Welcome to mirror list, hosted at ThFree Co, Russian Federation.

subghz_frequency_analyzer_worker.c « helpers « subghz « applications - github.com/ClusterM/flipperzero-firmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0b91a1f4f7592874694ceca92f5220a5d8d7ce62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#include "subghz_frequency_analyzer_worker.h"
#include <lib/drivers/cc1101.h>

#include <furi.h>

#define TAG "SubghzFrequencyAnalyzerWorker"

#define SUBGHZ_FREQUENCY_ANALYZER_THRESHOLD -97.0f

static const uint8_t subghz_preset_ook_58khz[][2] = {
    {CC1101_MDMCFG4, 0b11110111}, // Rx BW filter is 58.035714kHz
    /* End  */
    {0, 0},
};

static const uint8_t subghz_preset_ook_650khz[][2] = {
    {CC1101_MDMCFG4, 0b00010111}, // Rx BW filter is 650.000kHz
    /* End  */
    {0, 0},
};

struct SubGhzFrequencyAnalyzerWorker {
    FuriThread* thread;

    volatile bool worker_running;
    uint8_t sample_hold_counter;
    FrequencyRSSI frequency_rssi_buf;
    SubGhzSetting* setting;

    float filVal;

    SubGhzFrequencyAnalyzerWorkerPairCallback pair_callback;
    void* context;
};

static void subghz_frequency_analyzer_worker_load_registers(const uint8_t data[][2]) {
    furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
    size_t i = 0;
    while(data[i][0]) {
        cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, data[i][0], data[i][1]);
        i++;
    }
    furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}

// running average with adaptive coefficient
static uint32_t subghz_frequency_analyzer_worker_expRunningAverageAdaptive(
    SubGhzFrequencyAnalyzerWorker* instance,
    uint32_t newVal) {
    float k;
    float newValFloat = newVal;
    // the sharpness of the filter depends on the absolute value of the difference
    if(fabs(newValFloat - instance->filVal) > 500000)
        k = 0.9;
    else
        k = 0.03;

    instance->filVal += (newValFloat - instance->filVal) * k;
    return (uint32_t)instance->filVal;
}

/** Worker thread
 * 
 * @param context 
 * @return exit code 
 */
static int32_t subghz_frequency_analyzer_worker_thread(void* context) {
    SubGhzFrequencyAnalyzerWorker* instance = context;

    FrequencyRSSI frequency_rssi = {
        .frequency_coarse = 0, .rssi_coarse = 0, .frequency_fine = 0, .rssi_fine = 0};
    float rssi = 0;
    uint32_t frequency = 0;
    CC1101Status status;

    //Start CC1101
    furi_hal_subghz_reset();

    furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
    cc1101_flush_rx(&furi_hal_spi_bus_handle_subghz);
    cc1101_flush_tx(&furi_hal_spi_bus_handle_subghz);
    cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHW);
    cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_MDMCFG3,
                     0b01111111); // symbol rate
    cc1101_write_reg(
        &furi_hal_spi_bus_handle_subghz,
        CC1101_AGCCTRL2,
        0b00000111); // 00 - DVGA all; 000 - MAX LNA+LNA2; 111 - MAGN_TARGET 42 dB
    cc1101_write_reg(
        &furi_hal_spi_bus_handle_subghz,
        CC1101_AGCCTRL1,
        0b00001000); // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 1000 - Absolute carrier sense threshold disabled
    cc1101_write_reg(
        &furi_hal_spi_bus_handle_subghz,
        CC1101_AGCCTRL0,
        0b00110000); // 00 - No hysteresis, medium asymmetric dead zone, medium gain ; 11 - 64 samples agc; 00 - Normal AGC, 00 - 4dB boundary

    furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);

    furi_hal_subghz_set_path(FuriHalSubGhzPathIsolate);

    while(instance->worker_running) {
        furi_delay_ms(10);

        float rssi_min = 26.0f;
        float rssi_avg = 0;
        size_t rssi_avg_samples = 0;

        frequency_rssi.rssi_coarse = -127.0f;
        frequency_rssi.rssi_fine = -127.0f;
        furi_hal_subghz_idle();
        subghz_frequency_analyzer_worker_load_registers(subghz_preset_ook_650khz);

        // First stage: coarse scan
        for(size_t i = 0; i < subghz_setting_get_frequency_count(instance->setting); i++) {
            if(furi_hal_subghz_is_frequency_valid(
                   subghz_setting_get_frequency(instance->setting, i))) {
                furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
                cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz);
                frequency = cc1101_set_frequency(
                    &furi_hal_spi_bus_handle_subghz,
                    subghz_setting_get_frequency(instance->setting, i));

                cc1101_calibrate(&furi_hal_spi_bus_handle_subghz);
                do {
                    status = cc1101_get_status(&furi_hal_spi_bus_handle_subghz);
                } while(status.STATE != CC1101StateIDLE);

                cc1101_switch_to_rx(&furi_hal_spi_bus_handle_subghz);
                furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);

                furi_delay_ms(2);

                rssi = furi_hal_subghz_get_rssi();

                rssi_avg += rssi;
                rssi_avg_samples++;

                if(rssi < rssi_min) rssi_min = rssi;

                if(frequency_rssi.rssi_coarse < rssi) {
                    frequency_rssi.rssi_coarse = rssi;
                    frequency_rssi.frequency_coarse = frequency;
                }
            }
        }

        FURI_LOG_T(
            TAG,
            "RSSI: avg %f, max %f at %u, min %f",
            (double)(rssi_avg / rssi_avg_samples),
            (double)frequency_rssi.rssi_coarse,
            frequency_rssi.frequency_coarse,
            (double)rssi_min);

        // Second stage: fine scan
        if(frequency_rssi.rssi_coarse > SUBGHZ_FREQUENCY_ANALYZER_THRESHOLD) {
            furi_hal_subghz_idle();
            subghz_frequency_analyzer_worker_load_registers(subghz_preset_ook_58khz);
            //for example -0.3 ... 433.92 ... +0.3 step 20KHz
            for(uint32_t i = frequency_rssi.frequency_coarse - 300000;
                i < frequency_rssi.frequency_coarse + 300000;
                i += 20000) {
                if(furi_hal_subghz_is_frequency_valid(i)) {
                    furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
                    cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz);
                    frequency = cc1101_set_frequency(&furi_hal_spi_bus_handle_subghz, i);

                    cc1101_calibrate(&furi_hal_spi_bus_handle_subghz);
                    do {
                        status = cc1101_get_status(&furi_hal_spi_bus_handle_subghz);
                    } while(status.STATE != CC1101StateIDLE);

                    cc1101_switch_to_rx(&furi_hal_spi_bus_handle_subghz);
                    furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);

                    furi_delay_ms(2);

                    rssi = furi_hal_subghz_get_rssi();

                    FURI_LOG_T(TAG, "#:%u:%f", frequency, (double)rssi);

                    if(frequency_rssi.rssi_fine < rssi) {
                        frequency_rssi.rssi_fine = rssi;
                        frequency_rssi.frequency_fine = frequency;
                    }
                }
            }
        }

        // Deliver results fine
        if(frequency_rssi.rssi_fine > SUBGHZ_FREQUENCY_ANALYZER_THRESHOLD) {
            FURI_LOG_D(
                TAG, "=:%u:%f", frequency_rssi.frequency_fine, (double)frequency_rssi.rssi_fine);

            instance->sample_hold_counter = 20;
            if(instance->filVal) {
                frequency_rssi.frequency_fine =
                    subghz_frequency_analyzer_worker_expRunningAverageAdaptive(
                        instance, frequency_rssi.frequency_fine);
            }
            // Deliver callback
            if(instance->pair_callback) {
                instance->pair_callback(
                    instance->context, frequency_rssi.frequency_fine, frequency_rssi.rssi_fine);
            }
        } else if( // Deliver results coarse
            (frequency_rssi.rssi_coarse > SUBGHZ_FREQUENCY_ANALYZER_THRESHOLD) &&
            (instance->sample_hold_counter < 10)) {
            FURI_LOG_D(
                TAG,
                "~:%u:%f",
                frequency_rssi.frequency_coarse,
                (double)frequency_rssi.rssi_coarse);

            instance->sample_hold_counter = 20;
            if(instance->filVal) {
                frequency_rssi.frequency_coarse =
                    subghz_frequency_analyzer_worker_expRunningAverageAdaptive(
                        instance, frequency_rssi.frequency_coarse);
            }
            // Deliver callback
            if(instance->pair_callback) {
                instance->pair_callback(
                    instance->context,
                    frequency_rssi.frequency_coarse,
                    frequency_rssi.rssi_coarse);
            }
        } else {
            if(instance->sample_hold_counter > 0) {
                instance->sample_hold_counter--;
            } else {
                instance->filVal = 0;
                if(instance->pair_callback) instance->pair_callback(instance->context, 0, 0);
            }
        }
    }

    //Stop CC1101
    furi_hal_subghz_idle();
    furi_hal_subghz_sleep();

    return 0;
}

SubGhzFrequencyAnalyzerWorker* subghz_frequency_analyzer_worker_alloc(void* context) {
    furi_assert(context);
    SubGhzFrequencyAnalyzerWorker* instance = malloc(sizeof(SubGhzFrequencyAnalyzerWorker));

    instance->thread = furi_thread_alloc();
    furi_thread_set_name(instance->thread, "SubGhzFAWorker");
    furi_thread_set_stack_size(instance->thread, 2048);
    furi_thread_set_context(instance->thread, instance);
    furi_thread_set_callback(instance->thread, subghz_frequency_analyzer_worker_thread);

    SubGhz* subghz = context;
    instance->setting = subghz->setting;
    return instance;
}

void subghz_frequency_analyzer_worker_free(SubGhzFrequencyAnalyzerWorker* instance) {
    furi_assert(instance);

    furi_thread_free(instance->thread);
    free(instance);
}

void subghz_frequency_analyzer_worker_set_pair_callback(
    SubGhzFrequencyAnalyzerWorker* instance,
    SubGhzFrequencyAnalyzerWorkerPairCallback callback,
    void* context) {
    furi_assert(instance);
    furi_assert(context);
    instance->pair_callback = callback;
    instance->context = context;
}

void subghz_frequency_analyzer_worker_start(SubGhzFrequencyAnalyzerWorker* instance) {
    furi_assert(instance);
    furi_assert(!instance->worker_running);

    instance->worker_running = true;

    furi_thread_start(instance->thread);
}

void subghz_frequency_analyzer_worker_stop(SubGhzFrequencyAnalyzerWorker* instance) {
    furi_assert(instance);
    furi_assert(instance->worker_running);

    instance->worker_running = false;

    furi_thread_join(instance->thread);
}

bool subghz_frequency_analyzer_worker_is_running(SubGhzFrequencyAnalyzerWorker* instance) {
    furi_assert(instance);
    return instance->worker_running;
}