) {
		//setSPIRate();
		uint8_t *end = data + len;
		select();
		while(data != end) {
			// a slight touch of delay here helps optimize the timing of the status register check loop (not used on ARM)
			writeByte(D::adjust(*data++)); delaycycles<3>();
		}
		release();
	}

	void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }

	// write a block of uint8_ts out in groups of three.  len is the total number of uint8_ts to write out.  The template
	// parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
	template <uint8_t FLAGS, class D, EOrder RGB_ORDER> void writePixels(PixelController<RGB_ORDER> pixels) {
		//setSPIRate();
		int len = pixels.mLen;

		select();
		while(pixels.has(1)) {
			if(FLAGS & FLAG_START_BIT) {
				writeBit<0>(1);
				writeBytePostWait(D::adjust(pixels.loadAndScale0()));
				writeBytePostWait(D::adjust(pixels.loadAndScale1()));
				writeBytePostWait(D::adjust(pixels.loadAndScale2()));
			} else {
				writeByte(D::adjust(pixels.loadAndScale0()));
				writeByte(D::adjust(pixels.loadAndScale1()));
				writeByte(D::adjust(pixels.loadAndScale2()));
			}

			pixels.advanceData();
			pixels.stepDithering();
		}
		D::postBlock(len);
		release();
	}
};
#endif

#if defined(UBRR0)
template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint8_t _SPI_CLOCK_DIVIDER>
class AVRUSART0SPIOutput {
	Selectable *m_pSelect;

public:
	AVRUSART0SPIOutput() { m_pSelect = NULL; }
	AVRUSART0SPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
	void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }

	void init() {
		UBRR0 = 0;

		/* Set MSPI mode of operation and SPI data mode 0. */
		UCSR0C = (1<<UMSEL01)|(1<<UMSEL00)/*|(0<<UCPHA0)*/|(0<<UCPOL0);
		/* Enable receiver and transmitter. */
		UCSR0B = (1<<RXEN0)|(1<<TXEN0);

		FastPin<_CLOCK_PIN>::setOutput();
		FastPin<_DATA_PIN>::setOutput();


		// must be done last, see page 206
		setSPIRate();
	}

	void setSPIRate() {
		if(_SPI_CLOCK_DIVIDER > 2) {
			UBRR0 = (_SPI_CLOCK_DIVIDER/2)-1;
		} else {
			UBRR0 = 0;
		}
	}

	static void stop() {
		// TODO: stop the uart spi output
	}

	static bool shouldWait(bool wait = false) __attribute__((always_inline)) {
		static bool sWait=false;
		if(sWait) {
			sWait = wait; return true;
		} else {
			sWait = wait; return false;
		}
		// return true;
	}
	static void wait() __attribute__((always_inline)) {
		if(shouldWait()) {
			while(!(UCSR0A & (1<<UDRE0)));
		}
	}
	static void waitFully() __attribute__((always_inline)) { wait(); }

	static void writeWord(uint16_t w) __attribute__((always_inline)) { writeByte(w>>8); writeByte(w&0xFF); }

	static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); UDR0=b;  shouldWait(true); }
	static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { UDR0=b; shouldWait(true); wait(); }
	static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { UDR0=b; shouldWait(true); }


	template <uint8_t BIT> inline static void writeBit(uint8_t b) {
		if(b && (1 << BIT)) {
			FastPin<_DATA_PIN>::hi();
		} else {
			FastPin<_DATA_PIN>::lo();
		}

		FastPin<_CLOCK_PIN>::hi();
		FastPin<_CLOCK_PIN>::lo();
	}

	void enable_pins() { }
	void disable_pins() { }

	void select() {
		if(m_pSelect != NULL) {
			m_pSelect->select();
		}
		enable_pins();
		setSPIRate();
	}

		void release() {
			if(m_pSelect != NULL) {
				m_pSelect->release();
			}
			disable_pins();
		}

	static void writeBytesValueRaw(uint8_t value, int len) {
		while(len--) {
			writeByte(value);
		}
	}

	void writeBytesValue(uint8_t value, int len) {
		//setSPIRate();
		select();
		while(len--) {
			writeByte(value);
		}
		release();
	}

	// Write a block of n uint8_ts out
	template <class D> void writeBytes(register uint8_t *data, int len) {
		//setSPIRate();
		uint8_t *end = data + len;
		select();
		while(data != end) {
			// a slight touch of delay here helps optimize the timing of the status register check loop (not used on ARM)
			writeByte(D::adjust(*data++)); delaycycles<3>();
		}
		release();
	}

	void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }

	// write a block of uint8_ts out in groups of three.  len is the total number of uint8_ts to write out.  The template
	// parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
	template <uint8_t FLAGS, class D, EOrder RGB_ORDER> void writePixels(PixelController<RGB_ORDER> pixels) {
		//setSPIRate();
		int len = pixels.mLen;

		select();
		while(pixels.has(1)) {
			if(FLAGS & FLAG_START_BIT) {
				writeBit<0>(1);
				writeBytePostWait(D::adjust(pixels.loadAndScale0()));
				writeBytePostWait(D::adjust(pixels.loadAndScale1()));
				writeBytePostWait(D::adjust(pixels.loadAndScale2()));
			} else {
				writeByte(D::adjust(pixels.loadAndScale0()));
				writeByte(D::adjust(pixels.loadAndScale1()));
				writeByte(D::adjust(pixels.loadAndScale2()));
			}

			pixels.advanceData();
			pixels.stepDithering();
		}
		D::postBlock(len);
		waitFully();
		release();
	}
};

#endif


#if defined(SPSR)

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Hardware SPI support using SPDR registers and friends
//
// Technically speaking, this uses the AVR SPI registers.  This will work on the Teensy 3.0 because Paul made a set of compatability
// classes that map the AVR SPI registers to ARM's, however this caps the performance of output.
//
// TODO: implement ARMHardwareSPIOutput
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint8_t _SPI_CLOCK_DIVIDER>
class AVRHardwareSPIOutput {
	Selectable *m_pSelect;
	bool mWait;
public:
	AVRHardwareSPIOutput() { m_pSelect = NULL; mWait = false;}
	AVRHardwareSPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
	void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }

	void setSPIRate() {
		SPCR &= ~ ( (1<<SPR1) | (1<<SPR0) ); 	// clear out the prescalar bits

	    bool b2x = false;

	    if(_SPI_CLOCK_DIVIDER >= 128) { SPCR |= (1<<SPR1); SPCR |= (1<<SPR0); }
	    else if(_SPI_CLOCK_DIVIDER >= 64) { SPCR |= (1<<SPR1);}
	    else if(_SPI_CLOCK_DIVIDER >= 32) { SPCR |= (1<<SPR1); b2x = true;  }
	    else if(_SPI_CLOCK_DIVIDER >= 16) { SPCR |= (1<<SPR0); }
	    else if(_SPI_CLOCK_DIVIDER >= 8) { SPCR |= (1<<SPR0); b2x = true; }
	    else if(_SPI_CLOCK_DIVIDER >= 4) { /* do nothing - default rate */ }
	    else { b2x = true; }

	    if(b2x) { SPSR |= (1<<SPI2X); }
	    else { SPSR &= ~ (1<<SPI2X); }
	}

	void init() {
		volatile uint8_t clr;

		// set the pins to output
		FastPin<_DATA_PIN>::setOutput();
		FastPin<_CLOCK_PIN>::setOutput();
#ifdef SPI_SELECT
		// Make sure the slave select line is set to output, or arduino will block us
		FastPin<SPI_SELECT>::setOutput();
		FastPin<SPI_SELECT>::lo();
#endif

		SPCR |= ((1<<SPE) | (1<<MSTR) ); 		// enable SPI as master
		SPCR &= ~ ( (1<<SPR1) | (1<<SPR0) ); 	// clear out the prescalar bits

		clr = SPSR; // clear SPI status register
		clr = SPDR; // clear SPI data register
		clr;

	    bool b2x = false;

	    if(_SPI_CLOCK_DIVIDER >= 128) { SPCR |= (1<<SPR1); SPCR |= (1<<SPR0); }
	    else if(_SPI_CLOCK_DIVIDER >= 64) { SPCR |= (1<<SPR1);}
	    else if(_SPI_CLOCK_DIVIDER >= 32) { SPCR |= (1<<SPR1); b2x = true;  }
	    else if(_SPI_CLOCK_DIVIDER >= 16) { SPCR |= (1<<SPR0); }
	    else if(_SPI_CLOCK_DIVIDER >= 8) { SPCR |= (1<<SPR0); b2x = true; }
	    else if(_SPI_CLOCK_DIVIDER >= 4) { /* do nothing - default rate */ }
	    else { b2x = true; }

	    if(b2x) { SPSR |= (1<<SPI2X); }
	    else { SPSR &= ~ (1<<SPI2X); }

	    SPDR=0;
	    shouldWait(false);
			release();
		}

	static bool shouldWait(bool wait = false) __attribute__((always_inline)) {
		static bool sWait=false;
		if(sWait) { sWait = wait; return true; } else { sWait = wait; return false; }
		// return true;
	}
	static void wait() __attribute__((always_inline)) { if(shouldWait()) { while(!(SPSR & (1<<SPIF))); } }
	static void waitFully() __attribute__((always_inline)) { wait(); }

	static void writeWord(uint16_t w) __attribute__((always_inline)) { writeByte(w>>8); writeByte(w&0xFF); }

	static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); SPDR=b;  shouldWait(true); }
	static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { SPDR=b; shouldWait(true); wait(); }
	static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { SPDR=b; shouldWait(true); }

	template <uint8_t BIT> inline static void writeBit(uint8_t b) {
		SPCR &= ~(1 << SPE);
		if(b & (1 << BIT)) {
			FastPin<_DATA_PIN>::hi();
		} else {
			FastPin<_DATA_PIN>::lo();
		}

		FastPin<_CLOCK_PIN>::hi();
		FastPin<_CLOCK_PIN>::lo();
		SPCR |= 1 << SPE;
		shouldWait(false);
	}

	void enable_pins() {
		SPCR |= ((1<<SPE) | (1<<MSTR) ); 		// enable SPI as master
	}

	void disable_pins() {
		SPCR &= ~(((1<<SPE) | (1<<MSTR) )); // disable SPI
	}

	void select() {
		if(m_pSelect != NULL) { m_pSelect->select(); }
		enable_pins();
		setSPIRate();
	}

	void release() {
		if(m_pSelect != NULL) { m_pSelect->release(); }
		disable_pins();
	}

	static void writeBytesValueRaw(uint8_t value, int len) {
		while(len--) { writeByte(value); }
	}

	void writeBytesValue(uint8_t value, int len) {
		//setSPIRate();
		select();
		while(len--) {
			writeByte(value);
		}
		release();
	}

	// Write a block of n uint8_ts out
	template <class D> void writeBytes(register uint8_t *data, int len) {
		//setSPIRate();
		uint8_t *end = data + len;
		select();
		while(data != end) {
			// a slight touch of delay here helps optimize the timing of the status register check loop (not used on ARM)
			writeByte(D::adjust(*data++)); delaycycles<3>();
		}
		release();
	}

	void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }

	// write a block of uint8_ts out in groups of three.  len is the total number of uint8_ts to write out.  The template
	// parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
	template <uint8_t FLAGS, class D, EOrder RGB_ORDER> void writePixels(PixelController<RGB_ORDER> pixels) {
		//setSPIRate();
		int len = pixels.mLen;

		select();
		while(pixels.has(1)) {
			if(FLAGS & FLAG_START_BIT) {
				writeBit<0>(1);
				writeBytePostWait(D::adjust(pixels.loadAndScale0()));
				writeBytePostWait(D::adjust(pixels.loadAndScale1()));
				writeBytePostWait(D::adjust(pixels.loadAndScale2()));
			} else {
				writeByte(D::adjust(pixels.loadAndScale0()));
				writeByte(D::adjust(pixels.loadAndScale1()));
				writeByte(D::adjust(pixels.loadAndScale2()));
			}

			pixels.advanceData();
			pixels.stepDithering();
		}
		D::postBlock(len);
		waitFully();
		release();
	}
};
#endif

#else
// #define FASTLED_FORCE_SOFTWARE_SPI
#endif

FASTLED_NAMESPACE_END;


#endif