Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q15.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q15.c259
1 files changed, 124 insertions, 135 deletions
diff --git a/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q15.c b/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q15.c
index ce86db409..98378750e 100644
--- a/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q15.c
+++ b/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q15.c
@@ -3,13 +3,13 @@
* Title: arm_correlate_q15.c
* Description: Correlation of Q15 sequences
*
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
@@ -29,64 +29,58 @@
#include "arm_math.h"
/**
- * @ingroup groupFilters
+ @ingroup groupFilters
*/
/**
- * @addtogroup Corr
- * @{
+ @addtogroup Corr
+ @{
*/
/**
- * @brief Correlation of Q15 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * The function is implemented using a 64-bit internal accumulator.
- * Both inputs are in 1.15 format and multiplications yield a 2.30 result.
- * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
- * This approach provides 33 guard bits and there is no risk of overflow.
- * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
- *
- * \par
- * Refer to <code>arm_correlate_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
- *
- * \par
- * Refer the function <code>arm_correlate_opt_q15()</code> for a faster implementation of this function using scratch buffers.
- *
+ @brief Correlation of Q15 sequences.
+ @param[in] pSrcA points to the first input sequence
+ @param[in] srcALen length of the first input sequence
+ @param[in] pSrcB points to the second input sequence
+ @param[in] srcBLen length of the second input sequence
+ @param[out] pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ @return none
+
+ @par Scaling and Overflow Behavior
+ The function is implemented using a 64-bit internal accumulator.
+ Both inputs are in 1.15 format and multiplications yield a 2.30 result.
+ The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ This approach provides 33 guard bits and there is no risk of overflow.
+ The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
+
+ @remark
+ Refer to \ref arm_correlate_fast_q15() for a faster but less precise version of this function.
+ @remark
+ Refer to \ref arm_correlate_opt_q15() for a faster implementation of this function using scratch buffers.
*/
void arm_correlate_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst)
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst)
{
-#if (defined(ARM_MATH_CM7) || defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- q15_t *pIn1; /* inputA pointer */
- q15_t *pIn2; /* inputB pointer */
- q15_t *pOut = pDst; /* output pointer */
- q63_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
- q15_t *px; /* Intermediate inputA pointer */
- q15_t *py; /* Intermediate inputB pointer */
- q15_t *pSrc1; /* Intermediate pointers */
- q31_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */
- uint32_t j, k = 0U, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
- int32_t inc = 1; /* Destination address modifier */
-
+#if defined (ARM_MATH_DSP)
+
+ const q15_t *pIn1; /* InputA pointer */
+ const q15_t *pIn2; /* InputB pointer */
+ q15_t *pOut = pDst; /* Output pointer */
+ q63_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
+ const q15_t *px; /* Intermediate inputA pointer */
+ const q15_t *py; /* Intermediate inputB pointer */
+ const q15_t *pSrc1; /* Intermediate pointers */
+ q31_t x0, x1, x2, x3, c0; /* Temporary input variables for holding input and coefficient values */
+ uint32_t blockSize1, blockSize2, blockSize3; /* Loop counters */
+ uint32_t j, k, count, blkCnt; /* Loop counters */
+ uint32_t outBlockSize;
+ int32_t inc = 1; /* Destination address modifier */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
@@ -104,13 +98,13 @@ void arm_correlate_q15(
if (srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
- pIn1 = (pSrcA);
+ pIn1 = pSrcA;
/* Initialization of inputB pointer */
- pIn2 = (pSrcB);
+ pIn2 = pSrcB;
/* Number of output samples is calculated */
- outBlockSize = (2U * srcALen) - 1U;
+ outBlockSize = (srcALen * 2U) - 1U;
/* When srcALen > srcBLen, zero padding is done to srcB
* to make their lengths equal.
@@ -120,15 +114,14 @@ void arm_correlate_q15(
/* Updating the pointer position to non zero value */
pOut += j;
-
}
else
{
/* Initialization of inputA pointer */
- pIn1 = (pSrcB);
+ pIn1 = pSrcB;
/* Initialization of inputB pointer */
- pIn2 = (pSrcA);
+ pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
@@ -141,18 +134,18 @@ void arm_correlate_q15(
/* Destination address modifier is set to -1 */
inc = -1;
-
}
/* The function is internally
- * divided into three parts according to the number of multiplications that has to be
- * taken place between inputA samples and inputB samples. In the first part of the
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
- * In the second part of the algorithm, srcBLen number of multiplications are done.
- * In the third part of the algorithm, the multiplications decrease by one
- * for every iteration.*/
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
/* The algorithm is implemented in three stages.
- * The loop counters of each stage is initiated here. */
+ The loop counters of each stage is initiated here. */
blockSize1 = srcBLen - 1U;
blockSize2 = srcALen - (srcBLen - 1U);
blockSize3 = blockSize1;
@@ -189,18 +182,19 @@ void arm_correlate_q15(
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2;
+ k = count >> 2U;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while (k > 0U)
{
+ /* Perform the multiply-accumulate */
/* x[0] * y[srcBLen - 4] , x[1] * y[srcBLen - 3] */
- sum = __SMLALD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
+ sum = __SMLALD(read_q15x2_ia ((q15_t **) &px), read_q15x2_ia ((q15_t **) &py), sum);
/* x[3] * y[srcBLen - 1] , x[2] * y[srcBLen - 2] */
- sum = __SMLALD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
+ sum = __SMLALD(read_q15x2_ia ((q15_t **) &px), read_q15x2_ia ((q15_t **) &py), sum);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -210,11 +204,11 @@ void arm_correlate_q15(
while (k > 0U)
{
- /* Perform the multiply-accumulates */
+ /* Perform the multiply-accumulate */
/* x[0] * y[srcBLen - 1] */
sum = __SMLALD(*px++, *py++, sum);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -227,10 +221,10 @@ void arm_correlate_q15(
py = pSrc1 - count;
px = pIn1;
- /* Increment the MAC count */
+ /* Increment MAC count */
count++;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blockSize1--;
}
@@ -250,7 +244,7 @@ void arm_correlate_q15(
/* Working pointer of inputB */
py = pIn2;
- /* count is index by which the pointer pIn1 to be incremented */
+ /* count is the index by which the pointer pIn1 to be incremented */
count = 0U;
/* -------------------
@@ -259,10 +253,10 @@ void arm_correlate_q15(
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
- * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */
+ * srcBLen should be greater than or equal to 4 */
if (srcBLen >= 4U)
{
- /* Loop unroll over blockSize2, by 4 */
+ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize2 >> 2U;
while (blkCnt > 0U)
@@ -274,9 +268,10 @@ void arm_correlate_q15(
acc3 = 0;
/* read x[0], x[1] samples */
- x0 = *__SIMD32(px);
+ x0 = read_q15x2 ((q15_t *) px);
+
/* read x[1], x[2] samples */
- x1 = _SIMD32_OFFSET(px + 1);
+ x1 = read_q15x2 ((q15_t *) px + 1);
px += 2U;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
@@ -288,7 +283,7 @@ void arm_correlate_q15(
{
/* Read the first two inputB samples using SIMD:
* y[0] and y[1] */
- c0 = *__SIMD32(py)++;
+ c0 = read_q15x2_ia ((q15_t **) &py);
/* acc0 += x[0] * y[0] + x[1] * y[1] */
acc0 = __SMLALD(x0, c0, acc0);
@@ -297,10 +292,10 @@ void arm_correlate_q15(
acc1 = __SMLALD(x1, c0, acc1);
/* Read x[2], x[3] */
- x2 = *__SIMD32(px);
+ x2 = read_q15x2 ((q15_t *) px);
/* Read x[3], x[4] */
- x3 = _SIMD32_OFFSET(px + 1);
+ x3 = read_q15x2 ((q15_t *) px + 1);
/* acc2 += x[2] * y[0] + x[3] * y[1] */
acc2 = __SMLALD(x2, c0, acc2);
@@ -309,7 +304,7 @@ void arm_correlate_q15(
acc3 = __SMLALD(x3, c0, acc3);
/* Read y[2] and y[3] */
- c0 = *__SIMD32(py)++;
+ c0 = read_q15x2_ia ((q15_t **) &py);
/* acc0 += x[2] * y[2] + x[3] * y[3] */
acc0 = __SMLALD(x2, c0, acc0);
@@ -318,11 +313,10 @@ void arm_correlate_q15(
acc1 = __SMLALD(x3, c0, acc1);
/* Read x[4], x[5] */
- x0 = _SIMD32_OFFSET(px + 2);
+ x0 = read_q15x2 ((q15_t *) px + 2);
/* Read x[5], x[6] */
- x1 = _SIMD32_OFFSET(px + 3);
-
+ x1 = read_q15x2 ((q15_t *) px + 3);
px += 4U;
/* acc2 += x[4] * y[2] + x[5] * y[3] */
@@ -342,21 +336,18 @@ void arm_correlate_q15(
/* Read y[4] */
c0 = *py;
#ifdef ARM_MATH_BIG_ENDIAN
-
c0 = c0 << 16U;
-
#else
-
c0 = c0 & 0x0000FFFF;
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
/* Read x[7] */
- x3 = *__SIMD32(px);
+ x3 = read_q15x2 ((q15_t *) px);
px++;
- /* Perform the multiply-accumulates */
- acc0 = __SMLALD(x0, c0, acc0);
- acc1 = __SMLALD(x1, c0, acc1);
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLALD (x0, c0, acc0);
+ acc1 = __SMLALD (x1, c0, acc1);
acc2 = __SMLALDX(x1, c0, acc2);
acc3 = __SMLALDX(x3, c0, acc3);
}
@@ -364,16 +355,16 @@ void arm_correlate_q15(
if (k == 2U)
{
/* Read y[4], y[5] */
- c0 = *__SIMD32(py);
+ c0 = read_q15x2 ((q15_t *) py);
/* Read x[7], x[8] */
- x3 = *__SIMD32(px);
+ x3 = read_q15x2 ((q15_t *) px);
/* Read x[9] */
- x2 = _SIMD32_OFFSET(px + 1);
+ x2 = read_q15x2 ((q15_t *) px + 1);
px += 2U;
- /* Perform the multiply-accumulates */
+ /* Perform the multiply-accumulate */
acc0 = __SMLALD(x0, c0, acc0);
acc1 = __SMLALD(x1, c0, acc1);
acc2 = __SMLALD(x3, c0, acc2);
@@ -383,15 +374,15 @@ void arm_correlate_q15(
if (k == 3U)
{
/* Read y[4], y[5] */
- c0 = *__SIMD32(py)++;
+ c0 = read_q15x2_ia ((q15_t **) &py);
/* Read x[7], x[8] */
- x3 = *__SIMD32(px);
+ x3 = read_q15x2 ((q15_t *) px);
/* Read x[9] */
- x2 = _SIMD32_OFFSET(px + 1);
+ x2 = read_q15x2 ((q15_t *) px + 1);
- /* Perform the multiply-accumulates */
+ /* Perform the multiply-accumulate */
acc0 = __SMLALD(x0, c0, acc0);
acc1 = __SMLALD(x1, c0, acc1);
acc2 = __SMLALD(x3, c0, acc2);
@@ -401,19 +392,18 @@ void arm_correlate_q15(
/* Read y[6] */
#ifdef ARM_MATH_BIG_ENDIAN
-
c0 = c0 << 16U;
#else
-
c0 = c0 & 0x0000FFFF;
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
/* Read x[10] */
- x3 = _SIMD32_OFFSET(px + 2);
+ x3 = read_q15x2 ((q15_t *) px + 2);
px += 3U;
/* Perform the multiply-accumulates */
acc0 = __SMLALDX(x1, c0, acc0);
- acc1 = __SMLALD(x2, c0, acc1);
+ acc1 = __SMLALD (x2, c0, acc1);
acc2 = __SMLALDX(x2, c0, acc2);
acc3 = __SMLALDX(x3, c0, acc3);
}
@@ -439,7 +429,7 @@ void arm_correlate_q15(
px = pIn1 + count;
py = pIn2;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blkCnt--;
}
@@ -460,12 +450,12 @@ void arm_correlate_q15(
while (k > 0U)
{
/* Perform the multiply-accumulates */
- sum += ((q63_t) * px++ * *py++);
- sum += ((q63_t) * px++ * *py++);
- sum += ((q63_t) * px++ * *py++);
- sum += ((q63_t) * px++ * *py++);
+ sum += ((q63_t) *px++ * *py++);
+ sum += ((q63_t) *px++ * *py++);
+ sum += ((q63_t) *px++ * *py++);
+ sum += ((q63_t) *px++ * *py++);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -476,7 +466,7 @@ void arm_correlate_q15(
while (k > 0U)
{
/* Perform the multiply-accumulates */
- sum += ((q63_t) * px++ * *py++);
+ sum += ((q63_t) *px++ * *py++);
/* Decrement the loop counter */
k--;
@@ -509,13 +499,13 @@ void arm_correlate_q15(
/* Accumulator is made zero for every iteration */
sum = 0;
- /* Loop over srcBLen */
+ /* srcBLen number of MACS should be performed */
k = srcBLen;
while (k > 0U)
{
/* Perform the multiply-accumulate */
- sum += ((q63_t) * px++ * *py++);
+ sum += ((q63_t) *px++ * *py++);
/* Decrement the loop counter */
k--;
@@ -538,6 +528,7 @@ void arm_correlate_q15(
}
}
+
/* --------------------------
* Initializations of stage3
* -------------------------*/
@@ -576,13 +567,13 @@ void arm_correlate_q15(
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while (k > 0U)
{
- /* Perform the multiply-accumulates */
+ /* Perform the multiply-accumulate */
/* sum += x[srcALen - srcBLen + 4] * y[3] , sum += x[srcALen - srcBLen + 3] * y[2] */
- sum = __SMLALD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
+ sum = __SMLALD(read_q15x2_ia ((q15_t **) &px), read_q15x2_ia ((q15_t **) &py), sum);
/* sum += x[srcALen - srcBLen + 2] * y[1] , sum += x[srcALen - srcBLen + 1] * y[0] */
- sum = __SMLALD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
+ sum = __SMLALD(read_q15x2_ia ((q15_t **) &px), read_q15x2_ia ((q15_t **) &py), sum);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -592,10 +583,10 @@ void arm_correlate_q15(
while (k > 0U)
{
- /* Perform the multiply-accumulates */
+ /* Perform the multiply-accumulate */
sum = __SMLALD(*px++, *py++, sum);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -608,23 +599,21 @@ void arm_correlate_q15(
px = ++pSrc1;
py = pIn2;
- /* Decrement the MAC count */
+ /* Decrement MAC count */
count--;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blockSize3--;
}
-#else
-
-/* Run the below code for Cortex-M0 */
+#else /* #if defined (ARM_MATH_DSP) */
- q15_t *pIn1 = pSrcA; /* inputA pointer */
- q15_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
- q63_t sum; /* Accumulators */
- uint32_t i = 0U, j; /* loop counters */
- uint32_t inv = 0U; /* Reverse order flag */
- uint32_t tot = 0U; /* Length */
+ const q15_t *pIn1 = pSrcA; /* InputA pointer */
+ const q15_t *pIn2 = pSrcB + (srcBLen - 1U); /* InputB pointer */
+ q63_t sum; /* Accumulators */
+ uint32_t i = 0U, j; /* Loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
@@ -672,10 +661,9 @@ void arm_correlate_q15(
/* Setting the reverse flag */
inv = 1;
-
}
- /* Loop to calculate convolution for output length number of times */
+ /* Loop to calculate convolution for output length number of values */
for (i = 0U; i <= tot; i++)
{
/* Initialize sum with zero to carry on MAC operations */
@@ -685,12 +673,13 @@ void arm_correlate_q15(
for (j = 0U; j <= i; j++)
{
/* Check the array limitations */
- if ((((i - j) < srcBLen) && (j < srcALen)))
+ if (((i - j) < srcBLen) && (j < srcALen))
{
/* z[i] += x[i-j] * y[j] */
sum += ((q31_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
}
}
+
/* Store the output in the destination buffer */
if (inv == 1)
*pDst-- = (q15_t) __SSAT((sum >> 15U), 16U);
@@ -698,10 +687,10 @@ void arm_correlate_q15(
*pDst++ = (q15_t) __SSAT((sum >> 15U), 16U);
}
-#endif /* #if (defined(ARM_MATH_CM7) || defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE) */
+#endif /* #if defined (ARM_MATH_DSP) */
}
/**
- * @} end of Corr group
+ @} end of Corr group
*/