Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/FastMathFunctions/arm_sin_f32.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/FastMathFunctions/arm_sin_f32.c91
1 files changed, 45 insertions, 46 deletions
diff --git a/Drivers/CMSIS/DSP/Source/FastMathFunctions/arm_sin_f32.c b/Drivers/CMSIS/DSP/Source/FastMathFunctions/arm_sin_f32.c
index ce8b9b9bb..97c69029c 100644
--- a/Drivers/CMSIS/DSP/Source/FastMathFunctions/arm_sin_f32.c
+++ b/Drivers/CMSIS/DSP/Source/FastMathFunctions/arm_sin_f32.c
@@ -3,13 +3,13 @@
* Title: arm_sin_f32.c
* Description: Fast sine calculation for floating-point values
*
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
@@ -28,70 +28,64 @@
#include "arm_math.h"
#include "arm_common_tables.h"
-#include <math.h>
/**
- * @ingroup groupFastMath
+ @ingroup groupFastMath
*/
/**
- * @defgroup sin Sine
- *
- * Computes the trigonometric sine function using a combination of table lookup
- * and linear interpolation. There are separate functions for
- * Q15, Q31, and floating-point data types.
- * The input to the floating-point version is in radians and in the range [0 2*pi) while the
- * fixed-point Q15 and Q31 have a scaled input with the range
- * [0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a
- * value of 2*pi wraps around to 0.
- *
- * The implementation is based on table lookup using 256 values together with linear interpolation.
- * The steps used are:
- * -# Calculation of the nearest integer table index
- * -# Compute the fractional portion (fract) of the table index.
- * -# The final result equals <code>(1.0f-fract)*a + fract*b;</code>
- *
- * where
- * <pre>
- * b=Table[index+0];
- * c=Table[index+1];
- * </pre>
+ @defgroup sin Sine
+
+ Computes the trigonometric sine function using a combination of table lookup
+ and linear interpolation. There are separate functions for
+ Q15, Q31, and floating-point data types.
+ The input to the floating-point version is in radians while the
+ fixed-point Q15 and Q31 have a scaled input with the range
+ [0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a
+ value of 2*pi wraps around to 0.
+
+ The implementation is based on table lookup using 256 values together with linear interpolation.
+ The steps used are:
+ -# Calculation of the nearest integer table index
+ -# Compute the fractional portion (fract) of the table index.
+ -# The final result equals <code>(1.0f-fract)*a + fract*b;</code>
+
+ where
+ <pre>
+ b = Table[index];
+ c = Table[index+1];
+ </pre>
*/
/**
- * @addtogroup sin
- * @{
+ @addtogroup sin
+ @{
*/
/**
- * @brief Fast approximation to the trigonometric sine function for floating-point data.
- * @param[in] x input value in radians.
- * @return sin(x).
+ @brief Fast approximation to the trigonometric sine function for floating-point data.
+ @param[in] x input value in radians.
+ @return sin(x)
*/
float32_t arm_sin_f32(
float32_t x)
{
- float32_t sinVal, fract, in; /* Temporary variables for input, output */
- uint16_t index; /* Index variable */
- float32_t a, b; /* Two nearest output values */
+ float32_t sinVal, fract, in; /* Temporary input, output variables */
+ uint16_t index; /* Index variable */
+ float32_t a, b; /* Two nearest output values */
int32_t n;
float32_t findex;
- /* Special case for small negative inputs */
- if ((x < 0.0f) && (x >= -1.9e-7f)) {
- return x;
- }
-
/* input x is in radians */
- /* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
+ /* Scale input to [0 1] range from [0 2*PI] , divide input by 2*pi */
in = x * 0.159154943092f;
/* Calculation of floor value of input */
n = (int32_t) in;
/* Make negative values towards -infinity */
- if (x < 0.0f)
+ if (in < 0.0f)
{
n--;
}
@@ -100,9 +94,14 @@ float32_t arm_sin_f32(
in = in - (float32_t) n;
/* Calculation of index of the table */
- findex = (float32_t) FAST_MATH_TABLE_SIZE * in;
+ findex = (float32_t)FAST_MATH_TABLE_SIZE * in;
+ index = (uint16_t)findex;
- index = ((uint16_t)findex) & 0x1ff;
+ /* when "in" is exactly 1, we need to rotate the index down to 0 */
+ if (index >= FAST_MATH_TABLE_SIZE) {
+ index = 0;
+ findex -= (float32_t)FAST_MATH_TABLE_SIZE;
+ }
/* fractional value calculation */
fract = findex - (float32_t) index;
@@ -112,12 +111,12 @@ float32_t arm_sin_f32(
b = sinTable_f32[index+1];
/* Linear interpolation process */
- sinVal = (1.0f-fract)*a + fract*b;
+ sinVal = (1.0f - fract) * a + fract * b;
- /* Return the output value */
+ /* Return output value */
return (sinVal);
}
/**
- * @} end of sin group
+ @} end of sin group
*/