Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c207
1 files changed, 86 insertions, 121 deletions
diff --git a/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c b/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c
index 382b74444..9e23897d6 100644
--- a/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c
+++ b/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c
@@ -3,13 +3,13 @@
* Title: arm_biquad_cascade_df1_q15.c
* Description: Processing function for the Q15 Biquad cascade DirectFormI(DF1) filter
*
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
@@ -29,79 +29,74 @@
#include "arm_math.h"
/**
- * @ingroup groupFilters
+ @ingroup groupFilters
*/
/**
- * @addtogroup BiquadCascadeDF1
- * @{
+ @addtogroup BiquadCascadeDF1
+ @{
*/
/**
- * @brief Processing function for the Q15 Biquad cascade filter.
- * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the location where the output result is written.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
- *
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using a 64-bit internal accumulator.
- * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
- * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
- * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
- * The accumulator is then shifted by <code>postShift</code> bits to truncate the result to 1.15 format by discarding the low 16 bits.
- * Finally, the result is saturated to 1.15 format.
- *
- * \par
- * Refer to the function <code>arm_biquad_cascade_df1_fast_q15()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
+ @brief Processing function for the Q15 Biquad cascade filter.
+ @param[in] S points to an instance of the Q15 Biquad cascade structure
+ @param[in] pSrc points to the block of input data
+ @param[out] pDst points to the location where the output result is written
+ @param[in] blockSize number of samples to process
+ @return none
+
+ @par Scaling and Overflow Behavior
+ The function is implemented using a 64-bit internal accumulator.
+ Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ The accumulator is then shifted by <code>postShift</code> bits to truncate the result to 1.15 format by discarding the low 16 bits.
+ Finally, the result is saturated to 1.15 format.
+ @remark
+ Refer to \ref arm_biquad_cascade_df1_fast_q15() for a faster but less precise implementation of this filter.
*/
void arm_biquad_cascade_df1_q15(
const arm_biquad_casd_df1_inst_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize)
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
{
#if defined (ARM_MATH_DSP)
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- q15_t *pIn = pSrc; /* Source pointer */
- q15_t *pOut = pDst; /* Destination pointer */
- q31_t in; /* Temporary variable to hold input value */
- q31_t out; /* Temporary variable to hold output value */
- q31_t b0; /* Temporary variable to hold bo value */
- q31_t b1, a1; /* Filter coefficients */
- q31_t state_in, state_out; /* Filter state variables */
- q31_t acc_l, acc_h;
- q63_t acc; /* Accumulator */
- int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */
- q15_t *pState = S->pState; /* State pointer */
- q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
- int32_t uShift = (32 - lShift);
+ const q15_t *pIn = pSrc; /* Source pointer */
+ q15_t *pOut = pDst; /* Destination pointer */
+ q31_t in; /* Temporary variable to hold input value */
+ q31_t out; /* Temporary variable to hold output value */
+ q31_t b0; /* Temporary variable to hold bo value */
+ q31_t b1, a1; /* Filter coefficients */
+ q31_t state_in, state_out; /* Filter state variables */
+ q31_t acc_l, acc_h;
+ q63_t acc; /* Accumulator */
+ q15_t *pState = S->pState; /* State pointer */
+ const q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */
+ uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
+ int32_t uShift = (32 - lShift);
do
{
/* Read the b0 and 0 coefficients using SIMD */
- b0 = *__SIMD32(pCoeffs)++;
+ b0 = read_q15x2_ia ((q15_t **) &pCoeffs);
/* Read the b1 and b2 coefficients using SIMD */
- b1 = *__SIMD32(pCoeffs)++;
+ b1 = read_q15x2_ia ((q15_t **) &pCoeffs);
/* Read the a1 and a2 coefficients using SIMD */
- a1 = *__SIMD32(pCoeffs)++;
+ a1 = read_q15x2_ia ((q15_t **) &pCoeffs);
/* Read the input state values from the state buffer: x[n-1], x[n-2] */
- state_in = *__SIMD32(pState)++;
+ state_in = read_q15x2_ia (&pState);
/* Read the output state values from the state buffer: y[n-1], y[n-2] */
- state_out = *__SIMD32(pState)--;
+ state_out = read_q15x2_da (&pState);
/* Apply loop unrolling and compute 2 output values simultaneously. */
/* The variable acc hold output values that are being computed:
@@ -117,7 +112,7 @@ void arm_biquad_cascade_df1_q15(
{
/* Read the input */
- in = *__SIMD32(pIn)++;
+ in = read_q15x2_ia ((q15_t **) &pIn);
/* out = b0 * x[n] + 0 * 0 */
out = __SMUAD(b0, in);
@@ -141,23 +136,19 @@ void arm_biquad_cascade_df1_q15(
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef ARM_MATH_BIG_ENDIAN
-
- state_in = __PKHBT(in, state_in, 16);
+ state_in = __PKHBT(in, state_in, 16);
state_out = __PKHBT(out, state_out, 16);
-
#else
-
- state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
+ state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
state_out = __PKHBT(state_out >> 16, (out), 16);
-
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* out = b0 * x[n] + 0 * 0 */
@@ -180,41 +171,30 @@ void arm_biquad_cascade_df1_q15(
out = __SSAT(out, 16);
/* Store the output in the destination buffer. */
-
#ifndef ARM_MATH_BIG_ENDIAN
-
- *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
-
+ write_q15x2_ia (&pOut, __PKHBT(state_out, out, 16));
#else
-
- *__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
-
+ write_q15x2_ia (&pOut, __PKHBT(out, state_out >> 16, 16));
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef ARM_MATH_BIG_ENDIAN
-
- state_in = __PKHBT(in >> 16, state_in, 16);
+ state_in = __PKHBT(in >> 16, state_in, 16);
state_out = __PKHBT(out, state_out, 16);
-
#else
-
- state_in = __PKHBT(state_in >> 16, in, 16);
+ state_in = __PKHBT(state_in >> 16, in, 16);
state_out = __PKHBT(state_out >> 16, out, 16);
-
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Decrement the loop counter */
+ /* Decrement loop counter */
sample--;
-
}
/* If the blockSize is not a multiple of 2, compute any remaining output samples here.
@@ -226,15 +206,10 @@ void arm_biquad_cascade_df1_q15(
in = *pIn++;
/* out = b0 * x[n] + 0 * 0 */
-
#ifndef ARM_MATH_BIG_ENDIAN
-
out = __SMUAD(b0, in);
-
#else
-
out = __SMUADX(b0, in);
-
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* acc = b1 * x[n-1] + b2 * x[n-2] + out */
@@ -259,58 +234,49 @@ void arm_biquad_cascade_df1_q15(
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
-
#ifndef ARM_MATH_BIG_ENDIAN
-
state_in = __PKHBT(in, state_in, 16);
state_out = __PKHBT(out, state_out, 16);
-
#else
-
state_in = __PKHBT(state_in >> 16, in, 16);
state_out = __PKHBT(state_out >> 16, out, 16);
-
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
}
- /* The first stage goes from the input wire to the output wire. */
- /* Subsequent numStages occur in-place in the output wire */
+ /* The first stage goes from the input wire to the output wire. */
+ /* Subsequent numStages occur in-place in the output wire */
pIn = pDst;
/* Reset the output pointer */
pOut = pDst;
- /* Store the updated state variables back into the state array */
- *__SIMD32(pState)++ = state_in;
- *__SIMD32(pState)++ = state_out;
-
+ /* Store the updated state variables back into the state array */
+ write_q15x2_ia (&pState, state_in);
+ write_q15x2_ia (&pState, state_out);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
stage--;
} while (stage > 0U);
#else
- /* Run the below code for Cortex-M0 */
-
- q15_t *pIn = pSrc; /* Source pointer */
- q15_t *pOut = pDst; /* Destination pointer */
- q15_t b0, b1, b2, a1, a2; /* Filter coefficients */
- q15_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
- q15_t Xn; /* temporary input */
- q63_t acc; /* Accumulator */
- int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */
- q15_t *pState = S->pState; /* State pointer */
- q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
+ const q15_t *pIn = pSrc; /* Source pointer */
+ q15_t *pOut = pDst; /* Destination pointer */
+ q15_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ q15_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
+ q15_t Xn; /* temporary input */
+ q63_t acc; /* Accumulator */
+ int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */
+ q15_t *pState = S->pState; /* State pointer */
+ const q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
do
{
@@ -328,7 +294,7 @@ void arm_biquad_cascade_df1_q15(
Yn1 = pState[2];
Yn2 = pState[3];
- /* The variables acc holds the output value that is computed:
+ /* The variables acc holds the output value that is computed:
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
@@ -357,10 +323,10 @@ void arm_biquad_cascade_df1_q15(
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
@@ -392,7 +358,6 @@ void arm_biquad_cascade_df1_q15(
}
-
/**
- * @} end of BiquadCascadeDF1 group
+ @} end of BiquadCascadeDF1 group
*/