Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c921
1 files changed, 93 insertions, 828 deletions
diff --git a/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c b/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c
index 9625ae501..3102a05cd 100644
--- a/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c
+++ b/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c
@@ -3,13 +3,13 @@
* Title: arm_conv_fast_q15.c
* Description: Fast Q15 Convolution
*
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
@@ -29,56 +29,54 @@
#include "arm_math.h"
/**
- * @ingroup groupFilters
+ @ingroup groupFilters
*/
/**
- * @addtogroup Conv
- * @{
+ @addtogroup Conv
+ @{
*/
/**
- * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * This fast version uses a 32-bit accumulator with 2.30 format.
- * The accumulator maintains full precision of the intermediate multiplication results
- * but provides only a single guard bit. There is no saturation on intermediate additions.
- * Thus, if the accumulator overflows it wraps around and distorts the result.
- * The input signals should be scaled down to avoid intermediate overflows.
- * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
- * as maximum of min(srcALen, srcBLen) number of additions are carried internally.
- * The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result.
- *
- * \par
- * See <code>arm_conv_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.
+ @brief Convolution of Q15 sequences (fast version).
+ @param[in] pSrcA points to the first input sequence
+ @param[in] srcALen length of the first input sequence
+ @param[in] pSrcB points to the second input sequence
+ @param[in] srcBLen length of the second input sequence
+ @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1
+ @return none
+
+ @par Scaling and Overflow Behavior
+ This fast version uses a 32-bit accumulator with 2.30 format.
+ The accumulator maintains full precision of the intermediate multiplication results
+ but provides only a single guard bit. There is no saturation on intermediate additions.
+ Thus, if the accumulator overflows it wraps around and distorts the result.
+ The input signals should be scaled down to avoid intermediate overflows.
+ Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
+ as maximum of min(srcALen, srcBLen) number of additions are carried internally.
+ The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result.
+
+ @remark
+ Refer to \ref arm_conv_q15() for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.
*/
void arm_conv_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst)
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst)
{
-#ifndef UNALIGNED_SUPPORT_DISABLE
- q15_t *pIn1; /* inputA pointer */
- q15_t *pIn2; /* inputB pointer */
- q15_t *pOut = pDst; /* output pointer */
- q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
- q15_t *px; /* Intermediate inputA pointer */
- q15_t *py; /* Intermediate inputB pointer */
- q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
- q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */
+ const q15_t *pIn1; /* InputA pointer */
+ const q15_t *pIn2; /* InputB pointer */
+ q15_t *pOut = pDst; /* Output pointer */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
+ const q15_t *px; /* Intermediate inputA pointer */
+ const q15_t *py; /* Intermediate inputB pointer */
+ const q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t blockSize1, blockSize2, blockSize3; /* Loop counters */
+ uint32_t j, k, count, blkCnt; /* Loop counters */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
@@ -175,10 +173,10 @@ void arm_conv_fast_q15(
py = pIn2 + count;
px = pIn1;
- /* Increment the MAC count */
+ /* Increment MAC count */
count++;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blockSize1--;
}
@@ -202,11 +200,11 @@ void arm_conv_fast_q15(
{
/* Perform the multiply-accumulates */
/* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
- sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ sum = __SMLADX(read_q15x2_ia ((q15_t **) &px), read_q15x2_da ((q15_t **) &py), sum);
/* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
- sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ sum = __SMLADX(read_q15x2_ia ((q15_t **) &px), read_q15x2_da ((q15_t **) &py), sum);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -234,10 +232,10 @@ void arm_conv_fast_q15(
py = pIn2 + (count - 1U);
px = pIn1;
- /* Increment the MAC count */
+ /* Increment MAC count */
count++;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blockSize1--;
}
@@ -261,7 +259,6 @@ void arm_conv_fast_q15(
/* count is the index by which the pointer pIn1 to be incremented */
count = 0U;
-
/* --------------------
* Stage2 process
* -------------------*/
@@ -284,13 +281,11 @@ void arm_conv_fast_q15(
acc2 = 0;
acc3 = 0;
-
/* read x[0], x[1] samples */
- x0 = *__SIMD32(px);
+ x0 = read_q15x2 ((q15_t *) px);
/* read x[1], x[2] samples */
- x1 = _SIMD32_OFFSET(px+1);
- px+= 2U;
-
+ x1 = read_q15x2 ((q15_t *) px + 1);
+ px += 2U;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2U;
@@ -301,7 +296,7 @@ void arm_conv_fast_q15(
{
/* Read the last two inputB samples using SIMD:
* y[srcBLen - 1] and y[srcBLen - 2] */
- c0 = *__SIMD32(py)--;
+ c0 = read_q15x2_da ((q15_t **) &py);
/* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
acc0 = __SMLADX(x0, c0, acc0);
@@ -310,10 +305,10 @@ void arm_conv_fast_q15(
acc1 = __SMLADX(x1, c0, acc1);
/* Read x[2], x[3] */
- x2 = *__SIMD32(px);
+ x2 = read_q15x2 ((q15_t *) px);
/* Read x[3], x[4] */
- x3 = _SIMD32_OFFSET(px+1);
+ x3 = read_q15x2 ((q15_t *) px + 1);
/* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
acc2 = __SMLADX(x2, c0, acc2);
@@ -322,7 +317,7 @@ void arm_conv_fast_q15(
acc3 = __SMLADX(x3, c0, acc3);
/* Read y[srcBLen - 3] and y[srcBLen - 4] */
- c0 = *__SIMD32(py)--;
+ c0 = read_q15x2_da ((q15_t **) &py);
/* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
acc0 = __SMLADX(x2, c0, acc0);
@@ -331,10 +326,10 @@ void arm_conv_fast_q15(
acc1 = __SMLADX(x3, c0, acc1);
/* Read x[4], x[5] */
- x0 = _SIMD32_OFFSET(px+2);
+ x0 = read_q15x2 ((q15_t *) px + 2);
/* Read x[5], x[6] */
- x1 = _SIMD32_OFFSET(px+3);
+ x1 = read_q15x2 ((q15_t *) px + 3);
px += 4U;
/* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
@@ -358,17 +353,13 @@ void arm_conv_fast_q15(
c0 = *(py+1);
#ifdef ARM_MATH_BIG_ENDIAN
-
c0 = c0 << 16U;
-
#else
-
c0 = c0 & 0x0000FFFF;
-
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
/* Read x[7] */
- x3 = *__SIMD32(px);
+ x3 = read_q15x2 ((q15_t *) px);
px++;
/* Perform the multiply-accumulates */
@@ -381,13 +372,13 @@ void arm_conv_fast_q15(
if (k == 2U)
{
/* Read y[srcBLen - 5], y[srcBLen - 6] */
- c0 = _SIMD32_OFFSET(py);
+ c0 = read_q15x2 ((q15_t *) py);
/* Read x[7], x[8] */
- x3 = *__SIMD32(px);
+ x3 = read_q15x2 ((q15_t *) px);
/* Read x[9] */
- x2 = _SIMD32_OFFSET(px+1);
+ x2 = read_q15x2 ((q15_t *) px + 1);
px += 2U;
/* Perform the multiply-accumulates */
@@ -400,13 +391,13 @@ void arm_conv_fast_q15(
if (k == 3U)
{
/* Read y[srcBLen - 5], y[srcBLen - 6] */
- c0 = _SIMD32_OFFSET(py);
+ c0 = read_q15x2 ((q15_t *) py);
/* Read x[7], x[8] */
- x3 = *__SIMD32(px);
+ x3 = read_q15x2 ((q15_t *) px);
/* Read x[9] */
- x2 = _SIMD32_OFFSET(px+1);
+ x2 = read_q15x2 ((q15_t *) px + 1);
/* Perform the multiply-accumulates */
acc0 = __SMLADX(x0, c0, acc0);
@@ -417,15 +408,13 @@ void arm_conv_fast_q15(
/* Read y[srcBLen - 7] */
c0 = *(py-1);
#ifdef ARM_MATH_BIG_ENDIAN
-
c0 = c0 << 16U;
#else
-
c0 = c0 & 0x0000FFFF;
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
/* Read x[10] */
- x3 = _SIMD32_OFFSET(px+2);
+ x3 = read_q15x2 ((q15_t *) px + 2);
px += 3U;
/* Perform the multiply-accumulates */
@@ -435,18 +424,14 @@ void arm_conv_fast_q15(
acc3 = __SMLADX(x3, c0, acc3);
}
- /* Store the results in the accumulators in the destination buffer. */
+ /* Store the result in the accumulator in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
-
- *__SIMD32(pOut)++ = __PKHBT((acc0 >> 15), (acc1 >> 15), 16);
- *__SIMD32(pOut)++ = __PKHBT((acc2 >> 15), (acc3 >> 15), 16);
-
+ write_q15x2_ia (&pOut, __PKHBT((acc0 >> 15), (acc1 >> 15), 16));
+ write_q15x2_ia (&pOut, __PKHBT((acc2 >> 15), (acc3 >> 15), 16));
#else
-
- *__SIMD32(pOut)++ = __PKHBT((acc1 >> 15), (acc0 >> 15), 16);
- *__SIMD32(pOut)++ = __PKHBT((acc3 >> 15), (acc2 >> 15), 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+ write_q15x2_ia (&pOut, __PKHBT((acc1 >> 15), (acc0 >> 15), 16));
+ write_q15x2_ia (&pOut, __PKHBT((acc3 >> 15), (acc2 >> 15), 16));
+#endif /*#ifndef ARM_MATH_BIG_ENDIAN*/
/* Increment the pointer pIn1 index, count by 4 */
count += 4U;
@@ -455,7 +440,7 @@ void arm_conv_fast_q15(
px = pIn1 + count;
py = pSrc2;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blkCnt--;
}
@@ -476,12 +461,12 @@ void arm_conv_fast_q15(
while (k > 0U)
{
/* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) *px++ * *py--);
+ sum += ((q31_t) *px++ * *py--);
+ sum += ((q31_t) *px++ * *py--);
+ sum += ((q31_t) *px++ * *py--);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -492,9 +477,9 @@ void arm_conv_fast_q15(
while (k > 0U)
{
/* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) *px++ * *py--);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -508,7 +493,7 @@ void arm_conv_fast_q15(
px = pIn1 + count;
py = pSrc2;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blkCnt--;
}
}
@@ -529,28 +514,27 @@ void arm_conv_fast_q15(
while (k > 0U)
{
/* Perform the multiply-accumulate */
- sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) *px++ * *py--);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
- /* Increment the MAC count */
+ /* Increment MAC count */
count++;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blkCnt--;
}
}
-
/* --------------------------
* Initializations of stage3
* -------------------------*/
@@ -599,12 +583,12 @@ void arm_conv_fast_q15(
{
/* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
* with y[srcBLen - 1], y[srcBLen - 2] respectively */
- sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ sum = __SMLADX(read_q15x2_ia ((q15_t **) &px), read_q15x2_da ((q15_t **) &py), sum);
/* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
* with y[srcBLen - 3], y[srcBLen - 4] respectively */
- sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ sum = __SMLADX(read_q15x2_ia ((q15_t **) &px), read_q15x2_da ((q15_t **) &py), sum);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -621,7 +605,7 @@ void arm_conv_fast_q15(
/* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
sum = __SMLAD(*px++, *py--, sum);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -632,7 +616,7 @@ void arm_conv_fast_q15(
px = ++pSrc1;
py = pIn2;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blockSize3--;
j--;
@@ -657,725 +641,7 @@ void arm_conv_fast_q15(
/* sum += x[srcALen-1] * y[srcBLen-1] */
sum = __SMLAD(*px++, *py--, sum);
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blockSize3--;
- }
-
-#else
- q15_t *pIn1; /* inputA pointer */
- q15_t *pIn2; /* inputB pointer */
- q15_t *pOut = pDst; /* output pointer */
- q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
- q15_t *px; /* Intermediate inputA pointer */
- q15_t *py; /* Intermediate inputB pointer */
- q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
- q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */
- q15_t a, b;
-
- /* The algorithm implementation is based on the lengths of the inputs. */
- /* srcB is always made to slide across srcA. */
- /* So srcBLen is always considered as shorter or equal to srcALen */
- if (srcALen >= srcBLen)
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcA;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcB;
- }
- else
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcB;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcA;
-
- /* srcBLen is always considered as shorter or equal to srcALen */
- j = srcBLen;
- srcBLen = srcALen;
- srcALen = j;
- }
-
- /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
- /* The function is internally
- * divided into three stages according to the number of multiplications that has to be
- * taken place between inputA samples and inputB samples. In the first stage of the
- * algorithm, the multiplications increase by one for every iteration.
- * In the second stage of the algorithm, srcBLen number of multiplications are done.
- * In the third stage of the algorithm, the multiplications decrease by one
- * for every iteration. */
-
- /* The algorithm is implemented in three stages.
- The loop counters of each stage is initiated here. */
- blockSize1 = srcBLen - 1U;
- blockSize2 = srcALen - (srcBLen - 1U);
- blockSize3 = blockSize1;
-
- /* --------------------------
- * Initializations of stage1
- * -------------------------*/
-
- /* sum = x[0] * y[0]
- * sum = x[0] * y[1] + x[1] * y[0]
- * ....
- * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
- */
-
- /* In this stage the MAC operations are increased by 1 for every iteration.
- The count variable holds the number of MAC operations performed */
- count = 1U;
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- py = pIn2;
-
-
- /* ------------------------
- * Stage1 process
- * ----------------------*/
-
- /* For loop unrolling by 4, this stage is divided into two. */
- /* First part of this stage computes the MAC operations less than 4 */
- /* Second part of this stage computes the MAC operations greater than or equal to 4 */
-
- /* The first part of the stage starts here */
- while ((count < 4U) && (blockSize1 > 0U))
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Loop over number of MAC operations between
- * inputA samples and inputB samples */
- k = count;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = pIn2 + count;
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* The second part of the stage starts here */
- /* The internal loop, over count, is unrolled by 4 */
- /* To, read the last two inputB samples using SIMD:
- * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
- py = py - 1;
-
- while (blockSize1 > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- py++;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = pIn2 + (count - 1U);
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* --------------------------
- * Initializations of stage2
- * ------------------------*/
-
- /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
- * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
- * ....
- * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
- */
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1U);
- py = pSrc2;
-
- /* count is the index by which the pointer pIn1 to be incremented */
- count = 0U;
-
-
- /* --------------------
- * Stage2 process
- * -------------------*/
-
- /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
- * So, to loop unroll over blockSize2,
- * srcBLen should be greater than or equal to 4 */
- if (srcBLen >= 4U)
- {
- /* Loop unroll over blockSize2, by 4 */
- blkCnt = blockSize2 >> 2U;
-
- while (blkCnt > 0U)
- {
- py = py - 1U;
-
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
- acc3 = 0;
-
- /* read x[0], x[1] samples */
- a = *px++;
- b = *px++;
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x0 = __PKHBT(a, b, 16);
- a = *px;
- x1 = __PKHBT(b, a, 16);
-
-#else
-
- x0 = __PKHBT(b, a, 16);
- a = *px;
- x1 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- do
- {
- /* Read the last two inputB samples using SIMD:
- * y[srcBLen - 1] and y[srcBLen - 2] */
- a = *py;
- b = *(py+1);
- py -= 2;
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- c0 = __PKHBT(a, b, 16);
-
-#else
-
- c0 = __PKHBT(b, a, 16);;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
- acc0 = __SMLADX(x0, c0, acc0);
-
- /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
- acc1 = __SMLADX(x1, c0, acc1);
-
- a = *px;
- b = *(px + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x2 = __PKHBT(a, b, 16);
- a = *(px + 2);
- x3 = __PKHBT(b, a, 16);
-
-#else
-
- x2 = __PKHBT(b, a, 16);
- a = *(px + 2);
- x3 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
- acc2 = __SMLADX(x2, c0, acc2);
-
- /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
- acc3 = __SMLADX(x3, c0, acc3);
-
- /* Read y[srcBLen - 3] and y[srcBLen - 4] */
- a = *py;
- b = *(py+1);
- py -= 2;
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- c0 = __PKHBT(a, b, 16);
-
-#else
-
- c0 = __PKHBT(b, a, 16);;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
- acc0 = __SMLADX(x2, c0, acc0);
-
- /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
- acc1 = __SMLADX(x3, c0, acc1);
-
- /* Read x[4], x[5], x[6] */
- a = *(px + 2);
- b = *(px + 3);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x0 = __PKHBT(a, b, 16);
- a = *(px + 4);
- x1 = __PKHBT(b, a, 16);
-
-#else
-
- x0 = __PKHBT(b, a, 16);
- a = *(px + 4);
- x1 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- px += 4U;
-
- /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
- acc2 = __SMLADX(x0, c0, acc2);
-
- /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
- acc3 = __SMLADX(x1, c0, acc3);
-
- } while (--k);
-
- /* For the next MAC operations, SIMD is not used
- * So, the 16 bit pointer if inputB, py is updated */
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4U;
-
- if (k == 1U)
- {
- /* Read y[srcBLen - 5] */
- c0 = *(py+1);
-
-#ifdef ARM_MATH_BIG_ENDIAN
-
- c0 = c0 << 16U;
-
-#else
-
- c0 = c0 & 0x0000FFFF;
-
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[7] */
- a = *px;
- b = *(px+1);
- px++;
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x3 = __PKHBT(a, b, 16);
-
-#else
-
- x3 = __PKHBT(b, a, 16);;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLAD(x0, c0, acc0);
- acc1 = __SMLAD(x1, c0, acc1);
- acc2 = __SMLADX(x1, c0, acc2);
- acc3 = __SMLADX(x3, c0, acc3);
- }
-
- if (k == 2U)
- {
- /* Read y[srcBLen - 5], y[srcBLen - 6] */
- a = *py;
- b = *(py+1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- c0 = __PKHBT(a, b, 16);
-
-#else
-
- c0 = __PKHBT(b, a, 16);;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[7], x[8], x[9] */
- a = *px;
- b = *(px + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x3 = __PKHBT(a, b, 16);
- a = *(px + 2);
- x2 = __PKHBT(b, a, 16);
-
-#else
-
- x3 = __PKHBT(b, a, 16);
- a = *(px + 2);
- x2 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- px += 2U;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLADX(x0, c0, acc0);
- acc1 = __SMLADX(x1, c0, acc1);
- acc2 = __SMLADX(x3, c0, acc2);
- acc3 = __SMLADX(x2, c0, acc3);
- }
-
- if (k == 3U)
- {
- /* Read y[srcBLen - 5], y[srcBLen - 6] */
- a = *py;
- b = *(py+1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- c0 = __PKHBT(a, b, 16);
-
-#else
-
- c0 = __PKHBT(b, a, 16);;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[7], x[8], x[9] */
- a = *px;
- b = *(px + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x3 = __PKHBT(a, b, 16);
- a = *(px + 2);
- x2 = __PKHBT(b, a, 16);
-
-#else
-
- x3 = __PKHBT(b, a, 16);
- a = *(px + 2);
- x2 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLADX(x0, c0, acc0);
- acc1 = __SMLADX(x1, c0, acc1);
- acc2 = __SMLADX(x3, c0, acc2);
- acc3 = __SMLADX(x2, c0, acc3);
-
- /* Read y[srcBLen - 7] */
- c0 = *(py-1);
-#ifdef ARM_MATH_BIG_ENDIAN
-
- c0 = c0 << 16U;
-#else
-
- c0 = c0 & 0x0000FFFF;
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[10] */
- a = *(px+2);
- b = *(px+3);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x3 = __PKHBT(a, b, 16);
-
-#else
-
- x3 = __PKHBT(b, a, 16);;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- px += 3U;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLADX(x1, c0, acc0);
- acc1 = __SMLAD(x2, c0, acc1);
- acc2 = __SMLADX(x2, c0, acc2);
- acc3 = __SMLADX(x3, c0, acc3);
- }
-
- /* Store the results in the accumulators in the destination buffer. */
- *pOut++ = (q15_t)(acc0 >> 15);
- *pOut++ = (q15_t)(acc1 >> 15);
- *pOut++ = (q15_t)(acc2 >> 15);
- *pOut++ = (q15_t)(acc3 >> 15);
-
- /* Increment the pointer pIn1 index, count by 4 */
- count += 4U;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize2 % 0x4U;
-
- while (blkCnt > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Increment the pointer pIn1 index, count by 1 */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
- else
- {
- /* If the srcBLen is not a multiple of 4,
- * the blockSize2 loop cannot be unrolled by 4 */
- blkCnt = blockSize2;
-
- while (blkCnt > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* srcBLen number of MACS should be performed */
- k = srcBLen;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulate */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Increment the MAC count */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
-
-
- /* --------------------------
- * Initializations of stage3
- * -------------------------*/
-
- /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
- * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
- * ....
- * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
- * sum += x[srcALen-1] * y[srcBLen-1]
- */
-
- /* In this stage the MAC operations are decreased by 1 for every iteration.
- The blockSize3 variable holds the number of MAC operations performed */
-
- /* Working pointer of inputA */
- pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
- px = pSrc1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1U);
- pIn2 = pSrc2 - 1U;
- py = pIn2;
-
- /* -------------------
- * Stage3 process
- * ------------------*/
-
- /* For loop unrolling by 4, this stage is divided into two. */
- /* First part of this stage computes the MAC operations greater than 4 */
- /* Second part of this stage computes the MAC operations less than or equal to 4 */
-
- /* The first part of the stage starts here */
- j = blockSize3 >> 2U;
-
- while ((j > 0U) && (blockSize3 > 0U))
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = blockSize3 >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- py++;
-
- while (k > 0U)
- {
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = blockSize3 % 0x4U;
-
- while (k > 0U)
- {
- /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pIn2;
-
- /* Decrement the loop counter */
- blockSize3--;
-
- j--;
- }
-
- /* The second part of the stage starts here */
- /* SIMD is not used for the next MAC operations,
- * so pointer py is updated to read only one sample at a time */
- py = py + 1U;
-
- while (blockSize3 > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = blockSize3;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- /* sum += x[srcALen-1] * y[srcBLen-1] */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -1390,9 +656,8 @@ void arm_conv_fast_q15(
blockSize3--;
}
-#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
}
/**
- * @} end of Conv group
+ @} end of Conv group
*/