Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c174
1 files changed, 89 insertions, 85 deletions
diff --git a/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c b/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c
index 00dbae1f7..586296b32 100644
--- a/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c
+++ b/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c
@@ -3,13 +3,13 @@
* Title: arm_biquad_cascade_df1_fast_q31.c
* Description: Processing function for the Q31 Fast Biquad cascade DirectFormI(DF1) filter
*
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
@@ -29,55 +29,52 @@
#include "arm_math.h"
/**
- * @ingroup groupFilters
+ @ingroup groupFilters
*/
/**
- * @addtogroup BiquadCascadeDF1
- * @{
+ @addtogroup BiquadCascadeDF1
+ @{
*/
/**
- * @details
- *
- * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * This function is optimized for speed at the expense of fixed-point precision and overflow protection.
- * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
- * These intermediate results are added to a 2.30 accumulator.
- * Finally, the accumulator is saturated and converted to a 1.31 result.
- * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
- * In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). Use the intialization function
- * arm_biquad_cascade_df1_init_q31() to initialize filter structure.
- *
- * \par
- * Refer to the function <code>arm_biquad_cascade_df1_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. Both the slow and the fast versions use the same instance structure.
- * Use the function <code>arm_biquad_cascade_df1_init_q31()</code> to initialize the filter structure.
+ @brief Processing function for the Q31 Biquad cascade filter (fast variant).
+ @param[in] S points to an instance of the Q31 Biquad cascade structure
+ @param[in] pSrc points to the block of input data
+ @param[out] pDst points to the block of output data
+ @param[in] blockSize number of samples to process per call
+ @return none
+
+ @par Scaling and Overflow Behavior
+ This function is optimized for speed at the expense of fixed-point precision and overflow protection.
+ The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
+ These intermediate results are added to a 2.30 accumulator.
+ Finally, the accumulator is saturated and converted to a 1.31 result.
+ The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
+ In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). Use the intialization function
+ arm_biquad_cascade_df1_init_q31() to initialize filter structure.
+ @remark
+ Refer to \ref arm_biquad_cascade_df1_q31() for a slower implementation of this function
+ which uses 64-bit accumulation to provide higher precision. Both the slow and the fast versions use the same instance structure.
+ Use the function \ref arm_biquad_cascade_df1_init_q31() to initialize the filter structure.
*/
void arm_biquad_cascade_df1_fast_q31(
const arm_biquad_casd_df1_inst_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize)
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
{
- q31_t acc = 0; /* accumulator */
- q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
- q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
- q31_t *pIn = pSrc; /* input pointer initialization */
- q31_t *pOut = pDst; /* output pointer initialization */
- q31_t *pState = S->pState; /* pState pointer initialization */
- q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
- q31_t Xn; /* temporary input */
- int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
- uint32_t sample, stage = S->numStages; /* loop counters */
-
+ const q31_t *pIn = pSrc; /* Source pointer */
+ q31_t *pOut = pDst; /* Destination pointer */
+ q31_t *pState = S->pState; /* pState pointer */
+ const q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t acc = 0; /* Accumulator */
+ q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ q31_t Xn1, Xn2, Yn1, Yn2; /* Filter pState variables */
+ q31_t Xn; /* Temporary input */
+ int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
+ uint32_t sample, stage = S->numStages; /* Loop counters */
do
{
@@ -88,22 +85,23 @@ void arm_biquad_cascade_df1_fast_q31(
a1 = *pCoeffs++;
a2 = *pCoeffs++;
- /* Reading the state values */
+ /* Reading the pState values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
+#if defined (ARM_MATH_LOOPUNROLL)
+
/* Apply loop unrolling and compute 4 output values simultaneously. */
- /* The variables acc ... acc3 hold output values that are being computed:
+ /* Variables acc ... acc3 hold output values that are being computed:
*
- * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
+ /* Loop unrolling: Compute 4 outputs at a time */
sample = blockSize >> 2U;
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
while (sample > 0U)
{
/* Read the input */
@@ -111,19 +109,19 @@ void arm_biquad_cascade_df1_fast_q31(
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
- /*acc = (q31_t) (((q63_t) b1 * Xn1) >> 32);*/
+ /* acc = (q31_t) (((q63_t) b1 * Xn1) >> 32);*/
mult_32x32_keep32_R(acc, b1, Xn1);
/* acc += b1 * x[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b0 * (Xn))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b0 * (Xn))) >> 32);*/
multAcc_32x32_keep32_R(acc, b0, Xn);
/* acc += b[2] * x[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, b2, Xn2);
/* acc += a1 * y[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, a1, Yn1);
/* acc += a2 * y[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, a2, Yn2);
/* The result is converted to 1.31 , Yn2 variable is reused */
@@ -137,19 +135,19 @@ void arm_biquad_cascade_df1_fast_q31(
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
- /*acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32);*/
+ /* acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32);*/
mult_32x32_keep32_R(acc, b0, Xn2);
/* acc += b1 * x[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32);*/
multAcc_32x32_keep32_R(acc, b1, Xn);
/* acc += b[2] * x[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, b2, Xn1);
/* acc += a1 * y[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, a1, Yn2);
/* acc += a2 * y[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, a2, Yn1);
/* The result is converted to 1.31, Yn1 variable is reused */
@@ -163,19 +161,19 @@ void arm_biquad_cascade_df1_fast_q31(
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
- /*acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32);*/
+ /* acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32);*/
mult_32x32_keep32_R(acc, b0, Xn1);
/* acc += b1 * x[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, b1, Xn2);
/* acc += b[2] * x[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32);*/
multAcc_32x32_keep32_R(acc, b2, Xn);
/* acc += a1 * y[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, a1, Yn1);
/* acc += a2 * y[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, a2, Yn2);
/* The result is converted to 1.31, Yn2 variable is reused */
@@ -190,7 +188,7 @@ void arm_biquad_cascade_df1_fast_q31(
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
- /*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
+ /* acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
mult_32x32_keep32_R(acc, b0, Xn);
/* acc += b1 * x[n-1] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
@@ -207,47 +205,53 @@ void arm_biquad_cascade_df1_fast_q31(
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
- /* Xn2 = Xn1 */
+ /* Xn2 = Xn1 */
Xn2 = Xn1;
/* The result is converted to 1.31, Yn1 variable is reused */
Yn1 = acc << shift;
- /* Xn1 = Xn */
+ /* Xn1 = Xn */
Xn1 = Xn;
/* Store the output in the destination buffer. */
*(pOut + 3U) = Yn1;
pOut += 4U;
- /* decrement the loop counter */
+ /* decrement loop counter */
sample--;
}
- /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
+ /* Loop unrolling: Compute remaining outputs */
sample = (blockSize & 0x3U);
- while (sample > 0U)
- {
+#else
+
+ /* Initialize blkCnt with number of samples */
+ sample = blockSize;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (sample > 0U)
+ {
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
- /*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
+ /* acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
mult_32x32_keep32_R(acc, b0, Xn);
/* acc += b1 * x[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, b1, Xn1);
/* acc += b[2] * x[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, b2, Xn2);
/* acc += a1 * y[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, a1, Yn1);
/* acc += a2 * y[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
+ /* acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, a2, Yn2);
/* The result is converted to 1.31 */
@@ -255,10 +259,10 @@ void arm_biquad_cascade_df1_fast_q31(
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
@@ -267,18 +271,18 @@ void arm_biquad_cascade_df1_fast_q31(
/* Store the output in the destination buffer. */
*pOut++ = acc;
- /* decrement the loop counter */
+ /* decrement loop counter */
sample--;
- }
+ }
- /* The first stage goes from the input buffer to the output buffer. */
- /* Subsequent stages occur in-place in the output buffer */
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent stages occur in-place in the output buffer */
pIn = pDst;
/* Reset to destination pointer */
pOut = pDst;
- /* Store the updated state variables back into the pState array */
+ /* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
@@ -288,5 +292,5 @@ void arm_biquad_cascade_df1_fast_q31(
}
/**
- * @} end of BiquadCascadeDF1 group
- */
+ @} end of BiquadCascadeDF1 group
+ */