Welcome to mirror list, hosted at ThFree Co, Russian Federation.

clockless_i2s_esp32.h « 32 « esp « platforms « src - github.com/FastLED/FastLED.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6306ccd22fdbcdcc4327ea89075d8dc775255033 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
/*
 * I2S Driver
 *
 * Copyright (c) 2019 Yves Bazin
 * Copyright (c) 2019 Samuel Z. Guyer
 * Derived from lots of code examples from other people.
 *
 * The I2S implementation can drive up to 24 strips in parallel, but
 * with the following limitation: all the strips must have the same
 * timing (i.e., they must all use the same chip).
 *
 * To enable the I2S driver, add the following line *before* including
 * FastLED.h (no other changes are necessary):
 *
 * #define FASTLED_ESP32_I2S true
 *
 * The overall strategy is to use the parallel mode of the I2S "audio"
 * peripheral to send up to 24 bits in parallel to 24 different pins.
 * Unlike the RMT peripheral the I2S system cannot send bits of
 * different lengths. Instead, we set the I2S data clock fairly high
 * and then encode a signal as a series of bits. 
 *
 * For example, with a clock divider of 10 the data clock will be
 * 8MHz, so each bit is 125ns. The WS2812 expects a "1" bit to be
 * encoded as a HIGH signal for around 875ns, followed by LOW for
 * 375ns. Sending the following pattern results in the right shape
 * signal:
 *
 *    1111111000        WS2812 "1" bit encoded as 10 125ns pulses
 *
 * The I2S peripheral expects the bits for all 24 outputs to be packed
 * into a single 32-bit word. The complete signal is a series of these
 * 32-bit values -- one for each bit for each strip. The pixel data,
 * however, is stored "serially" as a series of RGB values separately
 * for each strip. To prepare the data we need to do three things: (1)
 * take 1 pixel from each strip, and (2) tranpose the bits so that
 * they are in the parallel form, (3) translate each data bit into the
 * bit pattern that encodes the signal for that bit. This code is in
 * the fillBuffer() method:
 *
 *   1. Read 1 pixel from each strip into an array; store this data by
 *      color channel (e.g., all the red bytes, then all the green
 *      bytes, then all the blue bytes). For three color channels, the
 *      array is 3 X 24 X 8 bits.
 *
 *   2. Tranpose the array so that it is 3 X 8 X 24 bits. The hardware
 *      wants the data in 32-bit chunks, so the actual form is 3 X 8 X
 *      32, with the low 8 bits unused.
 *
 *   3. Take each group of 24 parallel bits and "expand" them into a
 *      pattern according to the encoding. For example, with a 8MHz
 *      data clock, each data bit turns into 10 I2s pulses, so 24
 *      parallel data bits turn into 10 X 24 pulses.
 *
 * We send data to the I2S peripheral using the DMA interface. We use
 * two DMA buffers, so that we can fill one buffer while the other
 * buffer is being sent. Each DMA buffer holds the fully-expanded
 * pulse pattern for one pixel on up to 24 strips. The exact amount of
 * memory required depends on the number of color channels and the
 * number of pulses used to encode each bit.
 *
 * We get an interrupt each time a buffer is sent; we then fill that
 * buffer while the next one is being sent. The DMA interface allows
 * us to configure the buffers as a circularly linked list, so that it
 * can automatically start on the next buffer.
 */
/*
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#pragma once

#ifndef FASTLED_INTERNAL
#pragma message "NOTE: ESP32 support using I2S parallel driver. All strips must use the same chipset"
#endif

FASTLED_NAMESPACE_BEGIN

#ifdef __cplusplus
extern "C" {
#endif
    
#include "esp_heap_caps.h"
#include "soc/soc.h"
#include "soc/gpio_sig_map.h"
#include "soc/i2s_reg.h"
#include "soc/i2s_struct.h"
#include "soc/io_mux_reg.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#include "rom/lldesc.h"
#include "esp_system.h" // Load ESP_IDF_VERSION_MAJOR if exists
// ESP_IDF_VERSION_MAJOR is defined in ESP-IDF v3.3 or later
#if defined(ESP_IDF_VERSION_MAJOR) && ESP_IDF_VERSION_MAJOR > 3
#include "esp_intr_alloc.h"
#else
#include "esp_intr.h"
#endif
#include "esp_log.h"
    
#ifdef __cplusplus
}
#endif

__attribute__ ((always_inline)) inline static uint32_t __clock_cycles() {
    uint32_t cyc;
    __asm__ __volatile__ ("rsr %0,ccount":"=a" (cyc));
    return cyc;
}

#define FASTLED_HAS_CLOCKLESS 1
#define NUM_COLOR_CHANNELS 3

// -- Choose which I2S device to use
#ifndef I2S_DEVICE
#define I2S_DEVICE 0
#endif

// -- Max number of controllers we can support
#ifndef FASTLED_I2S_MAX_CONTROLLERS
#define FASTLED_I2S_MAX_CONTROLLERS 24
#endif

// -- I2S clock
#define I2S_BASE_CLK (80000000L)
#define I2S_MAX_CLK (20000000L) //more tha a certain speed and the I2s looses some bits
#define I2S_MAX_PULSE_PER_BIT 20 //put it higher to get more accuracy but it could decrease the refresh rate without real improvement
// -- Convert ESP32 cycles back into nanoseconds
#define ESPCLKS_TO_NS(_CLKS) (((long)(_CLKS) * 1000L) / F_CPU_MHZ)

// -- Array of all controllers
static CLEDController * gControllers[FASTLED_I2S_MAX_CONTROLLERS];
static int gNumControllers = 0;
static int gNumStarted = 0;

// -- Global semaphore for the whole show process
//    Semaphore is not given until all data has been sent
static xSemaphoreHandle gTX_sem = NULL;

// -- One-time I2S initialization
static bool gInitialized = false;

// -- Interrupt handler
static intr_handle_t gI2S_intr_handle = NULL;

// -- A pointer to the memory-mapped structure: I2S0 or I2S1
static i2s_dev_t * i2s;

// -- I2S goes to these pins until we remap them using the GPIO matrix
static int i2s_base_pin_index;

// --- I2S DMA buffers
struct DMABuffer {
    lldesc_t descriptor;
    uint8_t * buffer;
};

#define NUM_DMA_BUFFERS 2
static DMABuffer * dmaBuffers[NUM_DMA_BUFFERS];

// -- Bit patterns
//    For now, we require all strips to be the same chipset, so these
//    are global variables.

static int      gPulsesPerBit = 0;
static uint32_t gOneBit[40]  = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
static uint32_t gZeroBit[40] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

// -- Counters to track progress
static int gCurBuffer = 0;
static bool gDoneFilling = false;
static int ones_for_one;
static int ones_for_zero;

// -- Temp buffers for pixels and bits being formatted for DMA
static uint8_t gPixelRow[NUM_COLOR_CHANNELS][32];
static uint8_t gPixelBits[NUM_COLOR_CHANNELS][8][4];
static int CLOCK_DIVIDER_N;
static int CLOCK_DIVIDER_A;
static int CLOCK_DIVIDER_B;

template <int DATA_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 5>
class ClocklessController : public CPixelLEDController<RGB_ORDER>
{
    // -- Store the GPIO pin
    gpio_num_t     mPin;
    
    // -- This instantiation forces a check on the pin choice
    FastPin<DATA_PIN> mFastPin;
    
    // -- Save the pixel controller
    PixelController<RGB_ORDER> * mPixels;
    
    // -- Make sure we can't call show() too quickly
    CMinWait<50>   mWait;

public:
    void init()
    {
        i2sInit();
        
        // -- Allocate space to save the pixel controller
        //    during parallel output
        mPixels = (PixelController<RGB_ORDER> *) malloc(sizeof(PixelController<RGB_ORDER>));
        
        gControllers[gNumControllers] = this;
        int my_index = gNumControllers;
        ++gNumControllers;
        
        // -- Set up the pin We have to do two things: configure the
        //    actual GPIO pin, and route the output from the default
        //    pin (determined by the I2S device) to the pin we
        //    want. We compute the default pin using the index of this
        //    controller in the array. This order is crucial because
        //    the bits must go into the DMA buffer in the same order.
        mPin = gpio_num_t(DATA_PIN);
        
        PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[DATA_PIN], PIN_FUNC_GPIO);
        gpio_set_direction(mPin, (gpio_mode_t)GPIO_MODE_DEF_OUTPUT);
        pinMode(mPin,OUTPUT);
        gpio_matrix_out(mPin, i2s_base_pin_index + my_index, false, false);
    }
    
    virtual uint16_t getMaxRefreshRate() const { return 400; }
    
protected:
   static int pgcd(int smallest,int precision,int a,int b,int c)
    {
        int pgc_=1;
        for( int i=smallest;i>0;--i)
        {
            
            if( a%i<=precision && b%i<=precision && c%i<=precision)
            {
                pgc_=i;
                break;
            }
        }
        return pgc_;
    }
    
    /** Compute pules/bit patterns
     *
     *  This is Yves Bazin's mad code for computing the pulse pattern
     *  and clock timing given the target signal given by T1, T2, and
     *  T3. In general, these parameters are interpreted as follows:
     *
     *  a "1" bit is encoded by setting the pin HIGH to T1+T2 ns, then LOW for T3 ns
     *  a "0" bit is encoded by setting the pin HIGH to T1 ns, then LOW for T2+T3 ns
     *
     */
    static void initBitPatterns()
    {
        // Precompute the bit patterns based on the I2S sample rate
        // Serial.println("Setting up fastled using I2S");

        // -- First, convert back to ns from CPU clocks
        uint32_t T1ns = ESPCLKS_TO_NS(T1);
        uint32_t T2ns = ESPCLKS_TO_NS(T2);
        uint32_t T3ns = ESPCLKS_TO_NS(T3);
        
        // Serial.print("T1 = "); Serial.print(T1); Serial.print(" ns "); Serial.println(T1ns);
        // Serial.print("T2 = "); Serial.print(T2); Serial.print(" ns "); Serial.println(T2ns);
        // Serial.print("T3 = "); Serial.print(T3); Serial.print(" ns "); Serial.println(T3ns);
        
        /*
         We calculate the best pcgd to the timing
         ie
         WS2811 77 77 154 => 1  1 2 => nb pulses= 4
         WS2812 60 150 90 => 2 5 3 => nb pulses=10
         */
        int smallest=0;
        if (T1>T2)
            smallest=T2;
        else
            smallest=T1;
        if(smallest>T3)
            smallest=T3;
        double freq=(double)1/(double)(T1ns + T2ns + T3ns);
        // Serial.printf("chipset frequency:%f Khz\n", 1000000L*freq);
       // Serial.printf("smallest %d\n",smallest);
        int pgc_=1;
        int precision=0;
        pgc_=pgcd(smallest,precision,T1,T2,T3);
        //Serial.printf("%f\n",I2S_MAX_CLK/(1000000000L*freq));
        while(pgc_==1 ||  (T1/pgc_ +T2/pgc_ +T3/pgc_)>I2S_MAX_PULSE_PER_BIT) //while(pgc_==1 ||  (T1/pgc_ +T2/pgc_ +T3/pgc_)>I2S_MAX_CLK/(1000000000L*freq))
        {
            ++precision;
            pgc_=pgcd(smallest,precision,T1,T2,T3);
            //Serial.printf("%d %d\n",pgc_,(a+b+c)/pgc_);
        }
        pgc_=pgcd(smallest,precision,T1,T2,T3);
        // Serial.printf("pgcd %d precision:%d\n",pgc_,precision);
        // Serial.printf("nb pulse per bit:%d\n",T1/pgc_ +T2/pgc_ +T3/pgc_);
        gPulsesPerBit=(int)T1/pgc_ +(int)T2/pgc_ +(int)T3/pgc_;
        /*
         we calculate the duration of one pulse nd htre base frequency of the led
         ie WS2812B F=1/(250+625+375)=800kHz or 1250ns
         as we need 10 pulses each pulse is 125ns => frequency 800Khz*10=8MHz
         WS2811 T=320+320+641=1281ns qnd we need 4 pulses => pulse duration 320.25ns =>frequency 3.1225605Mhz
         
         */

        freq=1000000000L*freq*gPulsesPerBit;
        // Serial.printf("needed frequency (nbpiulse per bit)*(chispset frequency):%f Mhz\n",freq/1000000);
        
        /*
         we do calculate the needed N a and b
         as f=basefred/(N+b/a);
         as a is max 63 the precision for the decimal is 1/63
         
         */
        
         CLOCK_DIVIDER_N=(int)((double)I2S_BASE_CLK/freq);
        double v=I2S_BASE_CLK/freq-CLOCK_DIVIDER_N;

        double prec=(double)1/63;
        int a=1;
        int b=0;
        CLOCK_DIVIDER_A=1;
        CLOCK_DIVIDER_B=0;
        for(a=1;a<64;++a)
        {
            for(b=0;b<a;++b)
            {
                //printf("%d %d %f %f %f\n",b,a,v,(double)v*(double)a,fabsf(v-(double)b/a));
                if(fabsf(v-(double)b/a) <= prec/2)
                    break;
            }
            if(fabsf(v-(double)b/a) ==0)
            {
                CLOCK_DIVIDER_A=a;
                CLOCK_DIVIDER_B=b;
                break;
            }
            if(fabsf(v-(double)b/a) < prec/2)
            {
                if (fabsf(v-(double)b/a) <fabsf(v-(double)CLOCK_DIVIDER_B/CLOCK_DIVIDER_A))
                {
                    CLOCK_DIVIDER_A=a;
                    CLOCK_DIVIDER_B=b;
                }
                
            }
        }
        //top take care of an issue with double 0.9999999999
        if(CLOCK_DIVIDER_A==CLOCK_DIVIDER_B)
        {
            CLOCK_DIVIDER_A=1;
            CLOCK_DIVIDER_B=0;
            ++CLOCK_DIVIDER_N;
        }
        
        //printf("%d %d %f %f %d\n",CLOCK_DIVIDER_B,CLOCK_DIVIDER_A,(double)CLOCK_DIVIDER_B/CLOCK_DIVIDER_A,v,CLOCK_DIVIDER_N);
        //Serial.printf("freq %f %f\n",freq,I2S_BASE_CLK/(CLOCK_DIVIDER_N+(double)CLOCK_DIVIDER_B/CLOCK_DIVIDER_A));
        freq=1/(CLOCK_DIVIDER_N+(double)CLOCK_DIVIDER_B/CLOCK_DIVIDER_A);
        freq=freq*I2S_BASE_CLK;
        // Serial.printf("calculted for i2s frequency:%f Mhz N:%d B:%d A:%d\n",freq/1000000,CLOCK_DIVIDER_N,CLOCK_DIVIDER_B,CLOCK_DIVIDER_A);
        // double pulseduration=1000000000/freq;
        // Serial.printf("Pulse duration: %f ns\n",pulseduration);
        // gPulsesPerBit = (T1ns + T2ns + T3ns)/FASTLED_I2S_NS_PER_PULSE;
        
        //Serial.print("Pulses per bit: "); Serial.println(gPulsesPerBit);
        
        //int ones_for_one  = ((T1ns + T2ns - 1)/FASTLED_I2S_NS_PER_PULSE) + 1;
        ones_for_one  = T1/pgc_ +T2/pgc_;
        //Serial.print("One bit:  target ");
        //Serial.print(T1ns+T2ns); Serial.print("ns --- ");
        //Serial.print(ones_for_one); Serial.print(" 1 bits");
        //Serial.print(" = "); Serial.print(ones_for_one * FASTLED_I2S_NS_PER_PULSE); Serial.println("ns");
        // Serial.printf("one bit : target %d  ns --- %d  pulses 1 bit = %f ns\n",T1ns+T2ns,ones_for_one ,ones_for_one*pulseduration);
        
        
        int i = 0;
        while ( i < ones_for_one ) {
            gOneBit[i] = 0xFFFFFF00;
            ++i;
        }
        while ( i < gPulsesPerBit ) {
            gOneBit[i] = 0x00000000;
            ++i;
        }
        
        //int ones_for_zero = ((T1ns - 1)/FASTLED_I2S_NS_PER_PULSE) + 1;
        ones_for_zero =T1/pgc_  ;
        // Serial.print("Zero bit:  target ");
        // Serial.print(T1ns); Serial.print("ns --- ");
        //Serial.print(ones_for_zero); Serial.print(" 1 bits");
        //Serial.print(" = "); Serial.print(ones_for_zero * FASTLED_I2S_NS_PER_PULSE); Serial.println("ns");
        // Serial.printf("Zero bit : target %d ns --- %d pulses  1 bit =   %f ns\n",T1ns,ones_for_zero ,ones_for_zero*pulseduration);
        i = 0;
        while ( i < ones_for_zero ) {
            gZeroBit[i] = 0xFFFFFF00;
            ++i;
        }
        while ( i < gPulsesPerBit ) {
            gZeroBit[i] = 0x00000000;
            ++i;
        }
        
        memset(gPixelRow, 0, NUM_COLOR_CHANNELS * 32);
        memset(gPixelBits, 0, NUM_COLOR_CHANNELS * 32);
    }
    
    static DMABuffer * allocateDMABuffer(int bytes)
    {
        DMABuffer * b = (DMABuffer *)heap_caps_malloc(sizeof(DMABuffer), MALLOC_CAP_DMA);
        
        b->buffer = (uint8_t *)heap_caps_malloc(bytes, MALLOC_CAP_DMA);
        memset(b->buffer, 0, bytes);
        
        b->descriptor.length = bytes;
        b->descriptor.size = bytes;
        b->descriptor.owner = 1;
        b->descriptor.sosf = 1;
        b->descriptor.buf = b->buffer;
        b->descriptor.offset = 0;
        b->descriptor.empty = 0;
        b->descriptor.eof = 1;
        b->descriptor.qe.stqe_next = 0;
        
        return b;
    }
    
    static void i2sInit()
    {
        // -- Only need to do this once
        if (gInitialized) return;
        
        // -- Construct the bit patterns for ones and zeros
        initBitPatterns();
        
        // -- Choose whether to use I2S device 0 or device 1
        //    Set up the various device-specific parameters
        int interruptSource;
        if (I2S_DEVICE == 0) {
            i2s = &I2S0;
            periph_module_enable(PERIPH_I2S0_MODULE);
            interruptSource = ETS_I2S0_INTR_SOURCE;
            i2s_base_pin_index = I2S0O_DATA_OUT0_IDX;
        } else {
            i2s = &I2S1;
            periph_module_enable(PERIPH_I2S1_MODULE);
            interruptSource = ETS_I2S1_INTR_SOURCE;
            i2s_base_pin_index = I2S1O_DATA_OUT0_IDX;
        }
        
        // -- Reset everything
        i2sReset();
        i2sReset_DMA();
        i2sReset_FIFO();
        
        // -- Main configuration
        i2s->conf.tx_msb_right = 1;
        i2s->conf.tx_mono = 0;
        i2s->conf.tx_short_sync = 0;
        i2s->conf.tx_msb_shift = 0;
        i2s->conf.tx_right_first = 1; // 0;//1;
        i2s->conf.tx_slave_mod = 0;
        
        // -- Set parallel mode
        i2s->conf2.val = 0;
        i2s->conf2.lcd_en = 1;
        i2s->conf2.lcd_tx_wrx2_en = 0; // 0 for 16 or 32 parallel output
        i2s->conf2.lcd_tx_sdx2_en = 0; // HN
        
        // -- Set up the clock rate and sampling
        i2s->sample_rate_conf.val = 0;
        i2s->sample_rate_conf.tx_bits_mod = 32; // Number of parallel bits/pins
        i2s->sample_rate_conf.tx_bck_div_num = 1;
        i2s->clkm_conf.val = 0;
        i2s->clkm_conf.clka_en = 0;
        
        // -- Data clock is computed as Base/(div_num + (div_b/div_a))
        //    Base is 80Mhz, so 80/(10 + 0/1) = 8Mhz
        //    One cycle is 125ns
        i2s->clkm_conf.clkm_div_a = CLOCK_DIVIDER_A;
        i2s->clkm_conf.clkm_div_b = CLOCK_DIVIDER_B;
        i2s->clkm_conf.clkm_div_num = CLOCK_DIVIDER_N;
        
        i2s->fifo_conf.val = 0;
        i2s->fifo_conf.tx_fifo_mod_force_en = 1;
        i2s->fifo_conf.tx_fifo_mod = 3;  // 32-bit single channel data
        i2s->fifo_conf.tx_data_num = 32; // fifo length
        i2s->fifo_conf.dscr_en = 1;      // fifo will use dma
        
        i2s->conf1.val = 0;
        i2s->conf1.tx_stop_en = 0;
        i2s->conf1.tx_pcm_bypass = 1;
        
        i2s->conf_chan.val = 0;
        i2s->conf_chan.tx_chan_mod = 1; // Mono mode, with tx_msb_right = 1, everything goes to right-channel
        
        i2s->timing.val = 0;
        
        // -- Allocate two DMA buffers
        dmaBuffers[0] = allocateDMABuffer(32 * NUM_COLOR_CHANNELS * gPulsesPerBit);
        dmaBuffers[1] = allocateDMABuffer(32 * NUM_COLOR_CHANNELS * gPulsesPerBit);
        
        // -- Arrange them as a circularly linked list
        dmaBuffers[0]->descriptor.qe.stqe_next = &(dmaBuffers[1]->descriptor);
        dmaBuffers[1]->descriptor.qe.stqe_next = &(dmaBuffers[0]->descriptor);
       
        // -- Allocate i2s interrupt
        SET_PERI_REG_BITS(I2S_INT_ENA_REG(I2S_DEVICE), I2S_OUT_EOF_INT_ENA_V, 1, I2S_OUT_EOF_INT_ENA_S);
        esp_intr_alloc(interruptSource, 0, // ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_LEVEL3,
                       &interruptHandler, 0, &gI2S_intr_handle);
        
        // -- Create a semaphore to block execution until all the controllers are done
        if (gTX_sem == NULL) {
            gTX_sem = xSemaphoreCreateBinary();
            xSemaphoreGive(gTX_sem);
        }
        
        // Serial.println("Init I2S");
        gInitialized = true;
    }
    
    /** Clear DMA buffer
     *
     *  Yves' clever trick: initialize the bits that we know must be 0
     *  or 1 regardless of what bit they encode.
     */
    static void empty( uint32_t *buf)
    {
        for(int i=0;i<8*NUM_COLOR_CHANNELS;++i)
        {
            int offset=gPulsesPerBit*i;
            for(int j=0;j<ones_for_zero;++j)
                buf[offset+j]=0xffffffff;
            
            for(int j=ones_for_one;j<gPulsesPerBit;++j)
                buf[offset+j]=0;
        }
    }
    
    // -- Show pixels
    //    This is the main entry point for the controller.
    virtual void showPixels(PixelController<RGB_ORDER> & pixels)
    {
        if (gNumStarted == 0) {
            // -- First controller: make sure everything is set up
            xSemaphoreTake(gTX_sem, portMAX_DELAY);
        }
        
        // -- Initialize the local state, save a pointer to the pixel
        //    data. We need to make a copy because pixels is a local
        //    variable in the calling function, and this data structure
        //    needs to outlive this call to showPixels.
        (*mPixels) = pixels;
        
        // -- Keep track of the number of strips we've seen
        ++gNumStarted;

        // Serial.print("Show pixels ");
        // Serial.println(gNumStarted);
        
        // -- The last call to showPixels is the one responsible for doing
        //    all of the actual work
        if (gNumStarted == gNumControllers) {
            empty((uint32_t*)dmaBuffers[0]->buffer);
            empty((uint32_t*)dmaBuffers[1]->buffer);
            gCurBuffer = 0;
            gDoneFilling = false;
            
            // -- Prefill both buffers
            fillBuffer();
            fillBuffer();
            
            // -- Make sure it's been at least 50ms since last show
            mWait.wait();

            i2sStart();
            
            // -- Wait here while the rest of the data is sent. The interrupt handler
            //    will keep refilling the DMA buffers until it is all sent; then it
            //    gives the semaphore back.
            xSemaphoreTake(gTX_sem, portMAX_DELAY);
            xSemaphoreGive(gTX_sem);
            
            i2sStop();
            
            mWait.mark();

            // -- Reset the counters
            gNumStarted = 0;
        }
    }
    
    // -- Custom interrupt handler
    static IRAM_ATTR void interruptHandler(void *arg)
    {
        if (i2s->int_st.out_eof) {
            i2s->int_clr.val = i2s->int_raw.val;
            
            if ( ! gDoneFilling) {
                fillBuffer();
            } else {
                portBASE_TYPE HPTaskAwoken = 0;
                xSemaphoreGiveFromISR(gTX_sem, &HPTaskAwoken);
                if(HPTaskAwoken == pdTRUE) portYIELD_FROM_ISR();
            }
        }
    }
    
    /** Fill DMA buffer
     *
     *  This is where the real work happens: take a row of pixels (one
     *  from each strip), transpose and encode the bits, and store
     *  them in the DMA buffer for the I2S peripheral to read.
     */
    static void fillBuffer()
    {
        // -- Alternate between buffers
        volatile uint32_t * buf = (uint32_t *) dmaBuffers[gCurBuffer]->buffer;
        gCurBuffer = (gCurBuffer + 1) % NUM_DMA_BUFFERS;
        
        // -- Get the requested pixel from each controller. Store the
        //    data for each color channel in a separate array.
        uint32_t has_data_mask = 0;
        for (int i = 0; i < gNumControllers; ++i) {
            // -- Store the pixels in reverse controller order starting at index 23
            //    This causes the bits to come out in the right position after we
            //    transpose them.
            int bit_index = 23-i;
            ClocklessController * pController = static_cast<ClocklessController*>(gControllers[i]);
            if (pController->mPixels->has(1)) {
                gPixelRow[0][bit_index] = pController->mPixels->loadAndScale0();
                gPixelRow[1][bit_index] = pController->mPixels->loadAndScale1();
                gPixelRow[2][bit_index] = pController->mPixels->loadAndScale2();
                pController->mPixels->advanceData();
                pController->mPixels->stepDithering();
                
                // -- Record that this controller still has data to send
                has_data_mask |= (1 << (i+8));
            }
        }
        
        // -- None of the strips has data? We are done.
        if (has_data_mask == 0) {
            gDoneFilling = true;
            return;
        }
        
        // -- Transpose and encode the pixel data for the DMA buffer
        // int buf_index = 0;
        for (int channel = 0; channel < NUM_COLOR_CHANNELS; ++channel) {
            
            // -- Tranpose each array: all the bit 7's, then all the bit 6's, ...
            transpose32(gPixelRow[channel], gPixelBits[channel][0] );
            
            //Serial.print("Channel: "); Serial.print(channel); Serial.print(" ");
            for (int bitnum = 0; bitnum < 8; ++bitnum) {
                uint8_t * row = (uint8_t *) (gPixelBits[channel][bitnum]);
                uint32_t bit = (row[0] << 24) | (row[1] << 16) | (row[2] << 8) | row[3];
                
               /* SZG: More general, but too slow:
                    for (int pulse_num = 0; pulse_num < gPulsesPerBit; ++pulse_num) {
                        buf[buf_index++] = has_data_mask & ( (bit & gOneBit[pulse_num]) | (~bit & gZeroBit[pulse_num]) );
                     }
               */

                // -- Only fill in the pulses that are different between the "0" and "1" encodings
                for(int pulse_num = ones_for_zero; pulse_num < ones_for_one; ++pulse_num) {
                    buf[bitnum*gPulsesPerBit+channel*8*gPulsesPerBit+pulse_num] = has_data_mask & bit;
                }
            }
        }
    }
    
    static void transpose32(uint8_t * pixels, uint8_t * bits)
    {
        transpose8rS32(& pixels[0],  1, 4, & bits[0]);
        transpose8rS32(& pixels[8],  1, 4, & bits[1]);
        transpose8rS32(& pixels[16], 1, 4, & bits[2]);
        //transpose8rS32(& pixels[24], 1, 4, & bits[3]);  Can only use 24 bits
    }
    
    /** Transpose 8x8 bit matrix
     *  From Hacker's Delight
     */
    static void transpose8rS32(uint8_t * A, int m, int n, uint8_t * B)
    {
        uint32_t x, y, t;
        
        // Load the array and pack it into x and y.
        
        x = (A[0]<<24)   | (A[m]<<16)   | (A[2*m]<<8) | A[3*m];
        y = (A[4*m]<<24) | (A[5*m]<<16) | (A[6*m]<<8) | A[7*m];
        
        t = (x ^ (x >> 7)) & 0x00AA00AA;  x = x ^ t ^ (t << 7);
        t = (y ^ (y >> 7)) & 0x00AA00AA;  y = y ^ t ^ (t << 7);
        
        t = (x ^ (x >>14)) & 0x0000CCCC;  x = x ^ t ^ (t <<14);
        t = (y ^ (y >>14)) & 0x0000CCCC;  y = y ^ t ^ (t <<14);
        
        t = (x & 0xF0F0F0F0) | ((y >> 4) & 0x0F0F0F0F);
        y = ((x << 4) & 0xF0F0F0F0) | (y & 0x0F0F0F0F);
        x = t;
        
        B[0]=x>>24;    B[n]=x>>16;    B[2*n]=x>>8;  B[3*n]=x;
        B[4*n]=y>>24;  B[5*n]=y>>16;  B[6*n]=y>>8;  B[7*n]=y;
    }
    
    /** Start I2S transmission
     */
    static void i2sStart()
    {
        // esp_intr_disable(gI2S_intr_handle);
        // Serial.println("I2S start");
        i2sReset();
        //Serial.println(dmaBuffers[0]->sampleCount());
        i2s->lc_conf.val=I2S_OUT_DATA_BURST_EN | I2S_OUTDSCR_BURST_EN | I2S_OUT_DATA_BURST_EN;
        i2s->out_link.addr = (uint32_t) & (dmaBuffers[0]->descriptor);
        i2s->out_link.start = 1;
        ////vTaskDelay(5);
        i2s->int_clr.val = i2s->int_raw.val;
        // //vTaskDelay(5);
        i2s->int_ena.out_dscr_err = 1;
        //enable interrupt
        ////vTaskDelay(5);
        esp_intr_enable(gI2S_intr_handle);
        // //vTaskDelay(5);
        i2s->int_ena.val = 0;
        i2s->int_ena.out_eof = 1;
        
        //start transmission
        i2s->conf.tx_start = 1;
    }
    
    static void i2sReset()
    {
        // Serial.println("I2S reset");
        const unsigned long lc_conf_reset_flags = I2S_IN_RST_M | I2S_OUT_RST_M | I2S_AHBM_RST_M | I2S_AHBM_FIFO_RST_M;
        i2s->lc_conf.val |= lc_conf_reset_flags;
        i2s->lc_conf.val &= ~lc_conf_reset_flags;
        
        const uint32_t conf_reset_flags = I2S_RX_RESET_M | I2S_RX_FIFO_RESET_M | I2S_TX_RESET_M | I2S_TX_FIFO_RESET_M;
        i2s->conf.val |= conf_reset_flags;
        i2s->conf.val &= ~conf_reset_flags;
    }
    
    static void i2sReset_DMA()
    {
        i2s->lc_conf.in_rst=1; i2s->lc_conf.in_rst=0;
        i2s->lc_conf.out_rst=1; i2s->lc_conf.out_rst=0;
    }
    
    static void i2sReset_FIFO()
    {
        i2s->conf.rx_fifo_reset=1; i2s->conf.rx_fifo_reset=0;
        i2s->conf.tx_fifo_reset=1; i2s->conf.tx_fifo_reset=0;
    }
    
    static void i2sStop()
    {
        // Serial.println("I2S stop");
        esp_intr_disable(gI2S_intr_handle);
        i2sReset();
        i2s->conf.rx_start = 0;
        i2s->conf.tx_start = 0;
    }
};

FASTLED_NAMESPACE_END