Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/FFmpeg/FFmpeg.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLynne <dev@lynne.ee>2022-01-21 09:50:53 +0300
committerLynne <dev@lynne.ee>2022-01-26 06:12:46 +0300
commitaf94ab7c7c004786084903bcf82b7617e88e3aa9 (patch)
tree022db61a65adcac1dce40157c341352dd0ed2ced /libavutil/tx_template.c
parentef4bd8161575a79f0ac247ad0aa2f05b8c20052b (diff)
lavu/tx: add an RDFT implementation
RDFTs are full of conventions that vary between implementations. What I've gone for here is what's most common between both fftw, avcodec's rdft and what we use, the equivalent of which is DFT_R2C for forward and IDFT_C2R for inverse. The other 2 conventions (IDFT_R2C and DFT_C2R) were not used at all in our code, and their names are also not appropriate. If there's a use for either, we can easily add a flag which would just flip the sign on one exptab. For some unknown reason, possibly to allow reusing FFT's exp tables, av_rdft's C2R output is 0.5x lower than what it should be to ensure a proper back-and-forth conversion. This code outputs its real samples at the correct level, which matches FFTW's level, and allows the user to change the level and insert arbitrary multiplies for free by setting the scale option.
Diffstat (limited to 'libavutil/tx_template.c')
-rw-r--r--libavutil/tx_template.c130
1 files changed, 130 insertions, 0 deletions
diff --git a/libavutil/tx_template.c b/libavutil/tx_template.c
index cee8458970..1e4354580b 100644
--- a/libavutil/tx_template.c
+++ b/libavutil/tx_template.c
@@ -1277,6 +1277,134 @@ DECL_COMP_MDCT(7)
DECL_COMP_MDCT(9)
DECL_COMP_MDCT(15)
+static av_cold int TX_NAME(ff_tx_rdft_init)(AVTXContext *s,
+ const FFTXCodelet *cd,
+ uint64_t flags,
+ FFTXCodeletOptions *opts,
+ int len, int inv,
+ const void *scale)
+{
+ int ret;
+ double f, m;
+ TXSample *tab;
+
+ s->scale_d = *((SCALE_TYPE *)scale);
+ s->scale_f = s->scale_d;
+
+ if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, NULL, len >> 1, inv, scale)))
+ return ret;
+
+ if (!(s->exp = av_mallocz((8 + (len >> 2) - 1)*sizeof(*s->exp))))
+ return AVERROR(ENOMEM);
+
+ tab = (TXSample *)s->exp;
+
+ f = 2*M_PI/len;
+
+ m = (inv ? 2*s->scale_d : s->scale_d);
+
+ *tab++ = RESCALE((inv ? 0.5 : 1.0) * m);
+ *tab++ = RESCALE(inv ? 0.5*m : 1.0);
+ *tab++ = RESCALE( m);
+ *tab++ = RESCALE(-m);
+
+ *tab++ = RESCALE( (0.5 - 0.0) * m);
+ *tab++ = RESCALE( (0.0 - 0.5) * m);
+ *tab++ = RESCALE( (0.5 - inv) * m);
+ *tab++ = RESCALE(-(0.5 - inv) * m);
+
+ for (int i = 0; i < len >> 2; i++)
+ *tab++ = RESCALE(cos(i*f));
+ for (int i = len >> 2; i >= 0; i--)
+ *tab++ = RESCALE(cos(i*f) * (inv ? +1.0 : -1.0));
+
+ return 0;
+}
+
+#define DECL_RDFT(name, inv) \
+static void TX_NAME(ff_tx_rdft_ ##name)(AVTXContext *s, void *_dst, \
+ void *_src, ptrdiff_t stride) \
+{ \
+ const int len2 = s->len >> 1; \
+ const int len4 = s->len >> 2; \
+ const TXSample *fact = (void *)s->exp; \
+ const TXSample *tcos = fact + 8; \
+ const TXSample *tsin = tcos + len4; \
+ TXComplex *data = inv ? _src : _dst; \
+ TXComplex t[3]; \
+ \
+ if (!inv) \
+ s->fn[0](&s->sub[0], data, _src, sizeof(TXComplex)); \
+ else \
+ data[0].im = data[len2].re; \
+ \
+ /* The DC value's both components are real, but we need to change them \
+ * into complex values. Also, the middle of the array is special-cased. \
+ * These operations can be done before or after the loop. */ \
+ t[0].re = data[0].re; \
+ data[0].re = t[0].re + data[0].im; \
+ data[0].im = t[0].re - data[0].im; \
+ data[ 0].re = MULT(fact[0], data[ 0].re); \
+ data[ 0].im = MULT(fact[1], data[ 0].im); \
+ data[len4].re = MULT(fact[2], data[len4].re); \
+ data[len4].im = MULT(fact[3], data[len4].im); \
+ \
+ for (int i = 1; i < len4; i++) { \
+ /* Separate even and odd FFTs */ \
+ t[0].re = MULT(fact[4], (data[i].re + data[len2 - i].re)); \
+ t[0].im = MULT(fact[5], (data[i].im - data[len2 - i].im)); \
+ t[1].re = MULT(fact[6], (data[i].im + data[len2 - i].im)); \
+ t[1].im = MULT(fact[7], (data[i].re - data[len2 - i].re)); \
+ \
+ /* Apply twiddle factors to the odd FFT and add to the even FFT */ \
+ CMUL(t[2].re, t[2].im, t[1].re, t[1].im, tcos[i], tsin[i]); \
+ \
+ data[ i].re = t[0].re + t[2].re; \
+ data[ i].im = t[2].im - t[0].im; \
+ data[len2 - i].re = t[0].re - t[2].re; \
+ data[len2 - i].im = t[2].im + t[0].im; \
+ } \
+ \
+ if (inv) { \
+ s->fn[0](&s->sub[0], _dst, data, sizeof(TXComplex)); \
+ } else { \
+ /* Move [0].im to the last position, as convention requires */ \
+ data[len2].re = data[0].im; \
+ data[ 0].im = 0; \
+ } \
+}
+
+DECL_RDFT(r2c, 0)
+DECL_RDFT(c2r, 1)
+
+static const FFTXCodelet TX_NAME(ff_tx_rdft_r2c_def) = {
+ .name = TX_NAME_STR("rdft_r2c"),
+ .function = TX_NAME(ff_tx_rdft_r2c),
+ .type = TX_TYPE(RDFT),
+ .flags = AV_TX_UNALIGNED | AV_TX_INPLACE |
+ FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY,
+ .factors = { 2, TX_FACTOR_ANY },
+ .min_len = 2,
+ .max_len = TX_LEN_UNLIMITED,
+ .init = TX_NAME(ff_tx_rdft_init),
+ .cpu_flags = FF_TX_CPU_FLAGS_ALL,
+ .prio = FF_TX_PRIO_BASE,
+};
+
+static const FFTXCodelet TX_NAME(ff_tx_rdft_c2r_def) = {
+ .name = TX_NAME_STR("rdft_c2r"),
+ .function = TX_NAME(ff_tx_rdft_c2r),
+ .type = TX_TYPE(RDFT),
+ .flags = AV_TX_UNALIGNED | AV_TX_INPLACE |
+ FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY,
+ .factors = { 2, TX_FACTOR_ANY },
+ .min_len = 2,
+ .max_len = TX_LEN_UNLIMITED,
+ .init = TX_NAME(ff_tx_rdft_init),
+ .cpu_flags = FF_TX_CPU_FLAGS_ALL,
+ .prio = FF_TX_PRIO_BASE,
+};
+
int TX_TAB(ff_tx_mdct_gen_exp)(AVTXContext *s)
{
int len4 = s->len >> 1;
@@ -1340,6 +1468,8 @@ const FFTXCodelet * const TX_NAME(ff_tx_codelet_list)[] = {
&TX_NAME(ff_tx_mdct_naive_fwd_def),
&TX_NAME(ff_tx_mdct_naive_inv_def),
&TX_NAME(ff_tx_mdct_inv_full_def),
+ &TX_NAME(ff_tx_rdft_r2c_def),
+ &TX_NAME(ff_tx_rdft_c2r_def),
NULL,
};