Welcome to mirror list, hosted at ThFree Co, Russian Federation.

linear.c « protocols « subghz « lib - github.com/ClusterM/flipperzero-firmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 652bf0bf68811acbd4acd015bd3b31ee6cc382dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#include "linear.h"

#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"

#define TAG "SubGhzProtocolLinear"

#define DIP_PATTERN "%c%c%c%c%c%c%c%c%c%c"
#define DATA_TO_DIP(dip)                                                                    \
    (dip & 0x0200 ? '1' : '0'), (dip & 0x0100 ? '1' : '0'), (dip & 0x0080 ? '1' : '0'),     \
        (dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), (dip & 0x0010 ? '1' : '0'), \
        (dip & 0x0008 ? '1' : '0'), (dip & 0x0004 ? '1' : '0'), (dip & 0x0002 ? '1' : '0'), \
        (dip & 0x0001 ? '1' : '0')

static const SubGhzBlockConst subghz_protocol_linear_const = {
    .te_short = 500,
    .te_long = 1500,
    .te_delta = 150,
    .min_count_bit_for_found = 10,
};

struct SubGhzProtocolDecoderLinear {
    SubGhzProtocolDecoderBase base;

    SubGhzBlockDecoder decoder;
    SubGhzBlockGeneric generic;
};

struct SubGhzProtocolEncoderLinear {
    SubGhzProtocolEncoderBase base;

    SubGhzProtocolBlockEncoder encoder;
    SubGhzBlockGeneric generic;
};

typedef enum {
    LinearDecoderStepReset = 0,
    LinearDecoderStepSaveDuration,
    LinearDecoderStepCheckDuration,
} LinearDecoderStep;

const SubGhzProtocolDecoder subghz_protocol_linear_decoder = {
    .alloc = subghz_protocol_decoder_linear_alloc,
    .free = subghz_protocol_decoder_linear_free,

    .feed = subghz_protocol_decoder_linear_feed,
    .reset = subghz_protocol_decoder_linear_reset,

    .get_hash_data = subghz_protocol_decoder_linear_get_hash_data,
    .serialize = subghz_protocol_decoder_linear_serialize,
    .deserialize = subghz_protocol_decoder_linear_deserialize,
    .get_string = subghz_protocol_decoder_linear_get_string,
};

const SubGhzProtocolEncoder subghz_protocol_linear_encoder = {
    .alloc = subghz_protocol_encoder_linear_alloc,
    .free = subghz_protocol_encoder_linear_free,

    .deserialize = subghz_protocol_encoder_linear_deserialize,
    .stop = subghz_protocol_encoder_linear_stop,
    .yield = subghz_protocol_encoder_linear_yield,
};

const SubGhzProtocol subghz_protocol_linear = {
    .name = SUBGHZ_PROTOCOL_LINEAR_NAME,
    .type = SubGhzProtocolTypeStatic,
    .flag = SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
            SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,

    .decoder = &subghz_protocol_linear_decoder,
    .encoder = &subghz_protocol_linear_encoder,
};

void* subghz_protocol_encoder_linear_alloc(SubGhzEnvironment* environment) {
    UNUSED(environment);
    SubGhzProtocolEncoderLinear* instance = malloc(sizeof(SubGhzProtocolEncoderLinear));

    instance->base.protocol = &subghz_protocol_linear;
    instance->generic.protocol_name = instance->base.protocol->name;

    instance->encoder.repeat = 10;
    instance->encoder.size_upload = 28; //max 10bit*2 + 2 (start, stop)
    instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
    instance->encoder.is_runing = false;
    return instance;
}

void subghz_protocol_encoder_linear_free(void* context) {
    furi_assert(context);
    SubGhzProtocolEncoderLinear* instance = context;
    free(instance->encoder.upload);
    free(instance);
}

/**
 * Generating an upload from data.
 * @param instance Pointer to a SubGhzProtocolEncoderLinear instance
 * @return true On success
 */
static bool subghz_protocol_encoder_linear_get_upload(SubGhzProtocolEncoderLinear* instance) {
    furi_assert(instance);
    size_t index = 0;
    size_t size_upload = (instance->generic.data_count_bit * 2);
    if(size_upload > instance->encoder.size_upload) {
        FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
        return false;
    } else {
        instance->encoder.size_upload = size_upload;
    }

    //Send key data
    for(uint8_t i = instance->generic.data_count_bit; i > 1; i--) {
        if(bit_read(instance->generic.data, i - 1)) {
            //send bit 1
            instance->encoder.upload[index++] =
                level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short * 3);
            instance->encoder.upload[index++] =
                level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short);
        } else {
            //send bit 0
            instance->encoder.upload[index++] =
                level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short);
            instance->encoder.upload[index++] =
                level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short * 3);
        }
    }
    //Send end bit
    if(bit_read(instance->generic.data, 0)) {
        //send bit 1
        instance->encoder.upload[index++] =
            level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short * 3);
        //Send PT_GUARD
        instance->encoder.upload[index++] =
            level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short * 42);
    } else {
        //send bit 0
        instance->encoder.upload[index++] =
            level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short);
        //Send PT_GUARD
        instance->encoder.upload[index++] =
            level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short * 44);
    }

    return true;
}

bool subghz_protocol_encoder_linear_deserialize(void* context, FlipperFormat* flipper_format) {
    furi_assert(context);
    SubGhzProtocolEncoderLinear* instance = context;
    bool res = false;
    do {
        if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
            FURI_LOG_E(TAG, "Deserialize error");
            break;
        }

        //optional parameter parameter
        flipper_format_read_uint32(
            flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);

        subghz_protocol_encoder_linear_get_upload(instance);
        instance->encoder.is_runing = true;

        res = true;
    } while(false);

    return res;
}

void subghz_protocol_encoder_linear_stop(void* context) {
    SubGhzProtocolEncoderLinear* instance = context;
    instance->encoder.is_runing = false;
}

LevelDuration subghz_protocol_encoder_linear_yield(void* context) {
    SubGhzProtocolEncoderLinear* instance = context;

    if(instance->encoder.repeat == 0 || !instance->encoder.is_runing) {
        instance->encoder.is_runing = false;
        return level_duration_reset();
    }

    LevelDuration ret = instance->encoder.upload[instance->encoder.front];

    if(++instance->encoder.front == instance->encoder.size_upload) {
        instance->encoder.repeat--;
        instance->encoder.front = 0;
    }

    return ret;
}

void* subghz_protocol_decoder_linear_alloc(SubGhzEnvironment* environment) {
    UNUSED(environment);
    SubGhzProtocolDecoderLinear* instance = malloc(sizeof(SubGhzProtocolDecoderLinear));
    instance->base.protocol = &subghz_protocol_linear;
    instance->generic.protocol_name = instance->base.protocol->name;
    return instance;
}

void subghz_protocol_decoder_linear_free(void* context) {
    furi_assert(context);
    SubGhzProtocolDecoderLinear* instance = context;
    free(instance);
}

void subghz_protocol_decoder_linear_reset(void* context) {
    furi_assert(context);
    SubGhzProtocolDecoderLinear* instance = context;
    instance->decoder.parser_step = LinearDecoderStepReset;
}

void subghz_protocol_decoder_linear_feed(void* context, bool level, uint32_t duration) {
    furi_assert(context);
    SubGhzProtocolDecoderLinear* instance = context;
    switch(instance->decoder.parser_step) {
    case LinearDecoderStepReset:
        if((!level) && (DURATION_DIFF(duration, subghz_protocol_linear_const.te_short * 42) <
                        subghz_protocol_linear_const.te_delta * 20)) {
            //Found header Linear
            instance->decoder.decode_data = 0;
            instance->decoder.decode_count_bit = 0;
            instance->decoder.parser_step = LinearDecoderStepSaveDuration;
        }
        break;
    case LinearDecoderStepSaveDuration:
        if(level) {
            instance->decoder.te_last = duration;
            instance->decoder.parser_step = LinearDecoderStepCheckDuration;
        } else {
            instance->decoder.parser_step = LinearDecoderStepReset;
        }
        break;
    case LinearDecoderStepCheckDuration:
        if(!level) { //save interval
            if(duration >= (subghz_protocol_linear_const.te_short * 5)) {
                instance->decoder.parser_step = LinearDecoderStepReset;
                //checking that the duration matches the guardtime
                if((DURATION_DIFF(duration, subghz_protocol_linear_const.te_short * 42) >
                    subghz_protocol_linear_const.te_delta * 20)) {
                    break;
                }
                if(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_short) <
                   subghz_protocol_linear_const.te_delta) {
                    subghz_protocol_blocks_add_bit(&instance->decoder, 0);
                } else if(
                    DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_long) <
                    subghz_protocol_linear_const.te_delta) {
                    subghz_protocol_blocks_add_bit(&instance->decoder, 1);
                }
                if(instance->decoder.decode_count_bit ==
                   subghz_protocol_linear_const.min_count_bit_for_found) {
                    instance->generic.serial = 0x0;
                    instance->generic.btn = 0x0;

                    instance->generic.data = instance->decoder.decode_data;
                    instance->generic.data_count_bit = instance->decoder.decode_count_bit;

                    if(instance->base.callback)
                        instance->base.callback(&instance->base, instance->base.context);
                }
                break;
            }

            if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_short) <
                subghz_protocol_linear_const.te_delta) &&
               (DURATION_DIFF(duration, subghz_protocol_linear_const.te_long) <
                subghz_protocol_linear_const.te_delta)) {
                subghz_protocol_blocks_add_bit(&instance->decoder, 0);
                instance->decoder.parser_step = LinearDecoderStepSaveDuration;
            } else if(
                (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_long) <
                 subghz_protocol_linear_const.te_delta) &&
                (DURATION_DIFF(duration, subghz_protocol_linear_const.te_short) <
                 subghz_protocol_linear_const.te_delta)) {
                subghz_protocol_blocks_add_bit(&instance->decoder, 1);
                instance->decoder.parser_step = LinearDecoderStepSaveDuration;
            } else {
                instance->decoder.parser_step = LinearDecoderStepReset;
            }

        } else {
            instance->decoder.parser_step = LinearDecoderStepReset;
        }
        break;
    }
}

uint8_t subghz_protocol_decoder_linear_get_hash_data(void* context) {
    furi_assert(context);
    SubGhzProtocolDecoderLinear* instance = context;
    return subghz_protocol_blocks_get_hash_data(
        &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}

bool subghz_protocol_decoder_linear_serialize(
    void* context,
    FlipperFormat* flipper_format,
    SubGhzPresetDefinition* preset) {
    furi_assert(context);
    SubGhzProtocolDecoderLinear* instance = context;
    return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}

bool subghz_protocol_decoder_linear_deserialize(void* context, FlipperFormat* flipper_format) {
    furi_assert(context);
    SubGhzProtocolDecoderLinear* instance = context;
    return subghz_block_generic_deserialize(&instance->generic, flipper_format);
}

void subghz_protocol_decoder_linear_get_string(void* context, string_t output) {
    furi_assert(context);
    SubGhzProtocolDecoderLinear* instance = context;

    uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;

    uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key(
        instance->generic.data, instance->generic.data_count_bit);

    uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;

    string_cat_printf(
        output,
        "%s %dbit\r\n"
        "Key:0x%08lX\r\n"
        "Yek:0x%08lX\r\n"
        "DIP:" DIP_PATTERN "\r\n",
        instance->generic.protocol_name,
        instance->generic.data_count_bit,
        code_found_lo,
        code_found_reverse_lo,
        DATA_TO_DIP(code_found_lo));
}