Welcome to mirror list, hosted at ThFree Co, Russian Federation.

math8.h « lib8tion « src - github.com/FastLED/FastLED.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: fad10d29c0863a91ad227298ec5b18b97ee747b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#ifndef __INC_LIB8TION_MATH_H
#define __INC_LIB8TION_MATH_H

#include "scale8.h"

///@ingroup lib8tion

///@defgroup Math Basic math operations
/// Fast, efficient 8-bit math functions specifically
/// designed for high-performance LED programming.
///
/// Because of the AVR(Arduino) and ARM assembly language
/// implementations provided, using these functions often
/// results in smaller and faster code than the equivalent
/// program using plain "C" arithmetic and logic.
///@{


/// add one byte to another, saturating at 0xFF
/// @param i - first byte to add
/// @param j - second byte to add
/// @returns the sum of i & j, capped at 0xFF
LIB8STATIC_ALWAYS_INLINE uint8_t qadd8( uint8_t i, uint8_t j)
{
#if QADD8_C == 1
    unsigned int t = i + j;
    if( t > 255) t = 255;
    return t;
#elif QADD8_AVRASM == 1
    asm volatile(
        /* First, add j to i, conditioning the C flag */
        "add %0, %1    \n\t"

        /* Now test the C flag.
        If C is clear, we branch around a load of 0xFF into i.
        If C is set, we go ahead and load 0xFF into i.
        */
        "brcc L_%=     \n\t"
        "ldi %0, 0xFF  \n\t"
        "L_%=: "
        : "+a" (i)
        : "a"  (j)
    );
    return i;
#elif QADD8_ARM_DSP_ASM == 1
    asm volatile( "uqadd8 %0, %0, %1" : "+r" (i) : "r" (j));
    return i;
#else
#error "No implementation for qadd8 available."
#endif
}

/// Add one byte to another, saturating at 0x7F and -0x80
/// @param i - first byte to add
/// @param j - second byte to add
/// @returns the sum of i & j, capped at 0xFF and -0x80
LIB8STATIC_ALWAYS_INLINE int8_t qadd7( int8_t i, int8_t j)
{
#if QADD7_C == 1
    int16_t t = i + j;
    if( t > 127) t = 127;
    if( t < -128) t = -128;
    return t;
#elif QADD7_AVRASM == 1
    asm volatile(
        /* First, add j to i, conditioning the V flag */
        "add %0, %1    \n\t"

        /* Now test the V flag.
        If V is clear, we are done.
        If V is set, we assume that result is positive and load 0x7F into i.
        */
        "brvc L_%=     \n\t"
        "ldi %0, 0x7F  \n\t"

        /* Now test the S flag.
        If S is clear, our assumption is right.
        If S is set, we load 0x80 into i.
        */
        "brge L_%=     \n\t"
        "ldi %0, 0x80  \n\t"
        "L_%=: "
        : "+a" (i)
        : "a"  (j)
    );
    return i;
#elif QADD7_ARM_DSP_ASM == 1
    asm volatile( "qadd8 %0, %0, %1" : "+r" (i) : "r" (j));
    return i;
#else
#error "No implementation for qadd7 available."
#endif
}

/// subtract one byte from another, saturating at 0x00
/// @returns i - j with a floor of 0
LIB8STATIC_ALWAYS_INLINE uint8_t qsub8( uint8_t i, uint8_t j)
{
#if QSUB8_C == 1
    int t = i - j;
    if( t < 0) t = 0;
    return t;
#elif QSUB8_AVRASM == 1

    asm volatile(
        /* First, subtract j from i, conditioning the C flag */
        "sub %0, %1    \n\t"

        /* Now test the C flag.
        If C is clear, we branch around a load of 0x00 into i.
        If C is set, we go ahead and load 0x00 into i.
        */
        "brcc L_%=     \n\t"
        "ldi %0, 0x00  \n\t"
        "L_%=: "
        : "+a" (i)
        : "a"  (j)
    );
    return i;
#else
#error "No implementation for qsub8 available."
#endif
}

/// add one byte to another, with one byte result
LIB8STATIC_ALWAYS_INLINE uint8_t add8( uint8_t i, uint8_t j)
{
#if ADD8_C == 1
    int t = i + j;
    return t;
#elif ADD8_AVRASM == 1
    // Add j to i, period.
    asm volatile( "add %0, %1" : "+a" (i) : "a" (j));
    return i;
#else
#error "No implementation for add8 available."
#endif
}

/// add one byte to two bytes, with two bytes result
LIB8STATIC_ALWAYS_INLINE uint16_t add8to16( uint8_t i, uint16_t j)
{
#if ADD8_C == 1
    uint16_t t = i + j;
    return t;
#elif ADD8_AVRASM == 1
    // Add i(one byte) to j(two bytes)
    asm volatile(
        "add %A[j], %[i]              \n\t"
        "adc %B[j], __zero_reg__      \n\t"
        : [j] "+a" (j)
        : [i] "a"  (i)
    );
    return i;
#else
#error "No implementation for add8to16 available."
#endif
}


/// subtract one byte from another, 8-bit result
LIB8STATIC_ALWAYS_INLINE uint8_t sub8( uint8_t i, uint8_t j)
{
#if SUB8_C == 1
    int t = i - j;
    return t;
#elif SUB8_AVRASM == 1
    // Subtract j from i, period.
    asm volatile( "sub %0, %1" : "+a" (i) : "a" (j));
    return i;
#else
#error "No implementation for sub8 available."
#endif
}

/// Calculate an integer average of two unsigned
///       8-bit integer values (uint8_t).
///       Fractional results are rounded down, e.g. avg8(20,41) = 30
LIB8STATIC_ALWAYS_INLINE uint8_t avg8( uint8_t i, uint8_t j)
{
#if AVG8_C == 1
    return (i + j) >> 1;
#elif AVG8_AVRASM == 1
    asm volatile(
        /* First, add j to i, 9th bit overflows into C flag */
        "add %0, %1    \n\t"
        /* Divide by two, moving C flag into high 8th bit */
        "ror %0        \n\t"
        : "+a" (i)
        : "a"  (j)
    );
    return i;
#else
#error "No implementation for avg8 available."
#endif
}

/// Calculate an integer average of two unsigned
///       8-bit integer values (uint8_t).
///       Fractional results are rounded up, e.g. avg8(20,41) = 31
LIB8STATIC_ALWAYS_INLINE uint8_t avg8r( uint8_t i, uint8_t j)
{
#if AVG8_C == 1
    return (i + j + 1) >> 1;
#elif AVG8_AVRASM == 1
    asm volatile(
        /* First, add j to i, 9th bit overflows into C flag */
        "add %0, %1          \n\t"
        /* Divide by two, moving C flag into high 8th bit, old 1st bit now in C */
        "ror %0              \n\t"
        /* Add C flag */
        "adc %0, __zero_reg__\n\t"
        : "+a" (i)
        : "a"  (j)
    );
    return i;
#else
#error "No implementation for avg8r available."
#endif
}

/// Calculate an integer average of two unsigned
///       16-bit integer values (uint16_t).
///       Fractional results are rounded down, e.g. avg16(20,41) = 30
LIB8STATIC_ALWAYS_INLINE uint16_t avg16( uint16_t i, uint16_t j)
{
#if AVG16_C == 1
    return (uint32_t)((uint32_t)(i) + (uint32_t)(j)) >> 1;
#elif AVG16_AVRASM == 1
    asm volatile(
        /* First, add jLo (heh) to iLo, 9th bit overflows into C flag */
        "add %A[i], %A[j]    \n\t"
        /* Now, add C + jHi to iHi, 17th bit overflows into C flag */
        "adc %B[i], %B[j]    \n\t"
        /* Divide iHi by two, moving C flag into high 16th bit, old 9th bit now in C */
        "ror %B[i]        \n\t"
        /* Divide iLo by two, moving C flag into high 8th bit */
        "ror %A[i]        \n\t"
        : [i] "+a" (i)
        : [j] "a"  (j)
    );
    return i;
#else
#error "No implementation for avg16 available."
#endif
}

/// Calculate an integer average of two unsigned
///       16-bit integer values (uint16_t).
///       Fractional results are rounded up, e.g. avg16(20,41) = 31
LIB8STATIC_ALWAYS_INLINE uint16_t avg16r( uint16_t i, uint16_t j)
{
#if AVG16_C == 1
    return (uint32_t)((uint32_t)(i) + (uint32_t)(j) + 1) >> 1;
#elif AVG16_AVRASM == 1
    asm volatile(
        /* First, add jLo (heh) to iLo, 9th bit overflows into C flag */
        "add %A[i], %A[j]    \n\t"
        /* Now, add C + jHi to iHi, 17th bit overflows into C flag */
        "adc %B[i], %B[j]    \n\t"
        /* Divide iHi by two, moving C flag into high 16th bit, old 9th bit now in C */
        "ror %B[i]        \n\t"
        /* Divide iLo by two, moving C flag into high 8th bit, old 1st bit now in C */
        "ror %A[i]        \n\t"
        /* Add C flag */
        "adc %A[i], __zero_reg__\n\t"
        "adc %B[i], __zero_reg__\n\t"
        : [i] "+a" (i)
        : [j] "a"  (j)
    );
    return i;
#else
#error "No implementation for avg16r available."
#endif
}


/// Calculate an integer average of two signed 7-bit
///       integers (int8_t)
///       If the first argument is even, result is rounded down.
///       If the first argument is odd, result is rounded up.
LIB8STATIC_ALWAYS_INLINE int8_t avg7( int8_t i, int8_t j)
{
#if AVG7_C == 1
    return (i>>1) + (j>>1) + (i & 0x1);
#elif AVG7_AVRASM == 1
    asm volatile(
        "asr %1        \n\t"
        "asr %0        \n\t"
        "adc %0, %1    \n\t"
        : "+a" (i)
        : "a"  (j)
    );
    return i;
#else
#error "No implementation for avg7 available."
#endif
}

/// Calculate an integer average of two signed 15-bit
///       integers (int16_t)
///       If the first argument is even, result is rounded down.
///       If the first argument is odd, result is rounded up.
LIB8STATIC_ALWAYS_INLINE int16_t avg15( int16_t i, int16_t j)
{
#if AVG15_C == 1
    return (i>>1) + (j>>1) + (i & 0x1);
#elif AVG15_AVRASM == 1
    asm volatile(
        /* first divide j by 2, throwing away lowest bit */
        "asr %B[j]          \n\t"
        "ror %A[j]          \n\t"
        /* now divide i by 2, with lowest bit going into C */
        "asr %B[i]          \n\t"
        "ror %A[i]          \n\t"
        /* add j + C to i */
        "adc %A[i], %A[j]   \n\t"
        "adc %B[i], %B[j]   \n\t"
        : [i] "+a" (i)
        : [j] "a"  (j)
    );
    return i;
#else
#error "No implementation for avg15 available."
#endif
}


///       Calculate the remainder of one unsigned 8-bit
///       value divided by anoter, aka A % M.
///       Implemented by repeated subtraction, which is
///       very compact, and very fast if A is 'probably'
///       less than M.  If A is a large multiple of M,
///       the loop has to execute multiple times.  However,
///       even in that case, the loop is only two
///       instructions long on AVR, i.e., quick.
LIB8STATIC_ALWAYS_INLINE uint8_t mod8( uint8_t a, uint8_t m)
{
#if defined(__AVR__)
    asm volatile (
        "L_%=:  sub %[a],%[m]    \n\t"
        "       brcc L_%=        \n\t"
        "       add %[a],%[m]    \n\t"
        : [a] "+r" (a)
        : [m] "r"  (m)
    );
#else
    while( a >= m) a -= m;
#endif
    return a;
}

///          Add two numbers, and calculate the modulo
///          of the sum and a third number, M.
///          In other words, it returns (A+B) % M.
///          It is designed as a compact mechanism for
///          incrementing a 'mode' switch and wrapping
///          around back to 'mode 0' when the switch
///          goes past the end of the available range.
///          e.g. if you have seven modes, this switches
///          to the next one and wraps around if needed:
///            mode = addmod8( mode, 1, 7);
///LIB8STATIC_ALWAYS_INLINESee 'mod8' for notes on performance.
LIB8STATIC uint8_t addmod8( uint8_t a, uint8_t b, uint8_t m)
{
#if defined(__AVR__)
    asm volatile (
        "       add %[a],%[b]    \n\t"
        "L_%=:  sub %[a],%[m]    \n\t"
        "       brcc L_%=        \n\t"
        "       add %[a],%[m]    \n\t"
        : [a] "+r" (a)
        : [b] "r"  (b), [m] "r" (m)
    );
#else
    a += b;
    while( a >= m) a -= m;
#endif
    return a;
}

///          Subtract two numbers, and calculate the modulo
///          of the difference and a third number, M.
///          In other words, it returns (A-B) % M.
///LIB8STATIC_ALWAYS_INLINESee 'mod8' for notes on performance.
LIB8STATIC uint8_t submod8( uint8_t a, uint8_t b, uint8_t m)
{
#if defined(__AVR__)
    asm volatile (
        "       sub %[a],%[b]    \n\t"
        "L_%=:  sub %[a],%[m]    \n\t"
        "       brcc L_%=        \n\t"
        "       add %[a],%[m]    \n\t"
        : [a] "+r" (a)
        : [b] "r"  (b), [m] "r" (m)
    );
#else
    a -= b;
    while( a >= m) a -= m;
#endif
    return a;
}

/// 8x8 bit multiplication, with 8 bit result
LIB8STATIC_ALWAYS_INLINE uint8_t mul8( uint8_t i, uint8_t j)
{
#if MUL8_C == 1
    return ((int)i * (int)(j) ) & 0xFF;
#elif MUL8_AVRASM == 1
    asm volatile(
        /* Multiply 8-bit i * 8-bit j, giving 16-bit r1,r0 */
        "mul %0, %1          \n\t"
        /* Extract the LOW 8-bits (r0) */
        "mov %0, r0          \n\t"
        /* Restore r1 to "0"; it's expected to always be that */
        "clr __zero_reg__    \n\t"
        : "+a" (i)
        : "a"  (j)
        : "r0", "r1"
    );
    return i;
#else
#error "No implementation for mul8 available."
#endif
}


/// saturating 8x8 bit multiplication, with 8 bit result
/// @returns the product of i * j, capping at 0xFF
LIB8STATIC_ALWAYS_INLINE uint8_t qmul8( uint8_t i, uint8_t j)
{
#if QMUL8_C == 1
    int p = ((int)i * (int)(j) );
    if( p > 255) p = 255;
    return p;
#elif QMUL8_AVRASM == 1
    asm volatile(
        /* Multiply 8-bit i * 8-bit j, giving 16-bit r1,r0 */
        "  mul %0, %1          \n\t"
        /* Extract the LOW 8-bits (r0) */
        "  mov %0, r0          \n\t"
        /* If high byte of result is zero, all is well. */
        "  tst r1              \n\t"
        "  breq Lnospill_%=    \n\t"
        /* If high byte of result > 0, saturate to 0xFF */
        "  ldi %0, 0xFF         \n\t"
        "Lnospill_%=:          \n\t"
        /* Restore r1 to "0"; it's expected to always be that */
        "  clr __zero_reg__    \n\t"
        : "+a" (i)
        : "a"  (j)
        : "r0", "r1"
    );
    return i;
#else
#error "No implementation for qmul8 available."
#endif
}


/// take abs() of a signed 8-bit uint8_t
LIB8STATIC_ALWAYS_INLINE int8_t abs8( int8_t i)
{
#if ABS8_C == 1
    if( i < 0) i = -i;
    return i;
#elif ABS8_AVRASM == 1
    asm volatile(
        /* First, check the high bit, and prepare to skip if it's clear */
        "sbrc %0, 7 \n"

        /* Negate the value */
        "neg %0     \n"

        : "+r" (i) : "r" (i)
    );
    return i;
#else
#error "No implementation for abs8 available."
#endif
}

///         square root for 16-bit integers
///         About three times faster and five times smaller
///         than Arduino's general sqrt on AVR.
LIB8STATIC uint8_t sqrt16(uint16_t x)
{
    if( x <= 1) {
        return x;
    }

    uint8_t low = 1; // lower bound
    uint8_t hi, mid;

    if( x > 7904) {
        hi = 255;
    } else {
        hi = (x >> 5) + 8; // initial estimate for upper bound
    }

    do {
        mid = (low + hi) >> 1;
        if ((uint16_t)(mid * mid) > x) {
            hi = mid - 1;
        } else {
            if( mid == 255) {
                return 255;
            }
            low = mid + 1;
        }
    } while (hi >= low);

    return low - 1;
}

/// blend a variable proproportion(0-255) of one byte to another
/// @param a - the starting byte value
/// @param b - the byte value to blend toward
/// @param amountOfB - the proportion (0-255) of b to blend
/// @returns a byte value between a and b, inclusive
#if (FASTLED_BLEND_FIXED == 1)
LIB8STATIC uint8_t blend8( uint8_t a, uint8_t b, uint8_t amountOfB)
{

    // The BLEND_FIXED formula is
    //
    //   result = (  A*(amountOfA) + B*(amountOfB)              )/ 256
    //
    // …where amountOfA = 255-amountOfB.
    //
    // This formula will never return 255, which is why the BLEND_FIXED + SCALE8_FIXED version is
    //
    //   result = (  A*(amountOfA) + A + B*(amountOfB) + B      ) / 256
    //
    // We can rearrange this formula for some great optimisations.
    //
    //   result = (  A*(amountOfA) + A + B*(amountOfB) + B      ) / 256
    //          = (  A*(255-amountOfB) + A + B*(amountOfB) + B  ) / 256
    //          = (  A*(256-amountOfB) + B*(amountOfB) + B      ) / 256
    //          = (  A*256 + B + B*(amountOfB) - A*(amountOfB)  ) / 256  // this is the version used in SCALE8_FIXED AVR below
    //          = (  A*256 + B + (B-A)*(amountOfB)              ) / 256  // this is the version used in SCALE8_FIXED C below

    uint16_t partial;
    uint8_t result;

#if BLEND8_C == 1

#   if (FASTLED_SCALE8_FIXED == 1)
    partial = (a << 8) | b; // A*256 + B

    // on many platforms this compiles to a single multiply of (B-A) * amountOfB
    partial += (b * amountOfB);
    partial -= (a * amountOfB);

#   else
    uint8_t amountOfA = 255 - amountOfB;

    // on the other hand, this compiles to two multiplies, and gives the "wrong" answer :]
    partial = (a * amountOfA);
    partial += (b * amountOfB);
#   endif
    
    result = partial >> 8;
    
    return result;

#elif BLEND8_AVRASM == 1

#   if (FASTLED_SCALE8_FIXED == 1)

    // 1 or 2 cycles depending on how the compiler optimises
    partial = (a << 8) | b;

    // 7 cycles
    asm volatile (
        "  mul %[a], %[amountOfB]        \n\t"
        "  sub %A[partial], r0           \n\t"
        "  sbc %B[partial], r1           \n\t"
        "  mul %[b], %[amountOfB]        \n\t"
        "  add %A[partial], r0           \n\t"
        "  adc %B[partial], r1           \n\t"
        "  clr __zero_reg__              \n\t"
        : [partial] "+r" (partial)
        : [amountOfB] "r" (amountOfB),
          [a] "r" (a),
          [b] "r" (b)
        : "r0", "r1"
    );

#   else

    // non-SCALE8-fixed version

    // 7 cycles
    asm volatile (
        /* partial = b * amountOfB */
        "  mul %[b], %[amountOfB]        \n\t"
        "  movw %A[partial], r0          \n\t"

        /* amountOfB (aka amountOfA) = 255 - amountOfB */
        "  com %[amountOfB]              \n\t"

        /* partial += a * amountOfB (aka amountOfA) */
        "  mul %[a], %[amountOfB]        \n\t"

        "  add %A[partial], r0           \n\t"
        "  adc %B[partial], r1           \n\t"
                  
        "  clr __zero_reg__              \n\t"
                        
        : [partial] "=r" (partial),
          [amountOfB] "+a" (amountOfB)
        : [a] "a" (a),
          [b] "a" (b)
        : "r0", "r1"
    );

#   endif
    
    result = partial >> 8;
    
    return result;
    
#else
#   error "No implementation for blend8 available."
#endif
}

#else
LIB8STATIC uint8_t blend8( uint8_t a, uint8_t b, uint8_t amountOfB)
{
    // This version loses precision in the integer math
    // and can actually return results outside of the range
    // from a to b.  Its use is not recommended.
    uint8_t result;
    uint8_t amountOfA = 255 - amountOfB;
    result = scale8_LEAVING_R1_DIRTY( a, amountOfA)
           + scale8_LEAVING_R1_DIRTY( b, amountOfB);
    cleanup_R1();
    return result;
}
#endif


///@}
#endif