Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q31.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q31.c299
1 files changed, 164 insertions, 135 deletions
diff --git a/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q31.c b/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q31.c
index 3d7d3d078..caa2f51fd 100644
--- a/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q31.c
+++ b/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q31.c
@@ -3,13 +3,13 @@
* Title: arm_correlate_q31.c
* Description: Correlation of Q31 sequences
*
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
@@ -29,63 +29,64 @@
#include "arm_math.h"
/**
- * @ingroup groupFilters
+ @ingroup groupFilters
*/
/**
- * @addtogroup Corr
- * @{
+ @addtogroup Corr
+ @{
*/
/**
- * @brief Correlation of Q31 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * The function is implemented using an internal 64-bit accumulator.
- * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
- * There is no saturation on intermediate additions.
- * Thus, if the accumulator overflows it wraps around and distorts the result.
- * The input signals should be scaled down to avoid intermediate overflows.
- * Scale down one of the inputs by 1/min(srcALen, srcBLen)to avoid overflows since a
- * maximum of min(srcALen, srcBLen) number of additions is carried internally.
- * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
- *
- * \par
- * See <code>arm_correlate_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
+ @brief Correlation of Q31 sequences.
+ @param[in] pSrcA points to the first input sequence
+ @param[in] srcALen length of the first input sequence
+ @param[in] pSrcB points to the second input sequence
+ @param[in] srcBLen length of the second input sequence
+ @param[out] pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ @return none
+
+ @par Scaling and Overflow Behavior
+ The function is implemented using an internal 64-bit accumulator.
+ The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ There is no saturation on intermediate additions.
+ Thus, if the accumulator overflows it wraps around and distorts the result.
+ The input signals should be scaled down to avoid intermediate overflows.
+ Scale down one of the inputs by 1/min(srcALen, srcBLen)to avoid overflows since a
+ maximum of min(srcALen, srcBLen) number of additions is carried internally.
+ The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
+
+ @remark
+ Refer to \ref arm_correlate_fast_q31() for a faster but less precise implementation of this function.
*/
void arm_correlate_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst)
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst)
{
-#if defined (ARM_MATH_DSP)
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- q31_t *pIn1; /* inputA pointer */
- q31_t *pIn2; /* inputB pointer */
- q31_t *pOut = pDst; /* output pointer */
- q31_t *px; /* Intermediate inputA pointer */
- q31_t *py; /* Intermediate inputB pointer */
- q31_t *pSrc1; /* Intermediate pointers */
- q63_t sum, acc0, acc1, acc2; /* Accumulators */
- q31_t x0, x1, x2, c0; /* temporary variables for holding input and coefficient values */
- uint32_t j, k = 0U, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
- int32_t inc = 1; /* Destination address modifier */
-
+#if (1)
+//#if !defined(ARM_MATH_CM0_FAMILY)
+
+ const q31_t *pIn1; /* InputA pointer */
+ const q31_t *pIn2; /* InputB pointer */
+ q31_t *pOut = pDst; /* Output pointer */
+ const q31_t *px; /* Intermediate inputA pointer */
+ const q31_t *py; /* Intermediate inputB pointer */
+ const q31_t *pSrc1; /* Intermediate pointers */
+ q63_t sum; /* Accumulators */
+ uint32_t blockSize1, blockSize2, blockSize3; /* Loop counters */
+ uint32_t j, k, count, blkCnt; /* Loop counters */
+ uint32_t outBlockSize;
+ int32_t inc = 1; /* Destination address modifier */
+
+#if defined (ARM_MATH_LOOPUNROLL)
+ q63_t acc0, acc1, acc2; /* Accumulators */
+ q31_t x0, x1, x2, c0; /* Temporary variables for holding input and coefficient values */
+#endif
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
@@ -103,10 +104,10 @@ void arm_correlate_q31(
if (srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
- pIn1 = (pSrcA);
+ pIn1 = pSrcA;
/* Initialization of inputB pointer */
- pIn2 = (pSrcB);
+ pIn2 = pSrcB;
/* Number of output samples is calculated */
outBlockSize = (2U * srcALen) - 1U;
@@ -119,15 +120,14 @@ void arm_correlate_q31(
/* Updating the pointer position to non zero value */
pOut += j;
-
}
else
{
/* Initialization of inputA pointer */
- pIn1 = (pSrcB);
+ pIn1 = pSrcB;
/* Initialization of inputB pointer */
- pIn2 = (pSrcA);
+ pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
@@ -140,18 +140,18 @@ void arm_correlate_q31(
/* Destination address modifier is set to -1 */
inc = -1;
-
}
/* The function is internally
- * divided into three parts according to the number of multiplications that has to be
- * taken place between inputA samples and inputB samples. In the first part of the
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
- * In the second part of the algorithm, srcBLen number of multiplications are done.
- * In the third part of the algorithm, the multiplications decrease by one
- * for every iteration.*/
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
/* The algorithm is implemented in three stages.
- * The loop counters of each stage is initiated here. */
+ The loop counters of each stage is initiated here. */
blockSize1 = srcBLen - 1U;
blockSize2 = srcALen - (srcBLen - 1U);
blockSize3 = blockSize1;
@@ -177,6 +177,7 @@ void arm_correlate_q31(
pSrc1 = pIn2 + (srcBLen - 1U);
py = pSrc1;
+
/* ------------------------
* Stage1 process
* ----------------------*/
@@ -187,37 +188,46 @@ void arm_correlate_q31(
/* Accumulator is made zero for every iteration */
sum = 0;
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2;
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ k = count >> 2U;
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
while (k > 0U)
{
/* x[0] * y[srcBLen - 4] */
- sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) *px++ * (*py++);
+
/* x[1] * y[srcBLen - 3] */
- sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) *px++ * (*py++);
+
/* x[2] * y[srcBLen - 2] */
- sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) *px++ * (*py++);
+
/* x[3] * y[srcBLen - 1] */
- sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) *px++ * (*py++);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
+ /* Loop unrolling: Compute remaining outputs */
k = count % 0x4U;
+#else
+
+ /* Initialize k with number of samples */
+ k = count;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
while (k > 0U)
{
- /* Perform the multiply-accumulates */
+ /* Perform the multiply-accumulate */
/* x[0] * y[srcBLen - 1] */
- sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) *px++ * (*py++);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -230,10 +240,10 @@ void arm_correlate_q31(
py = pSrc1 - count;
px = pIn1;
- /* Increment the MAC count */
+ /* Increment MAC count */
count++;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blockSize1--;
}
@@ -265,6 +275,8 @@ void arm_correlate_q31(
* srcBLen should be greater than or equal to 4 */
if (srcBLen >= 4U)
{
+#if defined (ARM_MATH_LOOPUNROLL)
+
/* Loop unroll by 3 */
blkCnt = blockSize2 / 3;
@@ -276,8 +288,8 @@ void arm_correlate_q31(
acc2 = 0;
/* read x[0], x[1] samples */
- x0 = *(px++);
- x1 = *(px++);
+ x0 = *px++;
+ x1 = *px++;
/* Apply loop unrolling and compute 3 MACs simultaneously. */
k = srcBLen / 3;
@@ -288,7 +300,6 @@ void arm_correlate_q31(
{
/* Read y[0] sample */
c0 = *(py);
-
/* Read x[2] sample */
x2 = *(px);
@@ -302,11 +313,10 @@ void arm_correlate_q31(
/* Read y[1] sample */
c0 = *(py + 1U);
-
/* Read x[3] sample */
x0 = *(px + 1U);
- /* Perform the multiply-accumulates */
+ /* Perform the multiply-accumulate */
/* acc0 += x[1] * y[1] */
acc0 += ((q63_t) x1 * c0);
/* acc1 += x[2] * y[1] */
@@ -316,11 +326,10 @@ void arm_correlate_q31(
/* Read y[2] sample */
c0 = *(py + 2U);
-
/* Read x[4] sample */
x1 = *(px + 2U);
- /* Perform the multiply-accumulates */
+ /* Perform the multiply-accumulate */
/* acc0 += x[2] * y[2] */
acc0 += ((q63_t) x2 * c0);
/* acc1 += x[3] * y[2] */
@@ -358,7 +367,7 @@ void arm_correlate_q31(
x0 = x1;
x1 = x2;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -380,45 +389,56 @@ void arm_correlate_q31(
px = pIn1 + count;
py = pIn2;
-
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blkCnt--;
}
- /* If the blockSize2 is not a multiple of 3, compute any remaining output samples here.
- ** No loop unrolling is used. */
+ /* Loop unrolling: Compute remaining outputs */
blkCnt = blockSize2 - 3 * (blockSize2 / 3);
+#else
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = blockSize2;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
while (blkCnt > 0U)
{
/* Accumulator is made zero for every iteration */
sum = 0;
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
k = srcBLen >> 2U;
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
while (k > 0U)
{
/* Perform the multiply-accumulates */
- sum += (q63_t) * px++ * (*py++);
- sum += (q63_t) * px++ * (*py++);
- sum += (q63_t) * px++ * (*py++);
- sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) *px++ * *py++;
+ sum += (q63_t) *px++ * *py++;
+ sum += (q63_t) *px++ * *py++;
+ sum += (q63_t) *px++ * *py++;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
+ /* Loop unrolling: Compute remaining outputs */
k = srcBLen % 0x4U;
+#else
+
+ /* Initialize blkCnt with number of samples */
+ k = srcBLen;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
while (k > 0U)
{
/* Perform the multiply-accumulate */
- sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) *px++ * *py++;
/* Decrement the loop counter */
k--;
@@ -429,14 +449,14 @@ void arm_correlate_q31(
/* Destination pointer is updated according to the address modifier, inc */
pOut += inc;
- /* Increment the MAC count */
+ /* Increment MAC count */
count++;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pIn2;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blkCnt--;
}
}
@@ -451,13 +471,13 @@ void arm_correlate_q31(
/* Accumulator is made zero for every iteration */
sum = 0;
- /* Loop over srcBLen */
+ /* srcBLen number of MACS should be performed */
k = srcBLen;
while (k > 0U)
{
/* Perform the multiply-accumulate */
- sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) *px++ * *py++;
/* Decrement the loop counter */
k--;
@@ -468,18 +488,19 @@ void arm_correlate_q31(
/* Destination pointer is updated according to the address modifier, inc */
pOut += inc;
- /* Increment the MAC count */
+ /* Increment MAC count */
count++;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pIn2;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blkCnt--;
}
}
+
/* --------------------------
* Initializations of stage3
* -------------------------*/
@@ -511,37 +532,46 @@ void arm_correlate_q31(
/* Accumulator is made zero for every iteration */
sum = 0;
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
k = count >> 2U;
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
while (k > 0U)
{
- /* Perform the multiply-accumulates */
+ /* Perform the multiply-accumulate */
/* sum += x[srcALen - srcBLen + 4] * y[3] */
- sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) *px++ * *py++;
+
/* sum += x[srcALen - srcBLen + 3] * y[2] */
- sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) *px++ * *py++;
+
/* sum += x[srcALen - srcBLen + 2] * y[1] */
- sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) *px++ * *py++;
+
/* sum += x[srcALen - srcBLen + 1] * y[0] */
- sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) *px++ * *py++;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
+ /* Loop unrolling: Compute remaining outputs */
k = count % 0x4U;
+#else
+
+ /* Initialize blkCnt with number of samples */
+ k = count;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
while (k > 0U)
{
- /* Perform the multiply-accumulates */
- sum += (q63_t) * px++ * (*py++);
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) *px++ * *py++;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
}
@@ -554,23 +584,22 @@ void arm_correlate_q31(
px = ++pSrc1;
py = pIn2;
- /* Decrement the MAC count */
+ /* Decrement MAC count */
count--;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
blockSize3--;
}
#else
+/* alternate version for CM0_FAMILY */
- /* Run the below code for Cortex-M0 */
-
- q31_t *pIn1 = pSrcA; /* inputA pointer */
- q31_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
- q63_t sum; /* Accumulators */
- uint32_t i = 0U, j; /* loop counters */
- uint32_t inv = 0U; /* Reverse order flag */
- uint32_t tot = 0U; /* Length */
+ const q31_t *pIn1 = pSrcA; /* InputA pointer */
+ const q31_t *pIn2 = pSrcB + (srcBLen - 1U); /* InputB pointer */
+ q63_t sum; /* Accumulators */
+ uint32_t i = 0U, j; /* Loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
@@ -618,25 +647,25 @@ void arm_correlate_q31(
/* Setting the reverse flag */
inv = 1;
-
}
/* Loop to calculate correlation for output length number of times */
for (i = 0U; i <= tot; i++)
{
- /* Initialize sum with zero to carry on MAC operations */
+ /* Initialize sum with zero to carry out MAC operations */
sum = 0;
/* Loop to perform MAC operations according to correlation equation */
for (j = 0U; j <= i; j++)
{
/* Check the array limitations */
- if ((((i - j) < srcBLen) && (j < srcALen)))
+ if (((i - j) < srcBLen) && (j < srcALen))
{
/* z[i] += x[i-j] * y[j] */
sum += ((q63_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
}
}
+
/* Store the output in the destination buffer */
if (inv == 1)
*pDst-- = (q31_t) (sum >> 31U);
@@ -644,10 +673,10 @@ void arm_correlate_q31(
*pDst++ = (q31_t) (sum >> 31U);
}
-#endif /* #if defined (ARM_MATH_DSP) */
+#endif /* #if !defined(ARM_MATH_CM0_FAMILY) */
}
/**
- * @} end of Corr group
+ @} end of Corr group
*/