Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/FFmpeg/FFmpeg.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRostislav Pehlivanov <atomnuker@gmail.com>2017-04-13 01:26:34 +0300
committerRostislav Pehlivanov <atomnuker@gmail.com>2017-04-14 14:12:43 +0300
commit3f1c527bf55537eb15da4c1384c0f4a08b08e1f3 (patch)
tree353f156684dab439675159fae8fe92e0d6fe267c /libavcodec/opus_pvq.c
parent802d94c36edcd05b53a56ee359d9559cc4e11597 (diff)
opus_pvq: add resynth support and band encoding cost function
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
Diffstat (limited to 'libavcodec/opus_pvq.c')
-rw-r--r--libavcodec/opus_pvq.c154
1 files changed, 138 insertions, 16 deletions
diff --git a/libavcodec/opus_pvq.c b/libavcodec/opus_pvq.c
index ce93c4731d..508555531b 100644
--- a/libavcodec/opus_pvq.c
+++ b/libavcodec/opus_pvq.c
@@ -389,10 +389,10 @@ static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, u
* Faster than libopus's search, operates entirely in the signed domain.
* Slightly worse/better depending on N, K and the input vector.
*/
-static void celt_pvq_search(float *X, int *y, int K, int N)
+static int celt_pvq_search(float *X, int *y, int K, int N)
{
- int i;
- float res = 0.0f, y_norm = 0.0f, xy_norm = 0.0f;
+ int i, y_norm = 0;
+ float res = 0.0f, xy_norm = 0.0f;
for (i = 0; i < N; i++)
res += FFABS(X[i]);
@@ -407,8 +407,8 @@ static void celt_pvq_search(float *X, int *y, int K, int N)
}
while (K) {
- int max_idx = 0, phase = FFSIGN(K);
- float max_den = 1.0f, max_num = 0.0f;
+ int max_idx = 0, max_den = 1, phase = FFSIGN(K);
+ float max_num = 0.0f;
y_norm += 1.0f;
for (i = 0; i < N; i++) {
@@ -416,8 +416,8 @@ static void celt_pvq_search(float *X, int *y, int K, int N)
* to it, attempting to decrease it further will actually increase the
* sum. Prevent this by disregarding any 0 positions when decrementing. */
const int ca = 1 ^ ((y[i] == 0) & (phase < 0));
+ const int y_new = y_norm + 2*phase*FFABS(y[i]);
float xy_new = xy_norm + 1*phase*FFABS(X[i]);
- float y_new = y_norm + 2*phase*FFABS(y[i]);
xy_new = xy_new * xy_new;
if (ca && (max_den*xy_new) > (y_new*max_num)) {
max_den = y_new;
@@ -433,6 +433,8 @@ static void celt_pvq_search(float *X, int *y, int K, int N)
y_norm += 2*phase*y[max_idx];
y[max_idx] += phase;
}
+
+ return y_norm;
}
static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
@@ -441,8 +443,10 @@ static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_
int y[176];
celt_exp_rotation(X, N, blocks, K, spread, 1);
- celt_pvq_search(X, y, K, N);
+ gain /= sqrtf(celt_pvq_search(X, y, K, N));
celt_encode_pulses(rc, y, N, K);
+ celt_normalize_residual(y, X, N, gain);
+ celt_exp_rotation(X, N, blocks, K, spread, 0);
return celt_extract_collapse_mask(y, N, blocks);
}
@@ -844,7 +848,7 @@ static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, in
static void celt_stereo_ms_decouple(float *X, float *Y, int N)
{
int i;
- const float decouple_norm = 1.0f/sqrtf(2.0f);
+ const float decouple_norm = 1.0f/sqrtf(1.0f + 1.0f);
for (i = 0; i < N; i++) {
const float Xret = X[i];
X[i] = (X[i] + Y[i])*decouple_norm;
@@ -860,9 +864,9 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
const uint8_t *cache;
int dualstereo, split;
int imid = 0, iside = 0;
- //uint32_t N0 = N;
+ uint32_t N0 = N;
int N_B = N / blocks;
- //int N_B0 = N_B;
+ int N_B0 = N_B;
int B0 = blocks;
int time_divide = 0;
int recombine = 0;
@@ -883,6 +887,7 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
f->remaining2 -= 1 << 3;
b -= 1 << 3;
}
+ x[0] = 1.0f - 2.0f*(x[0] < 0);
x = Y;
}
if (lowband_out)
@@ -922,7 +927,7 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
tf_change++;
}
B0 = blocks;
- //N_B0 = N_B;
+ N_B0 = N_B;
/* Reorganize the samples in time order instead of frequency order */
if (B0 > 1)
@@ -977,19 +982,20 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
if (dualstereo) {
if (itheta == 0)
- celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], f->block[1].lin_energy[band], N);
+ celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
+ f->block[1].lin_energy[band], N);
else
celt_stereo_ms_decouple(X, Y, N);
}
} else if (dualstereo) {
inv = itheta > 8192;
- if (inv)
- {
+ if (inv) {
int j;
- for (j=0;j<N;j++)
+ for (j = 0; j < N; j++)
Y[j] = -Y[j];
}
- celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], f->block[1].lin_energy[band], N);
+ celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
+ f->block[1].lin_energy[band], N);
if (b > 2 << 3 && f->remaining2 > 2 << 3) {
ff_opus_rc_enc_log(rc, inv, 2);
@@ -1153,8 +1159,124 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
/* Finally do the actual quantization */
cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
f->spread, blocks, gain);
+ } else {
+ /* If there's no pulse, fill the band anyway */
+ int j;
+ uint32_t cm_mask = (1 << blocks) - 1;
+ fill &= cm_mask;
+ if (!fill) {
+ for (j = 0; j < N; j++)
+ X[j] = 0.0f;
+ } else {
+ if (!lowband) {
+ /* Noise */
+ for (j = 0; j < N; j++)
+ X[j] = (((int32_t)celt_rng(f)) >> 20);
+ cm = cm_mask;
+ } else {
+ /* Folded spectrum */
+ for (j = 0; j < N; j++) {
+ /* About 48 dB below the "normal" folding level */
+ X[j] = lowband[j] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
+ }
+ cm = fill;
+ }
+ celt_renormalize_vector(X, N, gain);
+ }
+ }
+ }
+
+ /* This code is used by the decoder and by the resynthesis-enabled encoder */
+ if (dualstereo) {
+ int j;
+ if (N != 2)
+ celt_stereo_merge(X, Y, mid, N);
+ if (inv) {
+ for (j = 0; j < N; j++)
+ Y[j] *= -1;
+ }
+ } else if (level == 0) {
+ int k;
+
+ /* Undo the sample reorganization going from time order to frequency order */
+ if (B0 > 1)
+ celt_interleave_hadamard(f->scratch, X, N_B >> recombine,
+ B0<<recombine, longblocks);
+
+ /* Undo time-freq changes that we did earlier */
+ N_B = N_B0;
+ blocks = B0;
+ for (k = 0; k < time_divide; k++) {
+ blocks >>= 1;
+ N_B <<= 1;
+ cm |= cm >> blocks;
+ celt_haar1(X, N_B, blocks);
}
+
+ for (k = 0; k < recombine; k++) {
+ cm = ff_celt_bit_deinterleave[cm];
+ celt_haar1(X, N0>>k, 1<<k);
+ }
+ blocks <<= recombine;
+
+ /* Scale output for later folding */
+ if (lowband_out) {
+ int j;
+ float n = sqrtf(N0);
+ for (j = 0; j < N0; j++)
+ lowband_out[j] = n * X[j];
+ }
+ cm = av_mod_uintp2(cm, blocks);
}
return cm;
}
+
+float ff_celt_quant_band_cost(CeltFrame *f, OpusRangeCoder *rc, int band, float *bits,
+ float lambda)
+{
+ int i, b = 0;
+ uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
+ const int band_size = ff_celt_freq_range[band] << f->size;
+ float buf[352], lowband_scratch[176], norm1[176], norm2[176];
+ float dist, cost, err_x = 0.0f, err_y = 0.0f;
+ float *X = buf;
+ float *X_orig = f->block[0].coeffs + (ff_celt_freq_bands[band] << f->size);
+ float *Y = (f->channels == 2) ? &buf[176] : NULL;
+ float *Y_orig = f->block[1].coeffs + (ff_celt_freq_bands[band] << f->size);
+ OPUS_RC_CHECKPOINT_SPAWN(rc);
+
+ memcpy(X, X_orig, band_size*sizeof(float));
+ if (Y)
+ memcpy(Y, Y_orig, band_size*sizeof(float));
+
+ f->remaining2 = ((f->framebits << 3) - f->anticollapse_needed) - opus_rc_tell_frac(rc) - 1;
+ if (band <= f->coded_bands - 1) {
+ int curr_balance = f->remaining / FFMIN(3, f->coded_bands - band);
+ b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[band] + curr_balance), 14);
+ }
+
+ if (f->dual_stereo) {
+ ff_celt_encode_band(f, rc, band, X, NULL, band_size, b / 2, f->blocks, NULL,
+ f->size, norm1, 0, 1.0f, lowband_scratch, cm[0]);
+
+ ff_celt_encode_band(f, rc, band, Y, NULL, band_size, b / 2, f->blocks, NULL,
+ f->size, norm2, 0, 1.0f, lowband_scratch, cm[1]);
+ } else {
+ ff_celt_encode_band(f, rc, band, X, Y, band_size, b, f->blocks, NULL, f->size,
+ norm1, 0, 1.0f, lowband_scratch, cm[0] | cm[1]);
+ }
+
+ for (i = 0; i < band_size; i++) {
+ err_x += (X[i] - X_orig[i])*(X[i] - X_orig[i]);
+ err_y += (Y[i] - Y_orig[i])*(Y[i] - Y_orig[i]);
+ }
+
+ dist = sqrtf(err_x) + sqrtf(err_y);
+ cost = OPUS_RC_CHECKPOINT_BITS(rc)/8.0f;
+ *bits += cost;
+
+ OPUS_RC_CHECKPOINT_ROLLBACK(rc);
+
+ return lambda*dist*cost;
+}