Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/FFmpeg/FFmpeg.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlex Converse <alex.converse@gmail.com>2009-07-09 00:36:45 +0400
committerAlex Converse <alex.converse@gmail.com>2009-07-09 00:36:45 +0400
commitfd257dc4c0ee751ecf15830b91d28c15276fe93b (patch)
treeea435dfa1fdef450eabc9fc2f422624850acff83 /libavcodec/aaccoder.c
parent78e65cd7726942a1615ead039abe0bfa79341212 (diff)
Cosmetics: Pretty print the AAC encoder.
Originally committed as revision 19376 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/aaccoder.c')
-rw-r--r--libavcodec/aaccoder.c338
1 files changed, 169 insertions, 169 deletions
diff --git a/libavcodec/aaccoder.c b/libavcodec/aaccoder.c
index 763d3b90dd..41d1802fd7 100644
--- a/libavcodec/aaccoder.c
+++ b/libavcodec/aaccoder.c
@@ -119,18 +119,18 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
int offs[4];
#endif /* USE_REALLY_FULL_SEARCH */
- if(!cb){
- for(i = 0; i < size; i++)
+ if (!cb) {
+ for (i = 0; i < size; i++)
cost += in[i]*in[i]*lambda;
return cost;
}
#ifndef USE_REALLY_FULL_SEARCH
offs[0] = 1;
- for(i = 1; i < dim; i++)
+ for (i = 1; i < dim; i++)
offs[i] = offs[i-1]*range;
quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
#endif /* USE_REALLY_FULL_SEARCH */
- for(i = 0; i < size; i += dim){
+ for (i = 0; i < size; i += dim) {
float mincost;
int minidx = 0;
int minbits = 0;
@@ -138,69 +138,69 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
#ifndef USE_REALLY_FULL_SEARCH
int (*quants)[2] = &s->qcoefs[i];
mincost = 0.0f;
- for(j = 0; j < dim; j++){
+ for (j = 0; j < dim; j++) {
mincost += in[i+j]*in[i+j]*lambda;
}
minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
minbits = ff_aac_spectral_bits[cb-1][minidx];
mincost += minbits;
- for(j = 0; j < (1<<dim); j++){
+ for (j = 0; j < (1<<dim); j++) {
float rd = 0.0f;
int curbits;
int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
int same = 0;
- for(k = 0; k < dim; k++){
- if((j & (1 << k)) && quants[k][0] == quants[k][1]){
+ for (k = 0; k < dim; k++) {
+ if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
same = 1;
break;
}
}
- if(same)
+ if (same)
continue;
- for(k = 0; k < dim; k++)
+ for (k = 0; k < dim; k++)
curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
#else
mincost = INFINITY;
vec = ff_aac_codebook_vectors[cb-1];
- for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){
+ for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
float rd = 0.0f;
int curbits = ff_aac_spectral_bits[cb-1][j];
#endif /* USE_REALLY_FULL_SEARCH */
- if(IS_CODEBOOK_UNSIGNED(cb)){
- for(k = 0; k < dim; k++){
+ if (IS_CODEBOOK_UNSIGNED(cb)) {
+ for (k = 0; k < dim; k++) {
float t = fabsf(in[i+k]);
float di;
//do not code with escape sequence small values
- if(vec[k] == 64.0f && t < 39.0f*IQ){
+ if (vec[k] == 64.0f && t < 39.0f*IQ) {
rd = INFINITY;
break;
}
- if(vec[k] == 64.0f){//FIXME: slow
+ if (vec[k] == 64.0f) {//FIXME: slow
if (t >= CLIPPED_ESCAPE) {
di = t - CLIPPED_ESCAPE;
curbits += 21;
- }else{
+ } else {
int c = av_clip(quant(t, Q), 0, 8191);
di = t - c*cbrt(c)*IQ;
curbits += av_log2(c)*2 - 4 + 1;
}
- }else{
+ } else {
di = t - vec[k]*IQ;
}
- if(vec[k] != 0.0f)
+ if (vec[k] != 0.0f)
curbits++;
rd += di*di*lambda;
}
- }else{
- for(k = 0; k < dim; k++){
+ } else {
+ for (k = 0; k < dim; k++) {
float di = in[i+k] - vec[k]*IQ;
rd += di*di*lambda;
}
}
rd += curbits;
- if(rd < mincost){
+ if (rd < mincost) {
mincost = rd;
minidx = j;
minbits = curbits;
@@ -208,11 +208,11 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
}
cost += mincost;
resbits += minbits;
- if(cost >= uplim)
+ if (cost >= uplim)
return uplim;
}
- if(bits)
+ if (bits)
*bits = resbits;
return cost;
}
@@ -234,17 +234,17 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
#endif /* USE_REALLY_FULL_SEARCH */
//START_TIMER
- if(!cb)
+ if (!cb)
return;
#ifndef USE_REALLY_FULL_SEARCH
offs[0] = 1;
- for(i = 1; i < dim; i++)
+ for (i = 1; i < dim; i++)
offs[i] = offs[i-1]*range;
abs_pow34_v(scaled, in, size);
quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
#endif /* USE_REALLY_FULL_SEARCH */
- for(i = 0; i < size; i += dim){
+ for (i = 0; i < size; i += dim) {
float mincost;
int minidx = 0;
int minbits = 0;
@@ -252,83 +252,83 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
#ifndef USE_REALLY_FULL_SEARCH
int (*quants)[2] = &s->qcoefs[i];
mincost = 0.0f;
- for(j = 0; j < dim; j++){
+ for (j = 0; j < dim; j++) {
mincost += in[i+j]*in[i+j]*lambda;
}
minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
minbits = ff_aac_spectral_bits[cb-1][minidx];
mincost += minbits;
- for(j = 0; j < (1<<dim); j++){
+ for (j = 0; j < (1<<dim); j++) {
float rd = 0.0f;
int curbits;
int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
int same = 0;
- for(k = 0; k < dim; k++){
- if((j & (1 << k)) && quants[k][0] == quants[k][1]){
+ for (k = 0; k < dim; k++) {
+ if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
same = 1;
break;
}
}
- if(same)
+ if (same)
continue;
- for(k = 0; k < dim; k++)
+ for (k = 0; k < dim; k++)
curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
#else
vec = ff_aac_codebook_vectors[cb-1];
mincost = INFINITY;
- for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){
+ for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
float rd = 0.0f;
int curbits = ff_aac_spectral_bits[cb-1][j];
int curidx = j;
#endif /* USE_REALLY_FULL_SEARCH */
- if(IS_CODEBOOK_UNSIGNED(cb)){
- for(k = 0; k < dim; k++){
+ if (IS_CODEBOOK_UNSIGNED(cb)) {
+ for (k = 0; k < dim; k++) {
float t = fabsf(in[i+k]);
float di;
//do not code with escape sequence small values
- if(vec[k] == 64.0f && t < 39.0f*IQ){
+ if (vec[k] == 64.0f && t < 39.0f*IQ) {
rd = INFINITY;
break;
}
- if(vec[k] == 64.0f){//FIXME: slow
+ if (vec[k] == 64.0f) {//FIXME: slow
if (t >= CLIPPED_ESCAPE) {
di = t - CLIPPED_ESCAPE;
curbits += 21;
- }else{
+ } else {
int c = av_clip(quant(t, Q), 0, 8191);
di = t - c*cbrt(c)*IQ;
curbits += av_log2(c)*2 - 4 + 1;
}
- }else{
+ } else {
di = t - vec[k]*IQ;
}
- if(vec[k] != 0.0f)
+ if (vec[k] != 0.0f)
curbits++;
rd += di*di*lambda;
}
- }else{
- for(k = 0; k < dim; k++){
+ } else {
+ for (k = 0; k < dim; k++) {
float di = in[i+k] - vec[k]*IQ;
rd += di*di*lambda;
}
}
rd += curbits;
- if(rd < mincost){
+ if (rd < mincost) {
mincost = rd;
minidx = curidx;
minbits = curbits;
}
}
put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]);
- if(IS_CODEBOOK_UNSIGNED(cb))
- for(j = 0; j < dim; j++)
- if(ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f)
+ if (IS_CODEBOOK_UNSIGNED(cb))
+ for (j = 0; j < dim; j++)
+ if (ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f)
put_bits(pb, 1, in[i+j] < 0.0f);
- if(cb == ESC_BT){
- for(j = 0; j < 2; j++){
- if(ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f){
+ if (cb == ESC_BT) {
+ for (j = 0; j < 2; j++) {
+ if (ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f) {
int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
int len = av_log2(coef);
@@ -370,29 +370,29 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
start = win*128;
- for(cb = 0; cb < 12; cb++){
+ for (cb = 0; cb < 12; cb++) {
path[0][cb].cost = 0.0f;
path[0][cb].prev_idx = -1;
path[0][cb].run = 0;
}
- for(swb = 0; swb < max_sfb; swb++){
+ for (swb = 0; swb < max_sfb; swb++) {
start2 = start;
size = sce->ics.swb_sizes[swb];
- if(sce->zeroes[win*16 + swb]){
- for(cb = 0; cb < 12; cb++){
+ if (sce->zeroes[win*16 + swb]) {
+ for (cb = 0; cb < 12; cb++) {
path[swb+1][cb].prev_idx = cb;
path[swb+1][cb].cost = path[swb][cb].cost;
path[swb+1][cb].run = path[swb][cb].run + 1;
}
- }else{
+ } else {
float minrd = next_minrd;
int mincb = next_mincb;
next_minrd = INFINITY;
next_mincb = 0;
- for(cb = 0; cb < 12; cb++){
+ for (cb = 0; cb < 12; cb++) {
float cost_stay_here, cost_get_here;
float rd = 0.0f;
- for(w = 0; w < group_len; w++){
+ for (w = 0; w < group_len; w++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
rd += quantize_band_cost(s, sce->coeffs + start + w*128,
s->scoefs + start + w*128, size,
@@ -401,7 +401,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
}
cost_stay_here = path[swb][cb].cost + rd;
cost_get_here = minrd + rd + run_bits + 4;
- if( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
+ if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
cost_stay_here += run_bits;
if (cost_get_here < cost_stay_here) {
@@ -425,12 +425,12 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
//convert resulting path from backward-linked list
stack_len = 0;
idx = 0;
- for(cb = 1; cb < 12; cb++){
- if(path[max_sfb][cb].cost < path[max_sfb][idx].cost)
+ for (cb = 1; cb < 12; cb++) {
+ if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
idx = cb;
}
ppos = max_sfb;
- while(ppos > 0){
+ while(ppos > 0) {
cb = idx;
stackrun[stack_len] = path[ppos][cb].run;
stackcb [stack_len] = cb;
@@ -440,16 +440,16 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
}
//perform actual band info encoding
start = 0;
- for(i = stack_len - 1; i >= 0; i--){
+ for (i = stack_len - 1; i >= 0; i--) {
put_bits(&s->pb, 4, stackcb[i]);
count = stackrun[i];
memset(sce->zeroes + win*16 + start, !stackcb[i], count);
//XXX: memset when band_type is also uint8_t
- for(j = 0; j < count; j++){
+ for (j = 0; j < count; j++) {
sce->band_type[win*16 + start] = stackcb[i];
start++;
}
- while(count >= run_esc){
+ while(count >= run_esc) {
put_bits(&s->pb, run_bits, run_esc);
count -= run_esc;
}
@@ -482,13 +482,13 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
int minq;
float mincost;
- for(i = 0; i < 256; i++){
+ for (i = 0; i < 256; i++) {
paths[i].cost = 0.0f;
paths[i].prev = -1;
paths[i].min_val = i;
paths[i].max_val = i;
}
- for(i = 256; i < 256*121; i++){
+ for (i = 256; i < 256*121; i++) {
paths[i].cost = INFINITY;
paths[i].prev = -2;
paths[i].min_val = INT_MAX;
@@ -496,9 +496,9 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
}
idx = 256;
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
- for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
- for(g = 0; g < sce->ics.num_swb; g++){
+ for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = sce->coeffs + start;
float qmin, qmax;
int nz = 0;
@@ -506,53 +506,53 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
bandaddr[idx >> 8] = w*16+g;
qmin = INT_MAX;
qmax = 0.0f;
- for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
- if(band->energy <= band->threshold || band->threshold == 0.0f){
+ if (band->energy <= band->threshold || band->threshold == 0.0f) {
sce->zeroes[(w+w2)*16+g] = 1;
continue;
}
sce->zeroes[(w+w2)*16+g] = 0;
nz = 1;
- for(i = 0; i < sce->ics.swb_sizes[g]; i++){
+ for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
float t = fabsf(coefs[w2*128+i]);
- if(t > 0.0f) qmin = fminf(qmin, t);
+ if (t > 0.0f) qmin = fminf(qmin, t);
qmax = fmaxf(qmax, t);
}
}
- if(nz){
+ if (nz) {
int minscale, maxscale;
float minrd = INFINITY;
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
- for(q = minscale; q < maxscale; q++){
+ for (q = minscale; q < maxscale; q++) {
float dists[12], dist;
memset(dists, 0, sizeof(dists));
- for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
int cb;
- for(cb = 0; cb <= ESC_BT; cb++){
+ for (cb = 0; cb <= ESC_BT; cb++) {
dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
q, cb, lambda / band->threshold, INFINITY, NULL);
}
}
dist = dists[0];
- for(i = 1; i <= ESC_BT; i++)
+ for (i = 1; i <= ESC_BT; i++)
dist = fminf(dist, dists[i]);
minrd = fminf(minrd, dist);
- for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){
+ for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) {
float cost;
int minv, maxv;
- if(isinf(paths[idx - 256 + i].cost))
+ if (isinf(paths[idx - 256 + i].cost))
continue;
cost = paths[idx - 256 + i].cost + dist
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
minv = FFMIN(paths[idx - 256 + i].min_val, q);
maxv = FFMAX(paths[idx - 256 + i].max_val, q);
- if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){
+ if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
paths[idx + q].cost = cost;
paths[idx + q].prev = idx - 256 + i;
paths[idx + q].min_val = minv;
@@ -560,24 +560,24 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
}
}
}
- }else{
- for(q = 0; q < 256; q++){
- if(!isinf(paths[idx - 256 + q].cost)){
+ } else {
+ for (q = 0; q < 256; q++) {
+ if (!isinf(paths[idx - 256 + q].cost)) {
paths[idx + q].cost = paths[idx - 256 + q].cost + 1;
paths[idx + q].prev = idx - 256 + q;
paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q);
paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q);
continue;
}
- for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){
+ for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) {
float cost;
int minv, maxv;
- if(isinf(paths[idx - 256 + i].cost))
+ if (isinf(paths[idx - 256 + i].cost))
continue;
cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
minv = FFMIN(paths[idx - 256 + i].min_val, q);
maxv = FFMAX(paths[idx - 256 + i].max_val, q);
- if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){
+ if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
paths[idx + q].cost = cost;
paths[idx + q].prev = idx - 256 + i;
paths[idx + q].min_val = minv;
@@ -594,20 +594,20 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
idx -= 256;
mincost = paths[idx].cost;
minq = idx;
- for(i = 1; i < 256; i++){
- if(paths[idx + i].cost < mincost){
+ for (i = 1; i < 256; i++) {
+ if (paths[idx + i].cost < mincost) {
mincost = paths[idx + i].cost;
minq = idx + i;
}
}
- while(minq >= 256){
+ while(minq >= 256) {
sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF;
minq = paths[minq].prev;
}
//set the same quantizers inside window groups
- for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
- for(g = 0; g < sce->ics.num_swb; g++)
- for(w2 = 1; w2 < sce->ics.group_len[w]; w2++)
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
+ for (g = 0; g < sce->ics.num_swb; g++)
+ for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
}
@@ -628,14 +628,14 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
//XXX: some heuristic to determine initial quantizers will reduce search time
memset(dists, 0, sizeof(dists));
//determine zero bands and upper limits
- for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
- for(g = 0; g < sce->ics.num_swb; g++){
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+ for (g = 0; g < sce->ics.num_swb; g++) {
int nz = 0;
float uplim = 0.0f;
- for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
uplim += band->threshold;
- if(band->energy <= band->threshold || band->threshold == 0.0f){
+ if (band->energy <= band->threshold || band->threshold == 0.0f) {
sce->zeroes[(w+w2)*16+g] = 1;
continue;
}
@@ -643,14 +643,14 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
}
uplims[w*16+g] = uplim *512;
sce->zeroes[w*16+g] = !nz;
- if(nz)
+ if (nz)
minthr = fminf(minthr, uplim);
allz = FFMAX(allz, nz);
}
}
- for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
- for(g = 0; g < sce->ics.num_swb; g++){
- if(sce->zeroes[w*16+g]){
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+ for (g = 0; g < sce->ics.num_swb; g++) {
+ if (sce->zeroes[w*16+g]) {
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
continue;
}
@@ -658,7 +658,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
}
}
- if(!allz)
+ if (!allz)
return;
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
//perform two-loop search
@@ -672,9 +672,9 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
int prev = -1;
tbits = 0;
fflag = 0;
- for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
- for(g = 0; g < sce->ics.num_swb; g++){
+ for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = sce->coeffs + start;
const float *scaled = s->scoefs + start;
int bits = 0;
@@ -682,13 +682,13 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
float mindist = INFINITY;
int minbits = 0;
- if(sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218)
+ if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218)
continue;
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
- for(cb = 0; cb <= ESC_BT; cb++){
+ for (cb = 0; cb <= ESC_BT; cb++) {
float dist = 0.0f;
int bb = 0;
- for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b;
dist += quantize_band_cost(s, coefs + w2*128,
scaled + w2*128,
@@ -700,14 +700,14 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
&b);
bb += b;
}
- if(dist < mindist){
+ if (dist < mindist) {
mindist = dist;
minbits = bb;
}
}
dists[w*16+g] = mindist - minbits;
bits = minbits;
- if(prev != -1){
+ if (prev != -1) {
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
}
tbits += bits;
@@ -715,36 +715,36 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
prev = sce->sf_idx[w*16+g];
}
}
- if(tbits > destbits){
- for(i = 0; i < 128; i++){
- if(sce->sf_idx[i] < 218 - qstep){
+ if (tbits > destbits) {
+ for (i = 0; i < 128; i++) {
+ if (sce->sf_idx[i] < 218 - qstep) {
sce->sf_idx[i] += qstep;
}
}
- }else{
- for(i = 0; i < 128; i++){
- if(sce->sf_idx[i] > 60 - qstep){
+ } else {
+ for (i = 0; i < 128; i++) {
+ if (sce->sf_idx[i] > 60 - qstep) {
sce->sf_idx[i] -= qstep;
}
}
}
qstep >>= 1;
- if(!qstep && tbits > destbits*1.02)
+ if (!qstep && tbits > destbits*1.02)
qstep = 1;
- if(sce->sf_idx[0] >= 217)break;
+ if (sce->sf_idx[0] >= 217)break;
}while(qstep);
fflag = 0;
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
- for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
- for(g = 0; g < sce->ics.num_swb; g++){
+ for (g = 0; g < sce->ics.num_swb; g++) {
int prevsc = sce->sf_idx[w*16+g];
- if(dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
+ if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
sce->sf_idx[w*16+g]--;
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
- if(sce->sf_idx[w*16+g] != prevsc)
+ if (sce->sf_idx[w*16+g] != prevsc)
fflag = 1;
}
}
@@ -761,29 +761,29 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
int last = 0, lastband = 0, curband = 0;
float avg_energy = 0.0;
- if(sce->ics.num_windows == 1){
+ if (sce->ics.num_windows == 1) {
start = 0;
- for(i = 0; i < 1024; i++){
- if(i - start >= sce->ics.swb_sizes[curband]){
+ for (i = 0; i < 1024; i++) {
+ if (i - start >= sce->ics.swb_sizes[curband]) {
start += sce->ics.swb_sizes[curband];
curband++;
}
- if(sce->coeffs[i]){
+ if (sce->coeffs[i]) {
avg_energy += sce->coeffs[i] * sce->coeffs[i];
last = i;
lastband = curband;
}
}
- }else{
- for(w = 0; w < 8; w++){
+ } else {
+ for (w = 0; w < 8; w++) {
const float *coeffs = sce->coeffs + w*128;
start = 0;
- for(i = 0; i < 128; i++){
- if(i - start >= sce->ics.swb_sizes[curband]){
+ for (i = 0; i < 128; i++) {
+ if (i - start >= sce->ics.swb_sizes[curband]) {
start += sce->ics.swb_sizes[curband];
curband++;
}
- if(coeffs[i]){
+ if (coeffs[i]) {
avg_energy += coeffs[i] * coeffs[i];
last = FFMAX(last, i);
lastband = FFMAX(lastband, curband);
@@ -793,41 +793,41 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
}
last++;
avg_energy /= last;
- if(avg_energy == 0.0f){
- for(i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
+ if (avg_energy == 0.0f) {
+ for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
sce->sf_idx[i] = SCALE_ONE_POS;
return;
}
- for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
- for(g = 0; g < sce->ics.num_swb; g++){
+ for (g = 0; g < sce->ics.num_swb; g++) {
float *coefs = sce->coeffs + start;
const int size = sce->ics.swb_sizes[g];
int start2 = start, end2 = start + size, peakpos = start;
float maxval = -1, thr = 0.0f, t;
maxq[w*16+g] = 0.0f;
- if(g > lastband){
+ if (g > lastband) {
maxq[w*16+g] = 0.0f;
start += size;
- for(w2 = 0; w2 < sce->ics.group_len[w]; w2++)
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
continue;
}
- for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
- for(i = 0; i < size; i++){
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+ for (i = 0; i < size; i++) {
float t = coefs[w2*128+i]*coefs[w2*128+i];
maxq[w*16+g] = fmaxf(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
thr += t;
- if(sce->ics.num_windows == 1 && maxval < t){
+ if (sce->ics.num_windows == 1 && maxval < t) {
maxval = t;
peakpos = start+i;
}
}
}
- if(sce->ics.num_windows == 1){
+ if (sce->ics.num_windows == 1) {
start2 = FFMAX(peakpos - 2, start2);
end2 = FFMIN(peakpos + 3, end2);
- }else{
+ } else {
start2 -= start;
end2 -= start;
}
@@ -839,16 +839,16 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
}
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
- for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
- for(g = 0; g < sce->ics.num_swb; g++){
+ for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = sce->coeffs + start;
const float *scaled = s->scoefs + start;
const int size = sce->ics.swb_sizes[g];
int scf, prev_scf, step;
int min_scf = 0, max_scf = 255;
float curdiff;
- if(maxq[w*16+g] < 21.544){
+ if (maxq[w*16+g] < 21.544) {
sce->zeroes[w*16+g] = 1;
start += size;
continue;
@@ -856,11 +856,11 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
sce->zeroes[w*16+g] = 0;
scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
step = 16;
- for(;;){
+ for (;;) {
float dist = 0.0f;
int quant_max;
- for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b;
dist += quantize_band_cost(s, coefs + w2*128,
scaled + w2*128,
@@ -874,24 +874,24 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
}
dist *= 1.0f/512.0f;
quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
- if(quant_max >= 8191){ // too much, return to the previous quantizer
+ if (quant_max >= 8191) { // too much, return to the previous quantizer
sce->sf_idx[w*16+g] = prev_scf;
break;
}
prev_scf = scf;
curdiff = fabsf(dist - uplim[w*16+g]);
- if(curdiff == 0.0f)
+ if (curdiff == 0.0f)
step = 0;
else
step = fabsf(log2(curdiff));
- if(dist > uplim[w*16+g])
+ if (dist > uplim[w*16+g])
step = -step;
- if(FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)){
+ if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
sce->sf_idx[w*16+g] = scf;
break;
}
scf += step;
- if(step > 0)
+ if (step > 0)
min_scf = scf;
else
max_scf = scf;
@@ -900,17 +900,17 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
}
}
minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
- for(i = 1; i < 128; i++){
- if(!sce->sf_idx[i])
+ for (i = 1; i < 128; i++) {
+ if (!sce->sf_idx[i])
sce->sf_idx[i] = sce->sf_idx[i-1];
else
minq = FFMIN(minq, sce->sf_idx[i]);
}
- if(minq == INT_MAX) minq = 0;
+ if (minq == INT_MAX) minq = 0;
minq = FFMIN(minq, SCALE_MAX_POS);
maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
- for(i = 126; i >= 0; i--){
- if(!sce->sf_idx[i])
+ for (i = 126; i >= 0; i--) {
+ if (!sce->sf_idx[i])
sce->sf_idx[i] = sce->sf_idx[i+1];
sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
}
@@ -923,15 +923,15 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
int minq = 255;
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
- for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
- for(g = 0; g < sce->ics.num_swb; g++){
- for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ for (g = 0; g < sce->ics.num_swb; g++) {
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
- if(band->energy <= band->threshold){
+ if (band->energy <= band->threshold) {
sce->sf_idx[(w+w2)*16+g] = 218;
sce->zeroes[(w+w2)*16+g] = 1;
- }else{
+ } else {
sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
sce->zeroes[(w+w2)*16+g] = 0;
}
@@ -939,13 +939,13 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
}
}
}
- for(i = 0; i < 128; i++){
+ for (i = 0; i < 128; i++) {
sce->sf_idx[i] = 140;//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
}
//set the same quantizers inside window groups
- for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
- for(g = 0; g < sce->ics.num_swb; g++)
- for(w2 = 1; w2 < sce->ics.group_len[w]; w2++)
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
+ for (g = 0; g < sce->ics.num_swb; g++)
+ for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
}
@@ -956,18 +956,18 @@ static void search_for_ms(AACEncContext *s, ChannelElement *cpe, const float lam
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1];
- if(!cpe->common_window)
+ if (!cpe->common_window)
return;
- for(w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]){
- for(g = 0; g < sce0->ics.num_swb; g++){
- if(!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]){
+ for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
+ for (g = 0; g < sce0->ics.num_swb; g++) {
+ if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
float dist1 = 0.0f, dist2 = 0.0f;
- for(w2 = 0; w2 < sce0->ics.group_len[w]; w2++){
+ for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
float minthr = fminf(band0->threshold, band1->threshold);
float maxthr = fmaxf(band0->threshold, band1->threshold);
- for(i = 0; i < sce0->ics.swb_sizes[g]; i++){
+ for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
M[i] = (sce0->coeffs[start+w2*128+i]
+ sce1->coeffs[start+w2*128+i])*0.5;
S[i] = sce0->coeffs[start+w2*128+i]