Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/FFmpeg/FFmpeg.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRostislav Pehlivanov <atomnuker@gmail.com>2018-01-13 21:27:36 +0300
committerRostislav Pehlivanov <atomnuker@gmail.com>2018-01-13 21:37:54 +0300
commitc51301db14fe08bf9f5c3b4f9e588e04095f9ac1 (patch)
tree24741d32eb2f40999abd8c0ceceb2a921b09a434 /libavcodec/dcaenc.c
parentec6e389c753ba7de0303e8094a494a981b927b77 (diff)
dcaenc: move all tables inside context and fix incorrect coding style
Functionally identical to the old code, with less lines wasted. Partially fixes the complete disregard for the 80 col/line guide. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
Diffstat (limited to 'libavcodec/dcaenc.c')
-rw-r--r--libavcodec/dcaenc.c258
1 files changed, 136 insertions, 122 deletions
diff --git a/libavcodec/dcaenc.c b/libavcodec/dcaenc.c
index 0967c56396..186997c631 100644
--- a/libavcodec/dcaenc.c
+++ b/libavcodec/dcaenc.c
@@ -52,6 +52,8 @@
#define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8)
#define AUBANDS 25
+#define COS_T(x) (c->cos_table[(x) & 2047])
+
typedef struct CompressionOptions {
int adpcm_mode;
} CompressionOptions;
@@ -97,15 +99,15 @@ typedef struct DCAEncContext {
int32_t worst_noise_ever;
int consumed_bits;
int consumed_adpcm_bits; ///< Number of bits to transmit ADPCM related info
-} DCAEncContext;
-static int32_t cos_table[2048];
-static int32_t band_interpolation[2][512];
-static int32_t band_spectrum[2][8];
-static int32_t auf[9][AUBANDS][256];
-static int32_t cb_to_add[256];
-static int32_t cb_to_level[2048];
-static int32_t lfe_fir_64i[512];
+ int32_t cos_table[2048];
+ int32_t band_interpolation_tab[2][512];
+ int32_t band_spectrum_tab[2][8];
+ int32_t auf[9][AUBANDS][256];
+ int32_t cb_to_add[256];
+ int32_t cb_to_level[2048];
+ int32_t lfe_fir_64i[512];
+} DCAEncContext;
/* Transfer function of outer and middle ear, Hz -> dB */
static double hom(double f)
@@ -158,7 +160,7 @@ static int encode_init(AVCodecContext *avctx)
{
DCAEncContext *c = avctx->priv_data;
uint64_t layout = avctx->channel_layout;
- int i, j, min_frame_bits;
+ int i, j, k, min_frame_bits;
int ret;
if (subband_bufer_alloc(c))
@@ -166,8 +168,8 @@ static int encode_init(AVCodecContext *avctx)
c->fullband_channels = c->channels = avctx->channels;
c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6);
- c->band_interpolation = band_interpolation[1];
- c->band_spectrum = band_spectrum[1];
+ c->band_interpolation = c->band_interpolation_tab[1];
+ c->band_spectrum = c->band_spectrum_tab[1];
c->worst_quantization_noise = -2047;
c->worst_noise_ever = -2047;
c->consumed_adpcm_bits = 0;
@@ -240,65 +242,63 @@ static int encode_init(AVCodecContext *avctx)
if ((ret = ff_mdct_init(&c->mdct, 9, 0, 1.0)) < 0)
return ret;
- if (!cos_table[0]) {
- int j, k;
-
- cos_table[0] = 0x7fffffff;
- cos_table[512] = 0;
- cos_table[1024] = -cos_table[0];
- for (i = 1; i < 512; i++) {
- cos_table[i] = (int32_t)(0x7fffffff * cos(M_PI * i / 1024));
- cos_table[1024-i] = -cos_table[i];
- cos_table[1024+i] = -cos_table[i];
- cos_table[2048-i] = cos_table[i];
- }
- for (i = 0; i < 2048; i++) {
- cb_to_level[i] = (int32_t)(0x7fffffff * ff_exp10(-0.005 * i));
- }
+ /* Init all tables */
+ c->cos_table[0] = 0x7fffffff;
+ c->cos_table[512] = 0;
+ c->cos_table[1024] = -c->cos_table[0];
+ for (i = 1; i < 512; i++) {
+ c->cos_table[i] = (int32_t)(0x7fffffff * cos(M_PI * i / 1024));
+ c->cos_table[1024-i] = -c->cos_table[i];
+ c->cos_table[1024+i] = -c->cos_table[i];
+ c->cos_table[2048-i] = +c->cos_table[i];
+ }
- for (k = 0; k < 32; k++) {
- for (j = 0; j < 8; j++) {
- lfe_fir_64i[64 * j + k] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
- lfe_fir_64i[64 * (7-j) + (63 - k)] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
- }
- }
+ for (i = 0; i < 2048; i++)
+ c->cb_to_level[i] = (int32_t)(0x7fffffff * ff_exp10(-0.005 * i));
- for (i = 0; i < 512; i++) {
- band_interpolation[0][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_perfect[i]);
- band_interpolation[1][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_nonperfect[i]);
+ for (k = 0; k < 32; k++) {
+ for (j = 0; j < 8; j++) {
+ c->lfe_fir_64i[64 * j + k] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
+ c->lfe_fir_64i[64 * (7-j) + (63 - k)] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
}
+ }
- for (i = 0; i < 9; i++) {
- for (j = 0; j < AUBANDS; j++) {
- for (k = 0; k < 256; k++) {
- double freq = sample_rates[i] * (k + 0.5) / 512;
+ for (i = 0; i < 512; i++) {
+ c->band_interpolation_tab[0][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_perfect[i]);
+ c->band_interpolation_tab[1][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_nonperfect[i]);
+ }
- auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq)));
- }
+ for (i = 0; i < 9; i++) {
+ for (j = 0; j < AUBANDS; j++) {
+ for (k = 0; k < 256; k++) {
+ double freq = sample_rates[i] * (k + 0.5) / 512;
+
+ c->auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq)));
}
}
+ }
- for (i = 0; i < 256; i++) {
- double add = 1 + ff_exp10(-0.01 * i);
- cb_to_add[i] = (int32_t)(100 * log10(add));
- }
- for (j = 0; j < 8; j++) {
- double accum = 0;
- for (i = 0; i < 512; i++) {
- double reconst = ff_dca_fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1);
- accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
- }
- band_spectrum[0][j] = (int32_t)(200 * log10(accum));
+ for (i = 0; i < 256; i++) {
+ double add = 1 + ff_exp10(-0.01 * i);
+ c->cb_to_add[i] = (int32_t)(100 * log10(add));
+ }
+ for (j = 0; j < 8; j++) {
+ double accum = 0;
+ for (i = 0; i < 512; i++) {
+ double reconst = ff_dca_fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1);
+ accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
}
- for (j = 0; j < 8; j++) {
- double accum = 0;
- for (i = 0; i < 512; i++) {
- double reconst = ff_dca_fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1);
- accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
- }
- band_spectrum[1][j] = (int32_t)(200 * log10(accum));
+ c->band_spectrum_tab[0][j] = (int32_t)(200 * log10(accum));
+ }
+ for (j = 0; j < 8; j++) {
+ double accum = 0;
+ for (i = 0; i < 512; i++) {
+ double reconst = ff_dca_fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1);
+ accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
}
+ c->band_spectrum_tab[1][j] = (int32_t)(200 * log10(accum));
}
+
return 0;
}
@@ -312,11 +312,6 @@ static av_cold int encode_close(AVCodecContext *avctx)
return 0;
}
-static inline int32_t cos_t(int x)
-{
- return cos_table[x & 2047];
-}
-
static void subband_transform(DCAEncContext *c, const int32_t *input)
{
int ch, subs, i, k, j;
@@ -352,7 +347,7 @@ static void subband_transform(DCAEncContext *c, const int32_t *input)
resp = 0;
for (i = 16; i < 48; i++) {
int s = (2 * band + 1) * (2 * (i + 16) + 1);
- resp += mul32(accum[i], cos_t(s << 3)) >> 3;
+ resp += mul32(accum[i], COS_T(s << 3)) >> 3;
}
c->subband[ch][band][subs] = ((band + 1) & 2) ? -resp : resp;
@@ -383,9 +378,9 @@ static void lfe_downsample(DCAEncContext *c, const int32_t *input)
accum = 0;
for (i = hist_start, j = 0; i < 512; i++, j++)
- accum += mul32(hist[i], lfe_fir_64i[j]);
+ accum += mul32(hist[i], c->lfe_fir_64i[j]);
for (i = 0; i < hist_start; i++, j++)
- accum += mul32(hist[i], lfe_fir_64i[j]);
+ accum += mul32(hist[i], c->lfe_fir_64i[j]);
c->downsampled_lfe[lfes] = accum;
@@ -397,28 +392,26 @@ static void lfe_downsample(DCAEncContext *c, const int32_t *input)
}
}
-static int32_t get_cb(int32_t in)
+static int32_t get_cb(DCAEncContext *c, int32_t in)
{
- int i, res;
+ int i, res = 0;
+ in = FFABS(in);
- res = 0;
- if (in < 0)
- in = -in;
for (i = 1024; i > 0; i >>= 1) {
- if (cb_to_level[i + res] >= in)
+ if (c->cb_to_level[i + res] >= in)
res += i;
}
return -res;
}
-static int32_t add_cb(int32_t a, int32_t b)
+static int32_t add_cb(DCAEncContext *c, int32_t a, int32_t b)
{
if (a < b)
FFSWAP(int32_t, a, b);
if (a - b >= 256)
return a;
- return a + cb_to_add[a - b];
+ return a + c->cb_to_add[a - b];
}
static void calc_power(DCAEncContext *c,
@@ -428,13 +421,13 @@ static void calc_power(DCAEncContext *c,
LOCAL_ALIGNED_32(int32_t, data, [512]);
LOCAL_ALIGNED_32(int32_t, coeff, [256]);
- for (i = 0; i < 512; i++) {
- data[i] = norm__(mul32(in[i], 0x3fffffff - (cos_t(4 * i + 2) >> 1)), 4);
- }
+ for (i = 0; i < 512; i++)
+ data[i] = norm__(mul32(in[i], 0x3fffffff - (COS_T(4 * i + 2) >> 1)), 4);
+
c->mdct.mdct_calc(&c->mdct, coeff, data);
for (i = 0; i < 256; i++) {
- const int32_t cb = get_cb(coeff[i]);
- power[i] = add_cb(cb, cb);
+ const int32_t cb = get_cb(c, coeff[i]);
+ power[i] = add_cb(c, cb, cb);
}
}
@@ -451,21 +444,20 @@ static void adjust_jnd(DCAEncContext *c,
calc_power(c, in, power);
- for (j = 0; j < 256; j++) {
+ for (j = 0; j < 256; j++)
out_cb_unnorm[j] = -2047; /* and can only grow */
- }
for (i = 0; i < AUBANDS; i++) {
denom = ca_cb; /* and can only grow */
for (j = 0; j < 256; j++)
- denom = add_cb(denom, power[j] + auf[samplerate_index][i][j]);
+ denom = add_cb(c, denom, power[j] + c->auf[samplerate_index][i][j]);
for (j = 0; j < 256; j++)
- out_cb_unnorm[j] = add_cb(out_cb_unnorm[j],
- -denom + auf[samplerate_index][i][j]);
+ out_cb_unnorm[j] = add_cb(c, out_cb_unnorm[j],
+ -denom + c->auf[samplerate_index][i][j]);
}
for (j = 0; j < 256; j++)
- out_cb[j] = add_cb(out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb);
+ out_cb[j] = add_cb(c, out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb);
}
typedef void (*walk_band_t)(DCAEncContext *c, int band1, int band2, int f,
@@ -547,16 +539,16 @@ static void calc_masking(DCAEncContext *c, const int32_t *input)
}
}
-static inline int32_t find_peak(const int32_t *in, int len) {
+static inline int32_t find_peak(DCAEncContext *c, const int32_t *in, int len)
+{
int sample;
int32_t m = 0;
for (sample = 0; sample < len; sample++) {
int32_t s = abs(in[sample]);
- if (m < s) {
+ if (m < s)
m = s;
- }
}
- return get_cb(m);
+ return get_cb(c, m);
}
static void find_peaks(DCAEncContext *c)
@@ -564,14 +556,13 @@ static void find_peaks(DCAEncContext *c)
int band, ch;
for (ch = 0; ch < c->fullband_channels; ch++) {
- for (band = 0; band < 32; band++) {
- c->peak_cb[ch][band] = find_peak(c->subband[ch][band], SUBBAND_SAMPLES);
- }
+ for (band = 0; band < 32; band++)
+ c->peak_cb[ch][band] = find_peak(c, c->subband[ch][band],
+ SUBBAND_SAMPLES);
}
- if (c->lfe_channel) {
- c->lfe_peak_cb = find_peak(c->downsampled_lfe, DCA_LFE_SAMPLES);
- }
+ if (c->lfe_channel)
+ c->lfe_peak_cb = find_peak(c, c->downsampled_lfe, DCA_LFE_SAMPLES);
}
static void adpcm_analysis(DCAEncContext *c)
@@ -585,11 +576,12 @@ static void adpcm_analysis(DCAEncContext *c)
for (ch = 0; ch < c->fullband_channels; ch++) {
for (band = 0; band < 32; band++) {
samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
- pred_vq_id = ff_dcaadpcm_subband_analysis(&c->adpcm_ctx, samples, SUBBAND_SAMPLES, estimated_diff);
+ pred_vq_id = ff_dcaadpcm_subband_analysis(&c->adpcm_ctx, samples,
+ SUBBAND_SAMPLES, estimated_diff);
if (pred_vq_id >= 0) {
c->prediction_mode[ch][band] = pred_vq_id;
c->consumed_adpcm_bits += 12; //12 bits to transmit prediction vq index
- c->diff_peak_cb[ch][band] = find_peak(estimated_diff, 16);
+ c->diff_peak_cb[ch][band] = find_peak(c, estimated_diff, 16);
} else {
c->prediction_mode[ch][band] = -1;
}
@@ -601,7 +593,7 @@ static const int snr_fudge = 128;
#define USED_1ABITS 1
#define USED_26ABITS 4
-static inline int32_t get_step_size(const DCAEncContext *c, int ch, int band)
+static inline int32_t get_step_size(DCAEncContext *c, int ch, int band)
{
int32_t step_size;
@@ -613,7 +605,8 @@ static inline int32_t get_step_size(const DCAEncContext *c, int ch, int band)
return step_size;
}
-static int calc_one_scale(int32_t peak_cb, int abits, softfloat *quant)
+static int calc_one_scale(DCAEncContext *c, int32_t peak_cb, int abits,
+ softfloat *quant)
{
int32_t peak;
int our_nscale, try_remove;
@@ -623,7 +616,7 @@ static int calc_one_scale(int32_t peak_cb, int abits, softfloat *quant)
av_assert0(peak_cb >= -2047);
our_nscale = 127;
- peak = cb_to_level[-peak_cb];
+ peak = c->cb_to_level[-peak_cb];
for (try_remove = 64; try_remove > 0; try_remove >>= 1) {
if (scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e <= 17)
@@ -649,15 +642,17 @@ static inline void quantize_adpcm_subband(DCAEncContext *c, int ch, int band)
{
int32_t step_size;
int32_t diff_peak_cb = c->diff_peak_cb[ch][band];
- c->scale_factor[ch][band] = calc_one_scale(diff_peak_cb,
+ c->scale_factor[ch][band] = calc_one_scale(c, diff_peak_cb,
c->abits[ch][band],
&c->quant[ch][band]);
step_size = get_step_size(c, ch, band);
ff_dcaadpcm_do_real(c->prediction_mode[ch][band],
- c->quant[ch][band], ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], step_size,
- c->adpcm_history[ch][band], c->subband[ch][band], c->adpcm_history[ch][band]+4, c->quantized[ch][band],
- SUBBAND_SAMPLES, cb_to_level[-diff_peak_cb]);
+ c->quant[ch][band],
+ ff_dca_scale_factor_quant7[c->scale_factor[ch][band]],
+ step_size, c->adpcm_history[ch][band], c->subband[ch][band],
+ c->adpcm_history[ch][band] + 4, c->quantized[ch][band],
+ SUBBAND_SAMPLES, c->cb_to_level[-diff_peak_cb]);
}
static void quantize_adpcm(DCAEncContext *c)
@@ -674,21 +669,31 @@ static void quantize_pcm(DCAEncContext *c)
{
int sample, band, ch;
- for (ch = 0; ch < c->fullband_channels; ch++)
- for (band = 0; band < 32; band++)
- if (c->prediction_mode[ch][band] == -1)
- for (sample = 0; sample < SUBBAND_SAMPLES; sample++)
- c->quantized[ch][band][sample] = quantize_value(c->subband[ch][band][sample], c->quant[ch][band]);
+ for (ch = 0; ch < c->fullband_channels; ch++) {
+ for (band = 0; band < 32; band++) {
+ if (c->prediction_mode[ch][band] == -1) {
+ for (sample = 0; sample < SUBBAND_SAMPLES; sample++) {
+ int32_t val = quantize_value(c->subband[ch][band][sample],
+ c->quant[ch][band]);
+ c->quantized[ch][band][sample] = val;
+ }
+ }
+ }
+ }
}
-static void accumulate_huff_bit_consumption(int abits, int32_t *quantized, uint32_t *result)
+static void accumulate_huff_bit_consumption(int abits, int32_t *quantized,
+ uint32_t *result)
{
uint8_t sel, id = abits - 1;
for (sel = 0; sel < ff_dca_quant_index_group_size[id]; sel++)
- result[sel] += ff_dca_vlc_calc_quant_bits(quantized, SUBBAND_SAMPLES, sel, id);
+ result[sel] += ff_dca_vlc_calc_quant_bits(quantized, SUBBAND_SAMPLES,
+ sel, id);
}
-static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7], uint32_t clc_bits[DCA_CODE_BOOKS], int32_t res[DCA_CODE_BOOKS])
+static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7],
+ uint32_t clc_bits[DCA_CODE_BOOKS],
+ int32_t res[DCA_CODE_BOOKS])
{
uint8_t i, sel;
uint32_t best_sel_bits[DCA_CODE_BOOKS];
@@ -727,7 +732,8 @@ static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7], uint32_t clc
return bits;
}
-static uint32_t set_best_abits_code(int abits[DCAENC_SUBBANDS], int bands, int32_t *res)
+static uint32_t set_best_abits_code(int abits[DCAENC_SUBBANDS], int bands,
+ int32_t *res)
{
uint8_t i;
uint32_t t;
@@ -788,7 +794,8 @@ static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero)
ret &= ~(USED_26ABITS | USED_1ABITS);
}
}
- c->consumed_bits += set_best_abits_code(c->abits[ch], 32, &c->bit_allocation_sel[ch]);
+ c->consumed_bits += set_best_abits_code(c->abits[ch], 32,
+ &c->bit_allocation_sel[ch]);
}
/* Recalc scale_factor each time to get bits consumption in case of Huffman coding.
@@ -797,7 +804,7 @@ static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero)
for (ch = 0; ch < c->fullband_channels; ch++) {
for (band = 0; band < 32; band++) {
if (c->prediction_mode[ch][band] == -1) {
- c->scale_factor[ch][band] = calc_one_scale(c->peak_cb[ch][band],
+ c->scale_factor[ch][band] = calc_one_scale(c, c->peak_cb[ch][band],
c->abits[ch][band],
&c->quant[ch][band]);
}
@@ -811,7 +818,9 @@ static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero)
for (ch = 0; ch < c->fullband_channels; ch++) {
for (band = 0; band < 32; band++) {
if (c->abits[ch][band] && c->abits[ch][band] <= DCA_CODE_BOOKS) {
- accumulate_huff_bit_consumption(c->abits[ch][band], c->quantized[ch][band], huff_bit_count_accum[ch][c->abits[ch][band] - 1]);
+ accumulate_huff_bit_consumption(c->abits[ch][band],
+ c->quantized[ch][band],
+ huff_bit_count_accum[ch][c->abits[ch][band] - 1]);
clc_bit_count_accum[ch][c->abits[ch][band] - 1] += bit_consumption[c->abits[ch][band]];
} else {
bits_counter += bit_consumption[c->abits[ch][band]];
@@ -820,7 +829,9 @@ static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero)
}
for (ch = 0; ch < c->fullband_channels; ch++) {
- bits_counter += set_best_code(huff_bit_count_accum[ch], clc_bit_count_accum[ch], c->quant_index_sel[ch]);
+ bits_counter += set_best_code(huff_bit_count_accum[ch],
+ clc_bit_count_accum[ch],
+ c->quant_index_sel[ch]);
}
c->consumed_bits += bits_counter;
@@ -897,7 +908,8 @@ static void fill_in_adpcm_bufer(DCAEncContext *c)
step_size = get_step_size(c, ch, band);
ff_dca_core_dequantize(c->adpcm_history[ch][band],
- c->quantized[ch][band]+12, step_size, ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], 0, 4);
+ c->quantized[ch][band]+12, step_size,
+ ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], 0, 4);
} else {
AV_COPY128U(c->adpcm_history[ch][band], c->adpcm_history[ch][band]+4);
}
@@ -920,7 +932,7 @@ static void fill_in_adpcm_bufer(DCAEncContext *c)
static void calc_lfe_scales(DCAEncContext *c)
{
if (c->lfe_channel)
- c->lfe_scale_factor = calc_one_scale(c->lfe_peak_cb, 11, &c->lfe_quant);
+ c->lfe_scale_factor = calc_one_scale(c, c->lfe_peak_cb, 11, &c->lfe_quant);
}
static void put_frame_header(DCAEncContext *c)
@@ -1061,7 +1073,8 @@ static void put_subframe_samples(DCAEncContext *c, int ss, int band, int ch)
sel = c->quant_index_sel[ch][c->abits[ch][band] - 1];
// Huffman codes
if (sel < ff_dca_quant_index_group_size[c->abits[ch][band] - 1]) {
- ff_dca_vlc_enc_quant(&c->pb, &c->quantized[ch][band][ss * 8], 8, sel, c->abits[ch][band] - 1);
+ ff_dca_vlc_enc_quant(&c->pb, &c->quantized[ch][band][ss * 8], 8,
+ sel, c->abits[ch][band] - 1);
return;
}
@@ -1114,7 +1127,8 @@ static void put_subframe(DCAEncContext *c, int subframe)
put_bits(&c->pb, 5, c->abits[ch][band]);
}
} else {
- ff_dca_vlc_enc_alloc(&c->pb, c->abits[ch], DCAENC_SUBBANDS, c->bit_allocation_sel[ch]);
+ ff_dca_vlc_enc_alloc(&c->pb, c->abits[ch], DCAENC_SUBBANDS,
+ c->bit_allocation_sel[ch]);
}
}